Search results for: symmetric sign patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3448

Search results for: symmetric sign patterns

1438 The Involvement of Visual and Verbal Representations Within a Quantitative and Qualitative Visual Change Detection Paradigm

Authors: Laura Jenkins, Tim Eschle, Joanne Ciafone, Colin Hamilton

Abstract:

An original working memory model suggested the separation of visual and verbal systems in working memory architecture, in which only visual working memory components were used during visual working memory tasks. It was later suggested that the visuo spatial sketch pad was the only memory component at use during visual working memory tasks, and components such as the phonological loop were not considered. In more recent years, a contrasting approach has been developed with the use of an executive resource to incorporate both visual and verbal representations in visual working memory paradigms. This was supported using research demonstrating the use of verbal representations and an executive resource in a visual matrix patterns task. The aim of the current research is to investigate the working memory architecture during both a quantitative and a qualitative visual working memory task. A dual task method will be used. Three secondary tasks will be used which are designed to hit specific components within the working memory architecture – Dynamic Visual Noise (visual components), Visual Attention (spatial components) and Verbal Attention (verbal components). A comparison of the visual working memory tasks will be made to discover if verbal representations are at use, as the previous literature suggested. This direct comparison has not been made so far in the literature. Considerations will be made as to whether a domain specific approach should be employed when discussing visual working memory tasks, or whether a more domain general approach could be used instead.

Keywords: semantic organisation, visual memory, change detection

Procedia PDF Downloads 595
1437 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: combustion duration (CD), crank angle (CA), mass fraction burnt (MFB), producer sas (PG), Wiebe Combustion Model (WCM), wide open throttle (WOT)

Procedia PDF Downloads 311
1436 Information Communication Technologies and Renewable Technologies' Impact on Irish People's Lifestyle: A Constructivist Grounded Theory Study

Authors: Hamilton V. Niculescu

Abstract:

This paper discusses findings relating to people's engagement with mobile communication technologies and remote automated systems. This interdisciplinary study employs a constructivist grounded theory methodology, with qualitative data that was generated following in-depth semi-structured interviews with 18 people living in Ireland being corroborated with participants' observations and quantitative data. Additional data was collected following participants' remote interaction with six custom-built automated enclosures, located at six different sites around Dublin, Republic of Ireland. This paper argues that ownership and education play a vital role in people engaging with and adoption of new technologies. Analysis of participants' behavior and attitude towards Information Communication Technologies (ICT) suggests that innovations do not always improve peoples' social inclusion. Technological innovations are sometimes perceived as destroying communities and create a dysfunctional society. Moreover, the findings indicate that a lack of public information and support from Irish governmental institutions, as well as limited off-the-shelves availability, has led to low trust and adoption of renewable technologies. A limited variation in participants' behavior and interaction patterns with technologies was observed during the study. This suggests that people will eventually adopt new technologies according to their needs and experience, even though they initially rejected the idea of changing their lifestyle.

Keywords: automation, communication, ICT, renewables

Procedia PDF Downloads 111
1435 Immigrant Status and System Justification and Condemnation

Authors: Nancy Bartekian, Kaelan Vazquez, Christine Reyna

Abstract:

Immigrants coming into the United States of America may justify the American system (political, economic, healthcare, criminal justice) and see it as functional. This may be explained because they may come from countries that are even more unstable than the U.S. and/or come here to benefit from the promise of the “American dream” -a narrative that they might be more likely to believe in if they were willing to undergo the costly and sometimes dangerous process to immigrate. Conversely, native-born Americans, as well as immigrants who may have lived in America for a longer period of time, would have more experiences with the various broken systems in America that are dysfunctional, fail to provide adequate services equitably, and/or are steeped in systemic racism and other biases that disadvantage lower-status groups. Thus, our research expects that system justification would decrease, and condemnation would increase with more time spent in the U.S. for immigrant groups. We predict that a) those not born in the U.S. will be more likely to justify the system, b) they will also be less likely to condemn the system, and c) the longer an immigrant has been in the U.S. the less likely they will to justify, and more they will to condemn the system. We will use a mixed-model multivariate analysis of covariance (MANCOVA) and control for race, income, and education. We will also run linear regression models to test if there is a relationship between the length of time in the United States and a decrease in system justification, and length of time and an increase in system condemnation for those not born in the U.S. We will also conduct exploratory analyses to see if the predicted patterns are more likely within certain systems over other systems (political, economic, healthcare, criminal justice).

Keywords: immigration, system justification, system condemnation, system qualification

Procedia PDF Downloads 106
1434 Investigating Reservior Sedimentation Control in the Conservation of Water

Authors: Mosupi Ratshaa

Abstract:

Despite years of diligent study, sedimentation is still undoubtedly the most severe technical problem faced by the dam industry. The problem of sedimentation build-up and its removal should be the focus as an approach to remedy this. The world's reservoirs lose about 1% of their storage capacity yearly to sedimentation, what this means is that 1% of water that could be stored is lost the world-over. The increase in population means that the need for water also increases and, therefore, the loss due to sedimentation is of great concern especially to the conservation of water. When it comes to reservoir sedimentation, the thought of water conservation comes with soil conservation since this increasing sediment that takes the volume meant for water is being lost from dry land. For this reason, reservoir sediment control is focused on reducing sediment entering the reservoir and reducing sediment within the reservoir. There are many problems with sediment control such as the difficulty to predict settling patterns, inability to greatly reduce the sediment volume entering the river flow which increases the reservoirs trap efficiency just to mention a few. Notably reservoirs are habitats for flora and fauna, the process of removing sediment from these reservoirs damages this ecosystem so there is an ethical point to be considered in this section. This paper looks at the methods used to control the sedimentation of reservoirs and their effects to the ecosystem in the aim of reducing water losses due to sedimentation. Various control measures which reduce sediment entering the reservoir such as Sabo dams or Check dams along with measures which emphasize the reduction in built-up settled sediment such as flushing will be reviewed all with the prospect of conservation.

Keywords: sedimentation, conservation, ecosystem, flushing

Procedia PDF Downloads 336
1433 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 441
1432 Intelligent Fishers Harness Aquatic Organisms and Climate Change

Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee

Abstract:

Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.

Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery

Procedia PDF Downloads 111
1431 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 138
1430 Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore

Authors: Almas Rajguru, Archana Kamath, Rachana Singh

Abstract:

The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area.

Keywords: sequence stratigraphy, depositional facies, diagenesis petrography, early Oligocene, Mumbai offshore

Procedia PDF Downloads 77
1429 Recognizing Customer Preferences Using Review Documents: A Hybrid Text and Data Mining Approach

Authors: Oshin Anand, Atanu Rakshit

Abstract:

The vast increment in the e-commerce ventures makes this area a prominent research stream. Besides several quantified parameters, the textual content of reviews is a storehouse of many information that can educate companies and help them earn profit. This study is an attempt in this direction. The article attempts to categorize data based on a computed metric that quantifies the influencing capacity of reviews rendering two categories of high and low influential reviews. Further, each of these document is studied to conclude several product feature categories. Each of these categories along with the computed metric is converted to linguistic identifiers and are used in an association mining model. The article makes a novel attempt to combine feature attraction with quantified metric to categorize review text and finally provide frequent patterns that depict customer preferences. Frequent mentions in a highly influential score depict customer likes or preferred features in the product whereas prominent pattern in low influencing reviews highlights what is not important for customers. This is achieved using a hybrid approach of text mining for feature and term extraction, sentiment analysis, multicriteria decision-making technique and association mining model.

Keywords: association mining, customer preference, frequent pattern, online reviews, text mining

Procedia PDF Downloads 388
1428 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.

Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4

Procedia PDF Downloads 383
1427 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 35
1426 A Verification Intellectual Property for Multi-Flow Rate Control on Any Single Flow Bus Functional Model

Authors: Pawamana Ramachandra, Jitesh Gupta, Saranga P. Pogula

Abstract:

In verification of high volume and complex packet processing IPs, finer control of flow management aspects (for example, rate, bits/sec etc.) per flow class (or a virtual channel or a software thread) is needed. When any Software/Universal Verification Methodology (UVM) thread arbitration is left to the simulator (e.g., Verilog Compiler Simulator (VCS) or Incisive Enterprise Simulator core simulation engine (NCSIM)), it is hard to predict its pattern of resulting distribution of bandwidth by the simulator thread arbitration. In many cases, the patterns desired in a test scenario may not be accomplished as the simulator might give a different distribution than what was required. This can lead to missing multiple traffic scenarios, specifically deadlock and starvation related. We invented a component (namely Flow Manager Verification IP) to be intervening between the application (test case) and the protocol VIP (with UVM sequencer) to control the bandwidth per thread/virtual channel/flow. The Flow Manager has knobs visible to the UVM sequence/test to configure the required distribution of rate per thread/virtual channel/flow. This works seamlessly and produces rate stimuli to further harness the Design Under Test (DUT) with asymmetric inputs compared to the programmed bandwidth/Quality of Service (QoS) distributions in the Design Under Test.

Keywords: flow manager, UVM sequencer, rated traffic generation, quality of service

Procedia PDF Downloads 99
1425 Towards a Broader Understanding of Journal Impact: Measuring Relationships between Journal Characteristics and Scholarly Impact

Authors: X. Gu, K. L. Blackmore

Abstract:

The impact factor was introduced to measure the quality of journals. Various impact measures exist from multiple bibliographic databases. In this research, we aim to provide a broader understanding of the relationship between scholarly impact and other characteristics of academic journals. Data used for this research were collected from Ulrich’s Periodicals Directory (Ulrichs), Cabell’s (Cabells), and SCImago Journal & Country Rank (SJR) from 1999 to 2015. A master journal dataset was consolidated via Journal Title and ISSN. We adopted a two-step analysis process to study the quantitative relationships between scholarly impact and other journal characteristics. Firstly, we conducted a correlation analysis over the data attributes, with results indicating that there are no correlations between any of the identified journal characteristics. Secondly, we examined the quantitative relationship between scholarly impact and other characteristics using quartile analysis. The results show interesting patterns, including some expected and others less anticipated. Results show that higher quartile journals publish more in both frequency and quantity, and charge more for subscription cost. Top quartile journals also have the lowest acceptance rates. Non-English journals are more likely to be categorized in lower quartiles, which are more likely to stop publishing than higher quartiles. Future work is suggested, which includes analysis of the relationship between scholars and their publications, based on the quartile ranking of journals in which they publish.

Keywords: academic journal, acceptance rate, impact factor, journal characteristics

Procedia PDF Downloads 304
1424 Dynamics of Museum Visitors’ Experiences Studies: A Bibliometric Analysis

Authors: Tesfaye Fentaw Nigatu, Alexander Trupp, Teh Pek Yen

Abstract:

Research on museums and the experiences of visitors has flourished in recent years, especially after museums became centers of edutainment beyond preserving heritage resources. This paper aims to comprehensively understand the changes, continuities, and future research development directions of museum visitors’ experiences. To identify current research trends, the paper summarizes and analyses research article publications from 1986 to 2023 on museum visitors' experiences. Bibliometric analysis software VOSviewer and Harzing POP (Publish or Perish) were used to analyze 407 academic articles. The articles were generated from the Scopus database. The study attempted to map new insights for future scholars and academics to expand the scope of museum visitors’ experience studies by analyzing keywords, citation patterns, influential articles in the field, publication trends, collaborations between authors, institutions, and clusters of highly cited articles. Accessibility to museums, social media usage within museums, aesthetics in museum settings, mixed reality experiences, sustainability issues, and emotions have emerged as key research areas in the study of museum visitors' experiences. The results benefit stakeholders and researchers in advancing the collective progress of considering recent research trends to stay informed about the latest developments and breakthroughs in the global academic landscape and visitors’ experiences development in the museum.

Keywords: bibliometric analysis, museum, network analysis, visitors’ experiences, visual analysis

Procedia PDF Downloads 68
1423 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads

Authors: Kayijuka Idrissa

Abstract:

This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.

Keywords: statistical methods, traffic flow, Poisson distribution, car moving technics

Procedia PDF Downloads 282
1422 Socio-Psychological Significance of Vandalism in the Urban Environment: Destruction, Modernization, Communication

Authors: Olga Kruzhkova, Irina Vorobyeva, Roman Porozov

Abstract:

Vandalism is a common phenomenon, but its definition is still not clearly defined. In the public sense, vandalism is the blatant cases of pogroms in cemeteries, destruction of public places (regardless of whether these actions are authorized), damage to significant objects of culture and history (monuments, religious buildings). From a legal point of view, only such an act can be called vandalism, which is aimed at 'desecrating buildings or other structures, damaging property on public transport or in other public places'. The key here is the notion of public property that is being damaged. In addition, the principal is the semantics of messages, expressed in a kind of sign system (drawing, inscription, symbol), which initially threatens public order, the calmness of citizens, public morality. Because of this, the legal qualification of vandalism doesn’t include a sufficiently wide layer of environmental destructions that are common in modern urban space (graffiti and other damage to private property, broken shop windows, damage to entrances and elevator cabins), which in ordinary consciousness are seen as obvious facts of vandalism. At the same time, the understanding of vandalism from the position of psychology implies an appeal to the question of the limits of the activity of the subject of vandalism and his motivational basis. Also recently, the discourse on the positive meaning of some forms of vandalism (graffiti, street-art, etc.) has been activated. But there is no discussion of the role and significance of vandalism in public and individual life, although, like any socio-cultural and socio-psychological phenomenon, vandalism is not groundless and meaningless. Our aim of the study was to identify and describe the functions of vandalism as a socio-cultural and socio-psychological phenomenon of the life of the urban community, as well as personal determinants of its manifestations. The study was conducted in the spatial environment of the Russian megalopolis (Ekaterinburg) by photographing visual results of vandal acts (6217 photos) with subsequent trace-assessment and image content analysis, as well as diagnostics of personal characteristics and motivational basis of vandal activity of possible subjects of vandalism among youth. The results of the study allowed to identify the functions of vandalism at the socio-environmental and individual-subjective levels. The socio-environmental functions of vandalism include the signaling function, the function of preparing of social changes, the constructing function, and the function of managing public moods. The demonstrative-protest function, the response function, the refund function, and the self-expression function are assigned to the individual-subjective functions of vandalism. A two-dimensional model of vandal functions has been formed, where functions are distributed in the spaces 'construction reconstruction', 'emotional regulation/moral regulation'. It is noted that any function of vandal activity at the individual level becomes a kind of marker of 'points of tension' at the social and environmental level. Acknowledgment: The research was supported financially by Russian Science Foundation, (Project No. 17-18-01278).

Keywords: destruction, urban environment, vandal behavior, vandalism, vandalism functions

Procedia PDF Downloads 200
1421 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform

Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu

Abstract:

Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.

Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform

Procedia PDF Downloads 65
1420 Attachment Patterns in a Sample of South African Children at Risk in Middle Childhood

Authors: Renate Gericke, Carol Long

Abstract:

Despite the robust empirical support of attachment, advancement in the description and conceptualization of attachment has been slow and has not significantly advanced beyond the identification of attachment security or type (namely, secure, avoidant, ambivalent and disorganized). This has continued despite papers arguing for theoretical refinement in the classification of attachment presentations. For thinking and practice to advance, it is critically important that these categories and their assessment be interrogated in different contexts and across developmental age. To achieve this, a quantitative design was used with descriptive and inferential statistics, and general linear models were employed to analyze the data. The Attachment Story Completion Test (ASCT) was administered to 105 children between the ages of eight and twelve from socio-economically deprived contexts with high exposure to trauma. A staggering 93% of the children had insecure attachments (specifically, avoidant 37%, disorganized 34% and ambivalent 22%) and attachment was more complex than currently conceptualized in the attachment literature. Primary attachment did not only present as one of four discreet categories, but 70% of the sample had a complex attachment with more than one type of maternal attachment style. Attachment intensity also varied along a continuum (between 1 and 5). The findings have implications for a) research that has not considered the potential complexity of attachment or attachment intensity, b) policy to more actively support mother-infant dyads, particularly in high-risk contexts and c) question the applicability of a western conceptualization of a primary maternal attachment figure in non-western collectivist societies.

Keywords: attachment, children at risk, middle childhood, non-western context

Procedia PDF Downloads 192
1419 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis

Authors: Sahil Kapahi

Abstract:

A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.

Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE

Procedia PDF Downloads 246
1418 Production of Novel Antibiotics by Importing eryK and eryG Genes in Streptomyces fradiae

Authors: Neda Gegar Goshe, Hossein Rassi

Abstract:

The antibacterial properties of macrolide antibiotics (such as erythromycin and tylosin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as erythromycin) have two sugar substituents. Streptomyces fradiae is an ideal host for development of generic polyketide-overproducing strains because it contains three of the most common precursors-malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA-used by modular PKS, and is a host that is amenable to genetic manipulation. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the erythromycin producer Saccharopolyspora erythraea. The biotransformation of erythromycin-D into the desired major component erythromycin-A involves two final enzymatic reactions, EryK-catalyzed hydroxylation at the C-12 position of the aglycone and EryG-catalyzed O methylation at the C-3 position of macrose .This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation.

Keywords: Streptomyces fradiae, eryK and eryG genes, tylosin, antibiotics

Procedia PDF Downloads 325
1417 Personality as a Predictor of Knowledge Hiding Behavior: Case Study of Alpha Electronics

Authors: Sadeeqa Khan, Muhammad Usman

Abstract:

Employees’ knowledge hiding behaviors can be detrimental to employees’ interpersonal relationships and individual and organizational learning and creativity. However, to the best of the authors’ knowledge, the literature on the contingencies, antecedents and outcomes of employees’ knowledge hiding behaviors is still in its infancy. On the other hand, not everyone who hides knowledge hides it the same way, as individuals are different, so do their behaviors. This study explores the links between employees’ personality traits and their knowledge hiding behaviors. By using a single case study as a research methodology and collecting data through 28 semi-structured interviews from employees working in Alpha Electronics (the pseudo name of the company to ascertain anonymity) operating in Pakistan, we foreground the patterns of relationships between employees’ personality traits and knowledge hiding behaviors – rationalized hiding, evasive hiding and playing dumb. Our findings suggest that employees high on extraversion involve in evasive knowledge hiding; while employees low on extraversion (introverts) demonstrate rationalized hiding. Moreover, both extrovert and introvert employees involve in playing dumb in situations that involve risk for their jobs and careers. For instance, when knowledge is requested from their managers, both extrovert and introvert employees tend to play dumb, as in such cases, evasive and rationalized hiding can be harmful to their job and career-related interests and motives. Other than theoretical contributions, the study offers important implications for organizations faced with the challenges of shortage of skills and knowledge.

Keywords: knowledge hiding, personality, rationalized hiding, playing dumb, evasive hiding

Procedia PDF Downloads 215
1416 Isolation, Identification and Antimicrobial Susceptibility of Mycobacterium tuberculosis among Pulmonary Tuberculosis Patients

Authors: Naima Nur, Safa Islam, Saeema Islam, Faridul Alam

Abstract:

Background: Drug-resistant pulmonary tuberculosis (DR-PTB), particularly multidrug-resistant tuberculosis (MDR-TB) and pre-extensive drug-resistant (pre-XDR), is a major challenge in effectively controlling TB, especially in developing. This study aimed to identify the strains of M. tuberculosis complex (MTC) and drug resistance patterns among the pulmonary tuberculosis patients. Methods: The study used a cross-sectional design, and 815 patients were recruited randomly in three study periods. In the first-period, 210 treated PTB patients, who were completed their treatment, received their diagnoses using light microscopy, fluorescence microscopy and cultured on Lowenstein-Jensen (L-J) slant, and then strains were identified as MTC by biochemical tests, and then sensitivity test in National Institute of Diseases of the Chest and Hospital. In the second-period, 220 re-treated PTB patients, who were completed their treatment, received their diagnoses using culture on L-J slant, line probe assay (LPA), and GeneXpert in the same hospital. In the last-period, during treatment, 385 MDR-PTB patients received their diagnoses using culture on L-J slant and LPA in the same hospital. Results: Among sixty-two (29.5%) PTB patients, 13% were sensitive to all first-line anti-TB drugs, 26% were MDR-TB patients, and 14.2% were pre-XDR-TB among 14 MDR-TB patients. After three years, 31% were MDR-TB among 220 re-treated PTB patients. After five years, 16.4% was pre-XDR-TB among 385 MDR-TB patients. Compared to females, male patients were significantly higher at all times. Conclusion: The current study demonstrated that in three study periods, the proportions of DR-TB, MDR-TB, and pre-XDR patients were an alarming issue and increasing daily.

Keywords: multi-drug resistant, drug-resistant, pre-extensive drug resistant, pulmonary tuberculosis

Procedia PDF Downloads 55
1415 Characteristics of Business Models of Industrial-Internet-of-Things Platforms

Authors: Peter Kress, Alexander Pflaum, Ulrich Loewen

Abstract:

The number of Internet-of-Things (IoT) platforms is steadily increasing across various industries, especially for smart factories, smart homes and smart mobility. Also in the manufacturing industry, the number of Industrial-IoT platforms is growing. Both IT players, start-ups and increasingly also established industry players and small-and-medium-enterprises introduce offerings for the connection of industrial equipment on platforms, enabled by advanced information and communication technology. Beside the offered functionalities, the established ecosystem of partners around a platform is one of the key differentiators to generate a competitive advantage. The key question is how platform operators design the business model around their platform to attract a high number of customers and partners to co-create value for the entire ecosystem. The present research tries to answer this question by determining the key characteristics of business models of successful platforms in the manufacturing industry. To achieve that, the authors selected an explorative qualitative research approach and created an inductive comparative case study. The authors generated valuable descriptive insights of the business model elements (e.g., value proposition, pricing model or partnering model) of various established platforms. Furthermore, patterns across the various cases were identified to derive propositions for the successful design of business models of platforms in the manufacturing industry.

Keywords: industrial-internet-of-things, business models, platforms, ecosystems, case study

Procedia PDF Downloads 243
1414 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint

Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu

Abstract:

With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.

Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning

Procedia PDF Downloads 78
1413 Development of Lectin-Based Biosensor for Glycoprofiling of Clinical Samples: Focus on Prostate Cancer

Authors: Dominika Pihikova, Stefan Belicky, Tomas Bertok, Roman Sokol, Petra Kubanikova, Jan Tkac

Abstract:

Since aberrant glycosylation is frequently accompanied by both physiological and pathological processes in a human body (cancer, AIDS, inflammatory diseases, etc.), the analysis of tumor-associated glycan patterns have a great potential for the development of novel diagnostic approaches. Moreover, altered glycoforms may assist as a suitable tool for the specificity and sensitivity enhancement in early-stage prostate cancer diagnosis. In this paper we discuss the construction and optimization of ultrasensitive sandwich biosensor platform employing lectin as glycan-binding protein. We focus on the immunoassay development, reduction of non-specific interactions and final glycoprofiling of human serum samples including both prostate cancer (PCa) patients and healthy controls. The fabricated biosensor was measured by label-free electrochemical impedance spectroscopy (EIS) with further lectin microarray verification. Furthermore, we analyzed different biosensor interfaces with atomic force microscopy (AFM) in nanomechanical mapping mode showing a significant differences in the altitude. These preliminary results revealing an elevated content of α-2,3 linked sialic acid in PCa patients comparing with healthy controls. All these experiments are important step towards development of point-of-care devices and discovery of novel glyco-biomarkers applicable in cancer diagnosis.

Keywords: biosensor, glycan, lectin, prostate cancer

Procedia PDF Downloads 372
1412 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao

Abstract:

As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 170
1411 Influence of Loading Pattern and Shaft Rigidity on Laterally Loaded Helical Piles in Cohesion-Less Soil

Authors: Mohamed Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Aziz, Mona Fawzy Al-Daghma

Abstract:

Helical piles are widely used as axially and laterally loaded deep foundations. Once they are required to resist bearing combined loads (BCLs), as axial compression and lateral thrust, different behaviour is expected, necessitating further investigation. The objective of the present article is to clarify the behaviour of a single helical pile of different shaft rigidity embedded in cohesion-less soil and subjected to simultaneous or successive loading patterns of BCLs. The study was first developed analytically and extended numerically. The numerical analysis was further verified through a laboratory experimental program on a set of helical pile models. The results indicate highly interactive effects of the studied parameters, but it is obviously confirmed that the pile performance increases with both the increase of shaft rigidity and the change of BCLs loading pattern from simultaneous to successive. However, it is noted that the increase of vertical load does not always enhance the lateral capacity but may cause a decrement in lateral capacity, as observed with helical piles of flexible shafts. This study provides insightful information for the design of helical piles in structures loaded by complex sequence of forces, wind turbines, and industrial shafts.

Keywords: helical pile, lateral loads, combined loads, cohesion-less soil, analytical, numerical

Procedia PDF Downloads 64
1410 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: cyclic loading, DPIV, settlement, soil-structure interactions, strip footing

Procedia PDF Downloads 167
1409 Production of Novel Antibiotics of Tylosin by Importing eryK and eryG Genes in Streptomyces fradiae

Authors: Neda Gegar Goshe, M. Moradi, Hossein Rassi

Abstract:

The antibacterial properties of macrolide antibiotics (such as erythromycin and tylosin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as erythromycin) have two sugar substituents. Streptomyces fradiae is an ideal host for development of generic polyketide-overproducing strains because it contains three of the most common precursors-malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA-used by modular PKS, and is a host that is amenable to genetic manipulation. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the erythromycin producer Saccharopolyspora erythraea. The bio transformation of erythromycin-D into the desired major component erythromycin-A involves two final enzymatic reactions, EryK-catalyzed hydroxylation at the C-12 position of the aglycone and EryG-catalyzed O methylation at the C-3 position of macrose. This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation.

Keywords: tylosin, eryK and eryG genes, streptomyces fradiae

Procedia PDF Downloads 352