Search results for: data mining analytics
23574 Mapping of Geological Structures Using Aerial Photography
Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash
Abstract:
Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures
Procedia PDF Downloads 68623573 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 12923572 Using Digital Innovations to Increase Awareness and Intent to Use Depo-Medroxy Progesterone Acetate-Subcutaneous Contraception among Women of Reproductive Age in Nigeria, Uganda, and Malawi
Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu
Abstract:
Introduction: Digital innovations have been useful in supporting a client’s contraceptive user journey from awareness to method initiation. The concept of contraceptive self-care is being promoted globally as a means for achieving universal access to quality contraceptive care; however, information about this approach is limited. An important determinant of the scale of awareness is the message construct, choice of information channel, and an understanding of the socio-epidemiological dynamics within the target audience. Significant gains have been made recently in expanding the awareness base of DMPA-SC -a relatively new entrant into the family planning method mix. The cornerstone of this success is a multichannel promotion campaign themed Discover your Power (DYP). The DYP campaign combines content marketing across select social media platforms, chatbots, Cyber-IPC, Interactive Voice Response (IVR), and radio campaigns. Methodology: During implementation, the project monitored predefined metrics of awareness and intent, such as the number of persons reached with the messages, the number of impressions, and meaningful engagement (link-clicks). Metrics/indicators are extracted through native insight/analytics tools across the various platforms. The project also enlists community mobilizers (CMs) who go door-to-door and engage WRA to advertise DISC’s online presence and support them to engage with IVR, digital companion (chatbot), Facebook page, and DiscoverYourPower website. Results: The result showed that the digital platforms recorded 242 million impressions and reached 82 million users with key DMPA-SC self-injection messaging in the three countries. As many as 3.4 million persons engaged (liked, clicked, shared, or reposted) digital posts -an indication of intention. Conclusion: Digital solutions and innovations are gradually becoming the archetype for the advancement of the self-care agenda. Digital innovations can also be used to increase awareness and normalize contraceptive self-care behavior amongst women of reproductive age if they are made an integral part of reproductive health programming.Keywords: digital transformation, health systems, DMPA-SC, family planning, self-care
Procedia PDF Downloads 8123571 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data
Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho
Abstract:
Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.Keywords: smartcard data, ANN, bus, ridership
Procedia PDF Downloads 16723570 The Mineralogy of Shales from the Pilbara and How Chemical Weathering Affects the Intact Strength
Authors: Arturo Maldonado
Abstract:
In the iron ore mining industry, the intact strength of rock units is defined using the uniaxial compressive strength (UCS). This parameter is very important for the classification of shale materials, allowing the split between rock and cohesive soils based on the magnitude of UCS. For this research, it is assumed that UCS less than or equal to 1 MPa is representative of soils. Several researchers have anticipated that the magnitude of UCS reduces with weathering progression, also since UCS is a directional property, its magnitude depends upon the rock fabric orientation. Thus, the paper presents how the UCS of shales is affected by both weathering grade and bedding orientation. The mineralogy of shales has been defined using Hyper-spectral and chemical assays to define the mineral constituents of shale and other non-shale materials. Geological classification tools have been used to define distinct lithological types, and in this manner, the author uses mineralogical datasets to recognize and isolate shales from other rock types and develop tertiary plots for fresh and weathered shales. The mineralogical classification of shales has reduced the contamination of lithology types and facilitated the study of the physical factors affecting the intact strength of shales, like anisotropic strength due to bedding orientation. The analysis of mineralogical characteristics of shales is perhaps the most important contribution of this paper to other researchers who may wish to explore similar methods.Keywords: rock mechanics, mineralogy, shales, weathering, anisotropy
Procedia PDF Downloads 5923569 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm
Authors: Ping Bo, Meng Yunshan
Abstract:
Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter
Procedia PDF Downloads 32423568 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation
Procedia PDF Downloads 26123567 Electronic Physical Activity Record (EPAR): Key for Data Driven Physical Activity Healthcare Services
Authors: Rishi Kanth Saripalle
Abstract:
Medical experts highly recommend to include physical activity in everyone’s daily routine irrespective of gender or age as it helps to improve various medical issues or curb potential issues. Simultaneously, experts are also diligently trying to provide various healthcare services (interventions, plans, exercise routines, etc.) for promoting healthy living and increasing physical activity in one’s ever increasing hectic schedules. With the introduction of wearables, individuals are able to keep track, analyze, and visualize their daily physical activities. However, there seems to be no common agreed standard for representing, gathering, aggregating and analyzing an individual’s physical activity data from disparate multiple sources (exercise pans, multiple wearables, etc.). This issue makes it highly impractical to develop any data-driven physical activity applications and healthcare programs. Further, the inability to integrate the physical activity data into an individual’s Electronic Health Record to provide a wholistic image of that individual’s health is still eluding the experts. This article has identified three primary reasons for this potential issue. First, there is no agreed standard, both structure and semantic, for representing and sharing physical activity data across disparate systems. Second, various organizations (e.g., LA fitness, Gold’s Gym, etc.) and research backed interventions and programs still primarily rely on paper or unstructured format (such as text or notes) to keep track of the data generated from physical activities. Finally, most of the wearable devices operate in silos. This article identifies the underlying problem, explores the idea of reusing existing standards, and identifies the essential modules required to move forward.Keywords: electronic physical activity record, physical activity in EHR EIM, tracking physical activity data, physical activity data standards
Procedia PDF Downloads 28223566 Developing Pavement Structural Deterioration Curves
Authors: Gregory Kelly, Gary Chai, Sittampalam Manoharan, Deborah Delaney
Abstract:
A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s.Keywords: conceptual, pavement structural number, pavement structural deterioration curve, pavement management system
Procedia PDF Downloads 54423565 Nilsson Model Performance in Estimating Bed Load Sediment, Case Study: Tale Zang Station
Authors: Nader Parsazadeh
Abstract:
The variety of bed sediment load relationships, insufficient information and data, and the influence of river conditions make the selection of an optimum relationship for a given river extremely difficult. Hence, in order to select the best formulae, the bed load equations should be evaluated. The affecting factors need to be scrutinized, and equations should be verified. Also, re-evaluation may be needed. In this research, sediment bed load of Dez Dam at Tal-e Zang Station has been studied. After reviewing the available references, the most common formulae were selected that included Meir-Peter and Muller, using MS Excel to compute and evaluate data. Then, 52 series of already measured data at the station were re-measured, and the sediment bed load was determined. 1. The calculated bed load obtained by different equations showed a great difference with that of measured data. 2. r difference ratio from 0.5 to 2.00 was 0% for all equations except for Nilsson and Shields equations while it was 61.5 and 59.6% for Nilsson and Shields equations, respectively. 3. By reviewing results and discarding probably erroneous measured data measurements (by human or machine), one may use Nilsson Equation due to its r value higher than 1 as an effective equation for estimating bed load at Tal-e Zang Station in order to predict activities that depend upon bed sediment load estimate to be determined. Also, since only few studies have been conducted so far, these results may be of assistance to the operators and consulting companies.Keywords: bed load, empirical relation ship, sediment, Tale Zang Station
Procedia PDF Downloads 36223564 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis
Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv
Abstract:
Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.Keywords: correlation analysis, hierarchical filtering, multisource data, network security
Procedia PDF Downloads 20123563 A Review of Methods for Handling Missing Data in the Formof Dropouts in Longitudinal Clinical Trials
Abstract:
Much clinical trials data-based research are characterized by the unavoidable problem of dropout as a result of missing or erroneous values. This paper aims to review some of the various techniques to address the dropout problems in longitudinal clinical trials. The fundamental concepts of the patterns and mechanisms of dropout are discussed. This study presents five general techniques for handling dropout: (1) Deletion methods; (2) Imputation-based methods; (3) Data augmentation methods; (4) Likelihood-based methods; and (5) MNAR-based methods. Under each technique, several methods that are commonly used to deal with dropout are presented, including a review of the existing literature in which we examine the effectiveness of these methods in the analysis of incomplete data. Two application examples are presented to study the potential strengths or weaknesses of some of the methods under certain dropout mechanisms as well as to assess the sensitivity of the modelling assumptions.Keywords: incomplete longitudinal clinical trials, missing at random (MAR), imputation, weighting methods, sensitivity analysis
Procedia PDF Downloads 41523562 Feedback Preference and Practice of English Majors’ in Pronunciation Instruction
Authors: Claerchille Jhulia Robin
Abstract:
This paper discusses the perspective of ESL learners towards pronunciation instruction. It sought to determine how these learners view the type of feedback their speech teacher gives and its impact on their own classroom practice of providing feedback. This study utilized a quantitative-qualitative approach to the problem. The respondents were Education students majoring in English. A survey questionnaire and interview guide were used for data gathering. The data from the survey was tabulated using frequency count and the data from the interview were then transcribed and analyzed. Results showed that ESL learners favor immediate corrective feedback and they do not find any issue in being corrected in front of their peers. They also practice the same corrective technique in their own classroom.Keywords: ESL, feedback, learner perspective, pronunciation instruction
Procedia PDF Downloads 23423561 Optimization and Automation of Functional Testing with White-Box Testing Method
Authors: Reyhaneh Soltanshah, Hamid R. Zarandi
Abstract:
In order to be more efficient in industries that are related to computer systems, software testing is necessary despite spending time and money. In the embedded system software test, complete knowledge of the embedded system architecture is necessary to avoid significant costs and damages. Software tests increase the price of the final product. The aim of this article is to provide a method to reduce time and cost in tests based on program structure. First, a complete review of eleven white box test methods based on ISO/IEC/IEEE 29119 2015 and 2021 versions has been done. The proposed algorithm is designed using two versions of the 29119 standards, and some white-box testing methods that are expensive or have little coverage have been removed. On each of the functions, white box test methods were applied according to the 29119 standard and then the proposed algorithm was implemented on the functions. To speed up the implementation of the proposed method, the Unity framework has been used with some changes. Unity framework can be used in embedded software testing due to its open source and ability to implement white box test methods. The test items obtained from these two approaches were evaluated using a mathematical ratio, which in various software mining reduced between 50% and 80% of the test cost and reached the desired result with the minimum number of test items.Keywords: embedded software, reduce costs, software testing, white-box testing
Procedia PDF Downloads 5523560 Evaluation of Lead II Adsorption in Porous Structures Manufactured from Chitosan, Hydroxiapatite and Moringa
Authors: Mishell Vaca, Gema Gonzales, Francisco Quiroz
Abstract:
Heavy metals present in wastewater constitute a danger for living beings in general. In Ecuador, one of the sources of contamination is artisanal mining whose liquid effluents, in many of the cases without prior treatment, are discharged to the surrounding rivers. Lead is a pollutant that accumulated in the body causes severe health effects. Nowadays, there are several treatment methods to reduce this pollutant. The aim of this study is to reduce the concentration of lead II through the use of a porous material formed by a matrix of chitosan, in which hydroxyapatite and moringa particles smaller than 53 um are suspended. These materials are not toxic to the environment, and each one adsorbs metals independently, so the synergic effect between them will be evaluated. The synthesized material has a cylindrical design that allows increasing the surface area, which is expected to have greater capacity of adsorption. It has been determined that the best conditions for its preparation are to dissolve the chitosan in 1% v/v acetic acid with a pH = 5, then the hydroxyapatite and moringa are added to the mixture with magnetic stirring. This suspension is frozen, lyophilized and finally dried. In order to evaluate the performance of the synthesized material, synthetic solutions of lead are prepared at different concentrations, and the percentage of removal is evaluated. It is expected to have an effluent whose lead content is less than 0.2 mg/L which is the limit maximum allowable according to established environmental standards.Keywords: adsorption, chitosan, hydroxyapatite, lead, moringa, water treatment
Procedia PDF Downloads 15923559 Automatic Tagging and Accuracy in Assamese Text Data
Authors: Chayanika Hazarika Bordoloi
Abstract:
This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.Keywords: CRF, morphology, tagging, tagset
Procedia PDF Downloads 19423558 Focus on Sustainable Future of New Vernacular Architecture — Building "Vernacular Consciousness" in the New Ara
Authors: Ji Min China
Abstract:
The 20th century was the century of globalization. Developed transportation and the progress of information media made the earth into a global village. The differences between regions is increasingly reduced, "cultural convergence" phenomenon intensified, regional specialties and traditional culture has been eroded. In the field of architecture, while experienced orderly rational modernism baptism, it is increasingly recognized that set the expense of cultural differences and forced to follow the universal international-style building has been outdated. At the same time, in the 21st century environmental issues has been paid more and more attention, and the concept of sustainable development and sustainable building have been proposed.This makes the domestic and foreign architects began to explore the possibilities of building and reflect local cultural characteristics of the new vernacular architecture as a viable diversified architectural tendencies by domestic and foreign architects’ favor. The author will use the production and creative process of the new vernacular architecture at home and abroad as the background, and select some outstanding examples of the analysis and discussion, then reinterpret the "new vernacular architecture" in China now. This paper will pay more attention to how to master the true meaning of the here and now "new vernacular" as well as its multiple dimensions of sustainability in the future. It also determines the paper will be a two-way aspect and multi-dimensional understanding and mining of the "new vernacular".Keywords: new vernacular architecture, regional culture, multi dimension, sustainable
Procedia PDF Downloads 45523557 A Human Activity Recognition System Based on Sensory Data Related to Object Usage
Authors: M. Abdullah, Al-Wadud
Abstract:
Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model
Procedia PDF Downloads 32223556 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field
Authors: Nastaran Moosavi, Mohammad Mokhtari
Abstract:
Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.Keywords: density, p-impedance, s-impedance, post-stack seismic inversion, pre-stack seismic inversion
Procedia PDF Downloads 32323555 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors
Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui
Abstract:
Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.Keywords: data-driven method, process control, anomaly detection, dimensionality reduction
Procedia PDF Downloads 29923554 An Investigation of E-Government by Using GIS and Establishing E-Government in Developing Countries Case Study: Iraq
Authors: Ahmed M. Jamel
Abstract:
Electronic government initiatives and public participation to them are among the indicators of today's development criteria of the countries. After consequent two wars, Iraq's current position in, for example, UN's e-government ranking is quite concerning and did not improve in recent years, either. In the preparation of this work, we are motivated with the fact that handling geographic data of the public facilities and resources are needed in most of the e-government projects. Geographical information systems (GIS) provide most common tools not only to manage spatial data but also to integrate such type of data with nonspatial attributes of the features. With this background, this paper proposes that establishing a working GIS in the health sector of Iraq would improve e-government applications. As the case study, investigating hospital locations in Erbil is chosen.Keywords: e-government, GIS, Iraq, Erbil
Procedia PDF Downloads 38923553 Application of GPRS in Water Quality Monitoring System
Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan
Abstract:
Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.Keywords: multiparameter sensor, GPRS, visual basic software, RS232
Procedia PDF Downloads 41223552 Test Suite Optimization Using an Effective Meta-Heuristic BAT Algorithm
Authors: Anuradha Chug, Sunali Gandhi
Abstract:
Regression Testing is a very expensive and time-consuming process carried out to ensure the validity of modified software. Due to the availability of insufficient resources to re-execute all the test cases in time constrained environment, efforts are going on to generate test data automatically without human efforts. Many search based techniques have been proposed to generate efficient, effective as well as optimized test data, so that the overall cost of the software testing can be minimized. The generated test data should be able to uncover all potential lapses that exist in the software or product. Inspired from the natural behavior of bat for searching her food sources, current study employed a meta-heuristic, search-based bat algorithm for optimizing the test data on the basis certain parameters without compromising their effectiveness. Mathematical functions are also applied that can effectively filter out the redundant test data. As many as 50 Java programs are used to check the effectiveness of proposed test data generation and it has been found that 86% saving in testing efforts can be achieved using bat algorithm while covering 100% of the software code for testing. Bat algorithm was found to be more efficient in terms of simplicity and flexibility when the results were compared with another nature inspired algorithms such as Firefly Algorithm (FA), Hill Climbing Algorithm (HC) and Ant Colony Optimization (ACO). The output of this study would be useful to testers as they can achieve 100% path coverage for testing with minimum number of test cases.Keywords: regression testing, test case selection, test case prioritization, genetic algorithm, bat algorithm
Procedia PDF Downloads 38123551 Modified InVEST for Whatsapp Messages Forensic Triage and Search through Visualization
Authors: Agria Rhamdhan
Abstract:
WhatsApp as the most popular mobile messaging app has been used as evidence in many criminal cases. As the use of mobile messages generates large amounts of data, forensic investigation faces the challenge of large data problems. The hardest part of finding this important evidence is because current practice utilizes tools and technique that require manual analysis to check all messages. That way, analyze large sets of mobile messaging data will take a lot of time and effort. Our work offers methodologies based on forensic triage to reduce large data to manageable sets resulting easier to do detailed reviews, then show the results through interactive visualization to show important term, entities and relationship through intelligent ranking using Term Frequency-Inverse Document Frequency (TF-IDF) and Latent Dirichlet Allocation (LDA) Model. By implementing this methodology, investigators can improve investigation processing time and result's accuracy.Keywords: forensics, triage, visualization, WhatsApp
Procedia PDF Downloads 16823550 Low Cost Webcam Camera and GNSS Integration for Updating Home Data Using AI Principles
Authors: Mohkammad Nur Cahyadi, Hepi Hapsari Handayani, Agus Budi Raharjo, Ronny Mardianto, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan
Abstract:
PDAM (local water company) determines customer charges by considering the customer's building or house. Charges determination significantly affects PDAM income and customer costs because the PDAM applies a subsidy policy for customers classified as small households. Periodic updates are needed so that pricing is in line with the target. A thorough customer survey in Surabaya is needed to update customer building data. However, the survey that has been carried out so far has been by deploying officers to conduct one-by-one surveys for each PDAM customer. Surveys with this method require a lot of effort and cost. For this reason, this research offers a technology called moblie mapping, a mapping method that is more efficient in terms of time and cost. The use of this tool is also quite simple, where the device will be installed in the car so that it can record the surrounding buildings while the car is running. Mobile mapping technology generally uses lidar sensors equipped with GNSS, but this technology requires high costs. In overcoming this problem, this research develops low-cost mobile mapping technology using a webcam camera sensor added to the GNSS and IMU sensors. The camera used has specifications of 3MP with a resolution of 720 and a diagonal field of view of 78⁰. The principle of this invention is to integrate four camera sensors, a GNSS webcam, and GPS to acquire photo data, which is equipped with location data (latitude, longitude) and IMU (roll, pitch, yaw). This device is also equipped with a tripod and a vacuum cleaner to attach to the car's roof so it doesn't fall off while running. The output data from this technology will be analyzed with artificial intelligence to reduce similar data (Cosine Similarity) and then classify building types. Data reduction is used to eliminate similar data and maintain the image that displays the complete house so that it can be processed for later classification of buildings. The AI method used is transfer learning by utilizing a trained model named VGG-16. From the analysis of similarity data, it was found that the data reduction reached 50%. Then georeferencing is done using the Google Maps API to get address information according to the coordinates in the data. After that, geographic join is done to link survey data with customer data already owned by PDAM Surya Sembada Surabaya.Keywords: mobile mapping, GNSS, IMU, similarity, classification
Procedia PDF Downloads 8423549 An Investigation into the Views of Distant Science Education Students Regarding Teaching Laboratory Work Online
Authors: Abraham Motlhabane
Abstract:
This research analysed the written views of science education students regarding the teaching of laboratory work using the online mode. The research adopted the qualitative methodology. The qualitative research was aimed at investigating small and distinct groups normally regarded as a single-site study. Qualitative research was used to describe and analyze the phenomena from the student’s perspective. This means the research began with assumptions of the world view that use theoretical lenses of research problems inquiring into the meaning of individual students. The research was conducted with three groups of students studying for Postgraduate Certificate in Education, Bachelor of Education and honors Bachelor of Education respectively. In each of the study programmes, the science education module is compulsory. Five science education students from each study programme were purposively selected to participate in this research. Therefore, 15 students participated in the research. In order to analysis the data, the data were first printed and hard copies were used in the analysis. The data was read several times and key concepts and ideas were highlighted. Themes and patterns were identified to describe the data. Coding as a process of organising and sorting data was used. The findings of the study are very diverse; some students are in favour of online laboratory whereas other students argue that science can only be learnt through hands-on experimentation.Keywords: online learning, laboratory work, views, perceptions
Procedia PDF Downloads 14423548 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment
Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius
Abstract:
Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.Keywords: data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP
Procedia PDF Downloads 31623547 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error
Procedia PDF Downloads 32323546 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops
Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan
Abstract:
In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis
Procedia PDF Downloads 38123545 Design of Visual Repository, Constraint and Process Modeling Tool Based on Eclipse Plug-Ins
Authors: Rushiraj Heshi, Smriti Bhandari
Abstract:
Master Data Management requires creation of Central repository, applying constraints on Repository and designing processes to manage data. Designing of Repository, constraints on repository and business processes is very tedious and time consuming task for large Enterprise. Hence Visual Repository, constraints and Process (Workflow) modeling is the most critical step in Master Data Management.In this paper, we realize a Visual Modeling tool for implementing Repositories, Constraints and Processes based on Eclipse Plugin using GMF/EMF which follows principles of Model Driven Engineering (MDE).Keywords: EMF, GMF, GEF, repository, constraint, process
Procedia PDF Downloads 497