Search results for: post classification change detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15575

Search results for: post classification change detection

13565 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine

Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy

Abstract:

Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.

Keywords: land cover, google earth engine, machine learning, remote sensing

Procedia PDF Downloads 114
13564 The Impact of Psychopathology Course on Students' Attitudes towards Mental Illness

Authors: Lorato Itumeleng Kenosi

Abstract:

Background: Negative attitudes towards the mentally ill are widespread and a course for concern as they have a detrimental impact on individuals affected by mental illness. A possible avenue for changing attitudes towards mental illness is through mental health literacy. In a college or university setting, an abnormal psychology course may be introduced in an attempt to change student’s attitudes towards the mentally ill. Objective: To determine if and how students’ attitudes towards the mentally ill change as a result of taking a course in abnormal psychology. Methods: Twenty nine (29) students were recruited from an abnormal psychology class at the University of Botswana. Attitude Scale for Mental Illness (ASMI) questionnaire was administered to participants at the beginning and end of the semester. SPSS was employed to analyze data. Pooled means were used to determine whether the student’s attitudes towards mental illness were negative or positive. A mean of 2.5 translated to negative attitude for both total attitude and attitudes in different domains of the scale. Paired sample t-test was then used to assess whether any changes noted in attitudes were statistically significant or not. Statistical significance was assumed at p < 0.05. Results: Students’ general attitude towards mental illness remained positive although the pooled mean value increased from 2.08 to 2.24. The change was not statistically significant. In relation to different sub scales, the values of the pooled means for all the sub scales showed an increase although the changes were not statistically significant except for the Stereotyping sub scale (p = 0.031). The stereotyping domain reflected a statistically significant change in student’s attitude from positive attitude to negative (X² = 2.06 to X² = 2.55). For the pessimistic prediction domain, students consistently showed a negative attitude (X² = 3.34 to X² = 3.55). The other 4 domains indicated that students had positive attitude toward mentally ill throughout. Discussion: Abnormal psychology students have a positive attitude towards the mentally ill generally. This could be attributed to the fact that all students in the abnormal psychology course are majoring in psychology and research has shown that interest in psychology can affect one’s attitude towards mental illness. The students continuously held the view that people with mental illness are unlikely to improve as evidenced by a high score for Pessimistic prediction domain for both pre and post-test. Students initially had no stereotyping attitude towards the mentally ill, but at the end of the course, they were of the opinion that people with mental illness can be defined in a certain behavioural pattern and mental ability. This results could be an indication that students have learnt well how to differentiate abnormal from normal behaviour not necessarily that students had developed a negative attitude. Conclusion: A course in abnormal psychology does have an impact on the students’ attitudes towards the mentally ill. The impact does not solely depend on knowledge of mental illness but also on several other factors such as contact with the mentally ill, interest in psychology, and teaching methods. However, it should be noted that sometimes improved knowledge in mental illness can be misunderstood for a negative attitude. For example, stereotyping attitudes may be a reflection of the ability to differentiate between abnormal and normal behaviour.

Keywords: attitudes, mental illness, psychopathology, students

Procedia PDF Downloads 289
13563 Isolated and Combined Effects of Multimedia Computer Assisted Coaching and Traditional Coaching on Motor Ability Component and Physiological Variables among Sports School Basketball Players

Authors: Biju Lukose

Abstract:

The objective of the study was to identify the isolated and combined effect of multi-media computer assisted coaching and traditional coaching on selected motor ability component and physiological variables among sports school basketball players. Forty male basketball players aged between 14 to 18 years were selected randomly. They were divided into four groups of three experimental and one control. Isolated multi-media computer assisted coaching, isolated traditional coaching and combined coaching (multimedia computer assisted coaching and traditional coaching) are the three experimental groups. All the three experimental groups were given coaching for 24 weeks and control group were not allowed to participate in any coaching programme. The subjects were tested dependent variables such as speed and cardio vascular endurance; at the beginning (pre-test) in middle 12 week (mid-test) and after the coaching 24 week (post-test). The coaching schedule was for a period of 24 weeks. The data were collected two days before and after the coaching schedule and mid test after the 12 weeks of the coaching schedule. The data were analysed by applying ANCOVA and Scheffe’s Post hoc test. The result showed that there were significant changes in dependent variables such as speed and cardio vascular endurance. The results of the study showed that combined coaching (multimedia computer assisted coaching and traditional coaching) is more superior to traditional coaching and multimedia computer assisted coaching groups and no significant change in speed in the case of isolated multimedia computer assisted coaching group.

Keywords: computer, computer-assisted coaching, multimedia coaching, traditional coaching

Procedia PDF Downloads 458
13562 Fuzzy Logic in Detecting Children with Behavioral Disorders

Authors: David G. Maxinez, Andrés Ferreyra Ramírez, Liliana Castillo Sánchez, Nancy Adán Mendoza, Carlos Aviles Cruz

Abstract:

This research describes the use of fuzzy logic in detection, assessment, analysis and evaluation of children with behavioral disorders. It shows how to acquire and analyze ambiguous, vague and full of uncertainty data coming from the input variables to get an accurate assessment result for each of the typologies presented by children with behavior problems. Behavior disorders analyzed in this paper are: hyperactivity (H), attention deficit with hyperactivity (DAH), conduct disorder (TD) and attention deficit (AD).

Keywords: alteration, behavior, centroid, detection, disorders, economic, fuzzy logic, hyperactivity, impulsivity, social

Procedia PDF Downloads 565
13561 Post-harvest Handling Practices and Technologies Harnessed by Smallholder Fruit Crop Farmers in Vhembe District, Limpopo Province, South Africa

Authors: Vhahangwele Belemu, Isaac Busayo Oluwatayo

Abstract:

Post-harvest losses pose a serious challenge to smallholder fruit crop farmers, especially in the rural communities of South Africa, affecting their economic livelihoods and food security. This study investigated the post-harvest handling practices and technologies harnessed by smallholder fruit crop farmers in the Vhembe district of Limpopo province, South Africa. Data were collected on a random sample of 224 smallholder fruit crop farmers selected from the four municipalities of the district using a multistage sampling technique. Analytical tools employed include descriptive statistics and the tobit regression model. A descriptive analysis of farmers’ socioeconomic characteristics showed that a sizeable number of these farmers are still in their active working age (mean = 52 years) with more males (63.8%) than their female (36.2%) counterparts. Respondents’ distribution by educational status revealed that only a few of these had no formal education (2.2%), with the majority having secondary education (48.7%). Results of data analysis further revealed that the prominent post-harvest technologies and handling practices harnessed by these farmers include using appropriate harvesting techniques (20.5%), selling at a reduced price (19.6%), transportation consideration (18.3%), cleaning and disinfecting (17.9%), sorting and grading (16.5%), manual cleaning (15.6%) and packaging technique (11.6%) among others. The result of the Tobit regression analysis conducted to examine the determinants of post-harvest technologies and handling practices harnessed showed that age, educational status of respondents, awareness of technology/handling practices, farm size, access to credit, extension contact, and membership of association were the significant factors. The study suggests enhanced awareness creation, access to credit facility and improved access to market as important factors to consider by relevant stakeholders to assist smallholder fruit crop farmers in the study area.

Keywords: fruit crop farmers, handling practices, post harvest losses, smallholder, Vhembe District, South Africa

Procedia PDF Downloads 58
13560 Nanowire Sensor Based on Novel Impedance Spectroscopy Approach

Authors: Valeriy M. Kondratev, Ekaterina A. Vyacheslavova, Talgat Shugabaev, Alexander S. Gudovskikh, Alexey D. Bolshakov

Abstract:

Modern sensorics imposes strict requirements on the biosensors characteristics, especially technological feasibility, and selectivity. There is a growing interest in the analysis of human health biological markers, which indirectly testifying the pathological processes in the body. Such markers are acids and alkalis produced by the human, in particular - ammonia and hydrochloric acid, which are found in human sweat, blood, and urine, as well as in gastric juice. Biosensors based on modern nanomaterials, especially low dimensional, can be used for this markers detection. Most classical adsorption sensors based on metal and silicon oxides are considered non-selective, because they identically change their electrical resistance (or impedance) under the action of adsorption of different target analytes. This work demonstrates a feasible frequency-resistive method of electrical impedance spectroscopy data analysis. The approach allows to obtain of selectivity in adsorption sensors of a resistive type. The method potential is demonstrated with analyzis of impedance spectra of silicon nanowires in the presence of NH3 and HCl vapors with concentrations of about 125 mmol/L (2 ppm) and water vapor. We demonstrate the possibility of unambiguous distinction of the sensory signal from NH3 and HCl adsorption. Moreover, the method is found applicable for analysis of the composition of ammonia and hydrochloric acid vapors mixture without water cross-sensitivity. Presented silicon sensor can be used to find diseases of the gastrointestinal tract by the qualitative and quantitative detection of ammonia and hydrochloric acid content in biological samples. The method of data analysis can be directly translated to other nanomaterials to analyze their applicability in the field of biosensory.

Keywords: electrical impedance spectroscopy, spectroscopy data analysis, selective adsorption sensor, nanotechnology

Procedia PDF Downloads 114
13559 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh

Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter

Abstract:

Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.

Keywords: land cover change, land surface temperature, normalized difference vegetation index, urban heat island

Procedia PDF Downloads 274
13558 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia

Authors: Nathenal Thomas Lambamo

Abstract:

Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.

Keywords: septoria, leaf rust, deep learning, CNN

Procedia PDF Downloads 78
13557 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes

Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi

Abstract:

A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.

Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV

Procedia PDF Downloads 309
13556 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 105
13555 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga

Abstract:

Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.

Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC

Procedia PDF Downloads 260
13554 Unveiling the Detailed Turn Off-On Mechanism of Carbon Dots to Different Sized MnO₂ Nanosensor for Selective Detection of Glutathione

Authors: Neeraj Neeraj, Soumen Basu, Banibrata Maity

Abstract:

Glutathione (GSH) is one of the most important biomolecules having small molecular weight, which helps in various cellular functions like regulation of gene, xenobiotic metabolism, preservation of intracellular redox activities, signal transduction, etc. Therefore, the detection of GSH requires huge attention by using extremely selective and sensitive techniques. Herein, a rapid fluorometric nanosensor is designed by combining carbon dots (Cdots) and MnO₂ nanoparticles of different sizes for the detection of GSH. The bottom-up approach, i.e., microwave method, was used for the preparation of the water soluble and greatly fluorescent Cdots by using ascorbic acid as a precursor. MnO₂ nanospheres of different sizes (large, medium, and small) were prepared by varying the ratio of concentration of methionine and KMnO₄ at room temperature, which was confirmed by HRTEM analysis. The successive addition of MnO₂ nanospheres in Cdots results fluorescence quenching. From the fluorescence intensity data, Stern-Volmer quenching constant values (KS-V) were evaluated. From the fluorescence intensity and lifetime analysis, it was found that the degree of fluorescence quenching of Cdots followed the order: large > medium > small. Moreover, fluorescence recovery studies were also performed in the presence of GSH. Fluorescence restoration studies also show the order of turn on follows the same order, i.e., large > medium > small, which was also confirmed by quantum yield and lifetime studies. The limits of detection (LOD) of GSH in presence of Cdots@different sized MnO₂ nanospheres were also evaluated. It was observed thatLOD values were in μM region and lowest in case of large MnO₂ nanospheres. The separation distance (d) between Cdots and the surface of different MnO₂ nanospheres was determined. The d values increase with increase in the size of the MnO₂ nanospheres. In summary, the synthesized Cdots@MnO₂ nanocomposites acted as a rapid, simple, economical as well as environmental-friendly nanosensor for the detection of GSH.

Keywords: carbon dots, fluorescence, glutathione, MnO₂ nanospheres, turn off-on

Procedia PDF Downloads 154
13553 Attitude to the Types of Organizational Change

Authors: O. Y. Yurieva, O. V. Yurieva, O. V. Kiselkina, A. V. Kamaseva

Abstract:

Since the early 2000s, there are some innovative changes in the civil service in Russia due to administrative reform. Perspectives of the reform of the civil service include a fundamental change in the personnel component, increasing the level of professionalism of officials, increasing their capacity for self-organization and self-regulation. In order to achieve this, the civil service must be able to continuously change. Organizational changes have long become the subject of scientific understanding; problems of research in the field of organizational change is presented by topics focused on the study of the methodological aspects of the implementation of the changes, the specifics of changes in different types of organizations (business, government, and so on), design changes in the organization, including based on the change in organizational culture. In this case, the organizational changes in the civil service are the least studied areas; research of problems of its transformation is carried out in fragments. According to the theory of resistance of Herbert Simon, the root of the opposition and rejection of change is in the person who will resist any change, if it threatens to undermine the degree of satisfaction as a member of the organization (regardless of the reasons for this change). Thus, the condition for successful adaptation to changes in the organization is the ability of its staff to perceive innovation. As part of the problem, the study sought to identify the innovation civil servants, to determine readiness for the development of proposals for the implementation of organizational change in the public service. To identify the relationship to organizational changes case study carried out by the method of "Attitudes to organizational change" of I. Motovilina, which allowed predicting the type of resistance to changes, to reveal the contradictions and hidden results. The advantage of the method of I. Motovilina is its brevity, simplicity, the analysis of the responses to each question, the use of "overlapping" issues potentially conflicting factors. Based on the study made by the authors, it was found that respondents have a positive attitude to change more local than those that take place in reality, such as "increase opportunities for professional growth", "increase the requirements for the level of professionalism of", "the emergence of possible manifestations initiatives from below". Implemented by the authors diagnostics related to organizational changes in the public service showed the presence of specific problem areas, with roots in the lack of understanding of the importance of innovation personnel in the process of bureaucratization of innovation in public service organizations.

Keywords: innovative changes, self-organization, self-regulation, civil service

Procedia PDF Downloads 461
13552 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification

Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar

Abstract:

Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.

Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings

Procedia PDF Downloads 174
13551 A Taxonomy of Routing Protocols in Wireless Sensor Networks

Authors: A. Kardi, R. Zagrouba, M. Alqahtani

Abstract:

The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.

Keywords: routing, sensor, survey, wireless sensor networks, WSNs

Procedia PDF Downloads 183
13550 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: nano-enhanced phase change material (NEPCM), phase change material (PCM), nanoparticles, latent heat storage unit (LHSU), melting.

Procedia PDF Downloads 408
13549 Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater

Authors: Layla El Gaini, Majdouline Belaqziz, Meriem Outaki, Mariam Minhaj

Abstract:

In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry.

Keywords: high-performance liquid chromatography (HPLC-DAD), caffeic acid analysis, olive mill wastewater phenolics, analytical method validation

Procedia PDF Downloads 72
13548 Posterior Thigh Compartment Syndrome Associated with Hamstring Avulsion and Antiplatelet Therapy

Authors: Andrea Gatti, Federica Coppotelli, Ma Primavera, Laura Palmieri, Umberto Tarantino

Abstract:

Aim of study: Scientific literature is scarce of studies and reviews valuing the pros and cons of the paratricipital approach for the treatment of humeral shaft fractures; the lateral paratricipital approach is a valid alternative to the classical posterior approach to the humeral shaft as it preserves both the triceps muscle and the elbow extensor mechanisms; based on our experience, this retrospective analysis aims at analyzing outcome, risks and benefits of the lateral paratricipital approach for humeral shaft fractures. Methods: Our study includes 14 patients treated between 2018 and 2019 for unilateral humeral shaft fractures: 13 with a B1 or B2 and a patient with a C fracture type (according to the AO/ATO Classification); 6 of our patients identified as male while 8 as female; age average was 57.8 years old (range 21-73 years old). A lateral paratricipital approach was performed on all 14 patients, sparing the triceps muscle by avoiding the olecranon osteotomy and by assessing the integrity and the preservation of the radial nerve; the humeral shaft fracture osteosynthesis was performed by means of plates and screws. After surgery all patients have started elbow functional rehabilitation with acceptable pain management. Post-operative follow-up has been carried out by assessing radiographs, MEPS (Mayo Elbow Performance Score) and DASH (Disability of Arm Shoulder and Hand) functional assessment and ROM of the affected joint. Results: All 14 patients had an optimal post-operative follow-up with an adequate osteosynthesis and functional rehabilitations by entirely preserving the operated elbow joint; the mean elbow ROM was 0-118.6 degree (range of 0-130) while the average MEPS score was 86 (range75-100) and 79.9 for the DASH (range 21.7-86.1). Just 2 patients suffered of temporary radial nerve apraxia, healed in the subsequent follow-ups. CONCLUSION: The lateral paratricipital approach preserve both the integrity of the triceps muscle and the elbow biomechanism but we do strongly recommend additional studies to be carried out to highlight differences between it and the classical posterior approach in treating humeral shaft fractures.

Keywords: paratricepital approach, humerus shaft fracture, posterior approach humeral shaft, paratricipital postero-lateral approach

Procedia PDF Downloads 131
13547 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: cooperative networks, normalized capacity, sensing time

Procedia PDF Downloads 636
13546 Syndrome of Irreversible Lithium-Effectuated Neurotoxicity: Case Report and Review of Literature

Authors: David J. Thomson, Joshua C. J. Chew

Abstract:

Background: Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT) is a rare complication of lithium toxicity that typically causes irreversible cerebellar dysfunction. These patients may require hemodialysis and extensive supports in the intensive care. Methods: A review was performed on the available literature of SILENT with a focus on current pathophysiological hypotheses and advances in treatment. Articles were restricted to the English language. Results: Although the exact mechanism is unclear, CNS demyelination, especially in the cerebellum, was seen on the brain biopsies of a proportion of patients. There is no definitive management of SILENT but instead current management is focused on primary and tertiary prevention – detection of those at risk, and rehabilitation post onset of neurological deficits. Conclusions: This review draws conclusions from a limited amount of available literature, most of which are isolated case reports. Greater awareness of SILENT and further investigation into the risk factors and pathogenesis are required so this serious and irreversible syndrome may be avoided.

Keywords: lithium toxicity, pathogenesis, SILENT, syndrome of irreversible lithium-effectuated neurotoxicity

Procedia PDF Downloads 498
13545 Ointment of Rosella Flower Petals Extract (Hibiscus sabdariffa): Pharmaceutical Preparations Formulation Development of Herbs for Antibacterial S. aureus

Authors: Muslihatus Syarifah

Abstract:

Introduction: Rosella flower petals can be used as an antibacterial because it contains alkaloids, flavonoids, phenolics, and terpenoids) for the . Bacteria activity is S. aureus can cause skin infections and pengobatanya most appropriate use of topical preparations. Ointment is a topical preparation comprising the active substance and ointment base. Not all the base matches the active substances or any type of disease. In this study using flavonoid active substances contained in rosella flower petals (Hibiscus sabdariffa) to be made ointment by testing a variety of different bases in order to obtain a suitable basis for the formulation of ointment extract rosella flower petals. Methods: Experimental research with research methods Post test control group design using the ointment is hydrocarbon sample, absorption, leached water and dissolved water. Then tested for bacteria S. aureus with different concentrations of 1%, 2%, 4%, 8%, 16, 32%. Data were analyzed using One Way ANOVA followed by Post Hoc test. Results: Ointment with a hydrocarbon base, absorption, leached water and dissolved water having no change in physical properties during storage. Base affect the physical properties of an ointment that adhesion, dispersive power and pH. The physical properties of the ointment with different concentrations produce different physical properties including adhesion, dispersive power and pH. The higher the concentration the higher dispersive power, but the smaller the adhesion and pH. Conclusion: Differences bases, storage time, the concentration of the extract can affect the physical properties of the ointment. Concentration of extract in the ointment extract rosella flower petals is 32%.

Keywords: rosella, physical properties, ointments, antibacterial

Procedia PDF Downloads 371
13544 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment

Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente

Abstract:

After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.

Keywords: sustainability, post-disaster temporary housing, integrated value model for sustainability assessment, life cycle assessment

Procedia PDF Downloads 255
13543 A Review on Aviation Emissions and Their Role in Climate Change Scenarios

Authors: J. Niemisto, A. Nissinen, S. Soimakallio

Abstract:

Aviation causes carbon dioxide (CO2) emissions and other climate forcers which increase the contribution of aviation on climate change. Aviation industry and number of air travellers are constantly increasing. Aviation industry has an ambitious goal to strongly cut net CO2 emissions. Modern fleet, alternative jet fuels technologies and route optimisation are important technological tools in the emission reduction. Faster approaches are needed as well. Emission trade systems, voluntary carbon offset compensation schemes and taxation are already in operation. Global scenarios of aviation industry and its greenhouse gas emissions and other climate forcers are discussed in this review study based on literature and other published data. The focus is on the aviation in Nordic countries, but also European and global situation are considered. Different emission reduction technologies and compensation modes are examined. In addition, the role of aviation in a single passenger’s (a Finnish consumer) annual carbon footprint is analysed and a comparison of available emission calculators and carbon offset systems is performed. Long-haul fights have a significant role in a single consumer´s and company´s carbon footprint, but remarkable change in global emission level would need a huge change in attitudes towards flying.

Keywords: aviation, climate change, emissions, environment

Procedia PDF Downloads 212
13542 A Study to Examine the Use of Traditional Agricultural Practices to Fight the Effects of Climate Change

Authors: Rushva Parihar, Anushka Barua

Abstract:

The negative repercussions of a warming planet are already visible, with biodiversity loss, water scarcity, and extreme weather events becoming ever so frequent. The agriculture sector is perhaps the most impacted, and modern agriculture has failed to defend farmers from the effects of climate change. This, coupled with the added pressure of higher demands for food production caused due to population growth, has only compounded the impact. Traditional agricultural practices that are routed in indigenous knowledge have long safeguarded the delicate balance of the ecosystem through sustainable production techniques. This paper uses secondary data to explore these traditional processes (like Beejamrita, Jeevamrita, sheep penning, earthen bunding, and others) from around the world that have been developed over centuries and focuses on how they can be used to tackle contemporary issues arising from climate change (such as nutrient and water loss, soil degradation, increased incidences of pests). Finally, the resulting framework has been applied to the context of Indian agriculture as a means to combat climate change and improve food security, all while encouraging documentation and transfer of local knowledge as a shared resource among farmers.

Keywords: sustainable food systems, traditional agricultural practices, climate smart agriculture, climate change, indigenous knowledge

Procedia PDF Downloads 130
13541 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 135
13540 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: thermoregulation, microencapsulation, phase change materials, thermal energy storage, nanoencapsulation

Procedia PDF Downloads 388
13539 Change in Food Choice Behavior: Trend and Challenges

Authors: Gargi S. Kumar, Mrinmoyi Kulkarni

Abstract:

Food choice behavior is complex and determined by biological, psychological, socio-cultural, and economic factors. The past two decades, have seen dramatic changes in food consumption patterns among urban Indian consumers. The objective of the current study was to evaluate perceptions about changes with respect to food choice behavior. Ten participants [urban men and women] ranging in age from 40 to 65 were selected and in-depth interviews were conducted with a set of open ended questions. The recorded interviews were transcribed and thematically analyzed using inductive, open and axial coding. The results identified themes that act as drivers and consequences of change in food choice behavior. Drivers such as globalization [sub themes of urbanization, education, income, and work environment], media and advertising, changing gender roles, women in the workforce, and change in family structure have influenced food choice, both at an individual and national level. The consequences of changes in food choice were health implications, processed food consumption, food decisions driven by children and eating out among others. The study reveals that, over time, food choices change and evolve. However it is interesting to note how market forces and culture interact to influence individual behavior and the overall food environment which subsequently affects food choice and the health of the people.

Keywords: change, consequences, drivers, food choice, globalization

Procedia PDF Downloads 230
13538 Medical Neural Classifier Based on Improved Genetic Algorithm

Authors: Fadzil Ahmad, Noor Ashidi Mat Isa

Abstract:

This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.

Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy

Procedia PDF Downloads 475
13537 Cooling With Phase-Change-Material in Vietnam: Outcomes at 18 Months

Authors: Hang T. T. Tran, Ha T. Le, Hanh T. P. Tran, Hung V. Cao, Giang T. H. Nguyen, Dien M. Tran, Tobias Alfvén, Linus Olson

Abstract:

Background: Hypoxic Ischemic Encephalopathy is one of the major causes of neonatal death and those who survive with severe encephalopathy are more likely to develop adverse long-term outcomes such as neurocognitive impairment and cerebral palsy, which is a huge burden, especially in low-middle income countries. It is important to have a long-term follow-up for early detection and promote early intervention for these groups of high-risk infants. Aim: To determine the neurological outcome of cooling infants at 18 months and identify an optimized neurological examination scale for Hypoxic Ischemic Encephalopathy infants in Vietnam. Method: Descriptive study of neurodevelopmental outcomes at 18 months of HIE infants who underwent therapeutic hypothermia treatment in Vietnam. All survived cooling infants were assessed at discharge and at 6, 12, and 18 months by a pediatric physical therapist and a neurologist using two assessment tools: Ages and Stages Questionnaires and the Hammersmith Infant Neurological Examination scale to detect impairments and promote early intervention for those who require it. Results: During a 3-year period, a total of 130 neonates with moderate to severe HIE underwent therapeutic hypothermia treatment using Phase change material mattress (65% moderate, 35% severe – Sarnat). 43 (33%) died during hospitalization and infancy; among survivors, 69 (79%) completed 3 follow-ups at 18 months. At 18 months, 25 had cerebral palsy, 11 had mild delayed neurodevelopment. At each time-point, infants with a normal/mildly delayed neurodevelopment had significantly higher Ages and Stages Questionnaires and Hammersmith Infant Neurological Examination scores (p<0.05) than those with cerebral palsy. Conclusion: The study showed that the Ages and Stages Questionnaires and Hammersmith Infant Neurological Examination is a helpful tool in the process of early diagnosis of infants at low and high neurological risk and identifying those infants needing specific rehabilitation programme.

Keywords: encephalopathy, phase-change-material, neurodevelopment, cerebral palsy

Procedia PDF Downloads 147
13536 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey

Authors: Maleh Yassine, Ezzati Abdellah

Abstract:

Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.

Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS

Procedia PDF Downloads 388