Search results for: option selection
1229 Studies of Lactose Utilization in Microalgal Isolate for Further Use in Dairy By-Product Bioconversion
Authors: Sergejs Kolesovs, Armands Vigants
Abstract:
The use of dairy industry by-products and wastewater as a cheap substrate for microalgal growth is gaining recognition. However, the mechanisms of lactose utilization remain understudied, limiting the potential of successful microalgal biomass production using various dairy by-products, such as whey and permeate. The necessity for microalgae to produce a specific enzyme, β-galactosidase, requires the selection of suitable strains. This study focuses on a freshwater microalgal isolate's ability to grow on a semi-synthetic medium supplemented with lactose. After 10 days of agitated cultivation, an axenic microalgal isolate achieved significantly higher biomass production under mixotrophic growth conditions (0.86 ± 0.07 g/L, dry weight) than heterotrophic growth (0.46 ± 0.04 g/L). Moreover, mixotrophic cultivation had significantly higher biomass production compared to photoautotrophic growth (0.67 ± 0.05 g/L). The activity of β-galactosidase was detected in both supernatant and microalgal biomass under mixotrophic and heterotrophic growth conditions, showing the potential of extracellular and intracellular mechanisms of enzyme production. However, the main limiting factor in this study was the increase of pH values during the cultivation, significantly reducing the activity of the β-galactosidase enzyme after 3rd day of cultivation. It highlights the need for stricter control of growth parameters to ensure the enzyme's activity. Further research will assess the isolate's suitability for dairy by-product bioconversion and biomass composition.Keywords: microalgae, lactose, whey, permeate, beta-galactosidase, mixotrophy, heterotrophy
Procedia PDF Downloads 651228 Language on Skin Whitening Products in Pakistan Promotes Unfair Beauty Standards: A Critical Discourse Analysis
Authors: Azeem Alphonce
Abstract:
In Pakistan, there is a variety of skin tones and colors across all provinces. However, a fair complexion is one of the standards of beauty among females in Pakistan, which creates insecurities in dark-complexioned females. This research is a critical discourse analysis of the language used on beauty products for females in Pakistan. The purpose was to analyze the language used on female beauty products using Van Dijk's three-stage socio-cognitive model to understand what message is received from the few words written and repeated across the packaging of various facial products, why such language is used and what are its wider socio-cognitive effects? The criterion for the selection of beauty products was skin whitening terminologies and the language used on these products. The results showed that over 57 per cent of products utilized skin-whitening terms. The adjectives written on the package indicate that fairer skin is the ultimate beauty goal of females. The analysis explored how the language reinforces unfair beauty standards and perpetuates colorism. It was concluded that female beauty products utilize discriminatory discourse by marginalizing individuals of darker skin tones. Fairer skin is promoted, whereas darker skin is referred to as a problem, flaw or imperfection. Socially shared mental models seem to have caused beauty companies to exploit and promote perceptions of colorism in society. Therefore, such discourse should be prevented, and beauty companies should utilize their discourse to promote acceptance of various skin tones.Keywords: language, skin whitening products, beauty standards, social mental models
Procedia PDF Downloads 711227 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection
Authors: Reza Moslemi, Sebastien Perrier
Abstract:
Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.Keywords: condition assessment, pipe degradation, sampling, water main
Procedia PDF Downloads 1501226 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 671225 Evaluation of Microbial Accumulation of Household Wastewater Purified by Advanced Oxidation Process
Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır
Abstract:
Water scarcity is an unavoidable issue impacting an increasing number of individuals daily, representing a global crisis stemming from swift population growth, urbanization, and excessive resource exploitation. Consequently, solutions that involve the reclamation of wastewater are considered essential. In this context, household wastewater, categorized as greywater, plays a significant role in freshwater used for residential purposes and is attributed to washing. This type of wastewater comprises diverse elements, including organic substances, soaps, detergents, solvents, biological components, and inorganic elements such as certain metal ions and particles. The physical characteristics of wastewater vary depending on its source, whether commercial, domestic, or from a hospital setting. Consequently, the treatment strategy for this wastewater type necessitates comprehensive investigation and appropriate handling. The advanced oxidation process (AOP) emerges as a promising technique associated with the generation of reactive hydroxyl radicals highly effective in oxidizing organic pollutants. This method takes precedence over others like coagulation, flocculation, sedimentation, and filtration due to its avoidance of undesirable by-products. In the current study, the focus was on exploring the feasibility of the AOP for treating actual household wastewater. To achieve this, a laboratory-scale device was designed to effectively target the formed radicals toward organic pollutants, resulting in lower organic compounds in wastewater. Then, the number of microorganisms present in treated wastewater, in addition to the chemical content of the water, was analyzed to determine whether the lab-scale device eliminates microbial accumulation with AOP. This was also an important parameter since microbes can indirectly affect human health and machine hygiene. To do this, water samples were taken from treated and untreated conditions and then inoculated on general purpose agar to track down the total plate count. Analysis showed that AOP might be an option to treat household wastewater and lower microorganism growth.Keywords: usage of household water, advanced oxidation process, water reuse, modelling
Procedia PDF Downloads 501224 Analysis of Brain Activities due to Differences in Running Shoe Properties
Authors: Kei Okubo, Yosuke Kurihara, Takashi Kaburagi, Kajiro Watanabe
Abstract:
Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for ten min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes.Keywords: brain activities, NIRS, PASAT, running shoes
Procedia PDF Downloads 3731223 Desk Graffiti as Art, Archive or Collective Knowledge Sharing: A Case Study of Schools in Addis Ababa, Ethiopia
Authors: Behailu Bezabih Ayele
Abstract:
Illustrative expressions in art education and in overall learning are being given increasing attention in the transmission of knowledge. The objective of this paper, therefore, is to present an analysis of graffiti on school desks-a way of smuggling knowledge on the edge of classroom education and learning. The methodological approach focuses on the systematic collection and selection of desk graffiti. Four schools are chosen to reflect socioeconomic status and gender composition. The analysis focused on the categorization of graffiti by genre. This was followed by an analysis of the style, intensity as well as content of the messages in terms of overall social impacts. The paper grounds the analysis by reviewing the literature on modern education and art education in the Ethiopian context, as well as the place of desk graffiti. The findings generally show that the school desks and the school environment, by and large, have managed to serve as vessels through which formal and informal knowledge is acquired, transmitted, engrained into the students and transformed into messages by the students. The desks have also apparently served as a springboard to maximize the interfaces between several ideas and disciplines and communications. However, the very fact that the desks serve as massive channels of expression and knowledge transmission also points to a lack of breadth availability of channels of expression, perhaps confounding the ability of classrooms as means of outlet of expression and documentation for the students. This points to the need for efforts in education policy and funding of artistic endeavors for young students.Keywords: artistic expression, desk graffiti, education, school children, Ethiopia
Procedia PDF Downloads 681222 An Assessment of the Extent and Impact of Motor Insurance Fraud Claims in Nigeria
Authors: Olatokunbo Shoyemi, Mario Brito, Ian Dawson
Abstract:
In recent times, the Nigerian motor insurers have experienced high volume of motor insurance claim pay-outs and insignificant contribution to the net premium income of the Nigerian insurance market, which has been a major concern for the shareholders/stakeholders. It has been argued that there are many factors that have brought about these concerns. However, anecdotal evidence (ongoing debates among industry practitioners) suggests prevalence of fraud due to poor practices in motor insurance business in Nigeria. This study is therefore aimed to carry out an assessment of fraud in motor insurance claims as perceived by experts in the Nigerian insurance market. This study adopted a descriptive research design, and the analysis was built on a survey among insurance experts in Nigeria using a designed questionnaire. A purposive and snowball sampling were used to select our sample (N = 120) - representing a selection of all professionally qualified insurance experts in Nigeria insurance industry. The study found that Nigerian insurance experts (i) largely agree that there is a problematic level of fraud in the Nigerian motor insurance industry; (ii) perceive soft fraud to be about 3 times more common than hard fraud in the Nigerian motor insurance industry, and (iii) strongly agree there are problematic impacts from fraud on the solvency of the Nigerian motor insurers. This paper has provided an empirical understanding of the existence, extent, and impact of fraud risks within the Nigerian insurance market based on expert knowledge and insights rather than, as has often been the case, a reliance on individual anecdotes.Keywords: claims, net premium income, motor insurance, soft fraud, hard fraud
Procedia PDF Downloads 1081221 Technical, Environmental and Financial Assessment for Optimal Sizing of Run-of-River Small Hydropower Project: Case Study in Colombia
Authors: David Calderon Villegas, Thomas Kaltizky
Abstract:
Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an IRR 1.5 times higher than the discount rate.Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, objective function
Procedia PDF Downloads 1321220 Good Governance in Perspective: An Example of Transition from Corruption towards Integrity within a Developing Country (Pakistan)
Authors: Saifullah Khalid
Abstract:
Governance and good governance are among the main topics in international discussions about the success factors for social and economic development. The image of developing countries as for example Pakistan in this respect is bad (in TI Corruption Index nr. among countries). Additionally, the police are among the sectors and organizations which are seen as most corrupt in many countries. However, in case of Pakistan there seem to be exceptions to the rule, and improvement can be brought in specific police departments. This paper represents the findings of Islamabad traffic police (ITP). In Pakistan, the police, in general, have been stigmatized for being the most corrupt department in the country. However, the few recent examples of Motorway police and its replicated model of Islamabad traffic police changed the perception about police and policing. These police forces have shown that Policing in Pakistan can be changed for better. In this paper, the research question that is addressed is: How corrupt are (traffic) police forces in Pakistan and what factors influence corruption within that police force? And What lessons can be learned from that to improve police integrity? Both qualitative and quantitative tools are utilized for data collection. The overall picture of the factors is not so easy to interpret and summarise. Nevertheless paying a better salary does not seem to limit integrity violations, neither does recruitment and selection and leadership, while supervision and control, training and stimulating the positive and limiting the negative elements of culture appear to be important in curbing (sometimes specific) integrity violations in the context of Pakistani police forces. The study also leads to a number of suggestions for curbing corruption and other integrity violations in the Pakistan police.Keywords: corruption control, governance, integrity violations, Islamabad traffic police, Pakistan
Procedia PDF Downloads 2161219 Radio Frequency Heating of Iron-Filled Carbon Nanotubes for Cancer Treatment
Authors: L. Szymanski, S. Wiak, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska
Abstract:
There exist more than one hundred different types of cancer, and therefore no particular treatment is offered to people struggling with this disease. The character of treatment proposed to a patient will depend on a variety of factors such as type of the cancer diagnosed, advancement of the disease, its location in the body, as well as personal preferences of a patient. None of the commonly known methods of cancer-fighting is recognised as a perfect cure, however great advances in this field have been made over last few decades. Once a patient is diagnosed with cancer, he is in need of medical care and professional treatment for upcoming months, and in most cases even for years. Among the principal modes of treatment offered by medical centres, one can find radiotherapy, chemotherapy, and surgery. All of them can be applied separately or in combination, and the relative contribution of each is usually determined by medical specialist in agreement with a patient. In addition to the conventional treatment option, every day more complementary and alternative therapies are integrated into mainstream care. There is one promising cancer modality - hyperthermia therapy which is based on exposing body tissues to high temperatures. This treatment is still being investigated and is not widely available in hospitals and oncological centres. There are two kinds of hyperthermia therapies with direct and indirect heating. The first is not commonly used due to low efficiency and invasiveness, while the second is deeply investigated and a variety of methods have been developed, including ultrasounds, infrared sauna, induction heating and magnetic hyperthermia. The aim of this work was to examine possibilities of heating magnetic nanoparticles under the influence of electromagnetic field for cancer treatment. For this purpose, multiwalled carbon nanotubes used as nanocarriers for iron particles were investigated for its heating properties. The samples were subjected to an alternating electromagnetic field with frequency range between 110-619 kHz. Moreover, samples with various concentrations of carbon nanotubes were examined. The lowest frequency of 110 kHz and sample containing 10 wt% of carbon nanotubes occurred to influence the most effective heating process. Description of hyperthermia therapy aiming at enhancing currently available cancer treatment was also presented in this paper. Most widely applied conventional cancer modalities such as radiation or chemotherapy were also described. Methods for overcoming the most common obstacles in conventional cancer modalities, such as invasiveness and lack of selectivity, has been presented in magnetic hyperthermia characteristics, which explained the increasing interest of the treatment.Keywords: hyperthermia, carbon nanotubes, cancer colon cells, ligands
Procedia PDF Downloads 2661218 Design and Optimization of Sustainable Buildings by Combined Cooling, Heating and Power System (CCHP) Based on Exergy Analysis
Authors: Saeed Karimi, Ali Behbahaninia
Abstract:
In this study, the design and optimization of combined cooling, heating, and power system (CCHP) for a sustainable building are dealt with. Sustainable buildings are environmentally responsible and help us to save energy also reducing waste, pollution and environmental degradation. CCHP systems are widely used to save energy sources. In these systems, electricity, cooling, and heating are generating using just one primary energy source. The selection of the size of components based on the maximum demand of users will lead to an increase in the total cost of energy and equipment for the building complex. For this purpose, a system was designed in which the prime mover (gas turbine), heat recovery boiler, and absorption chiller are lower than the needed maximum. The difference in months with peak consumption is supplied with the help of electrical absorption chiller and auxiliary boiler (and the national electricity network). In this study, the optimum capacities of each of the equipment are determined based on Thermo economic method, in a way that the annual capital cost and energy consumption will be the lowest. The design was done for a gas turbine prime mover, and finally, the optimum designs were investigated using exergy analysis and were compared with a traditional energy supply system.Keywords: sustainable building, CCHP, energy optimization, gas turbine, exergy, thermo-economic
Procedia PDF Downloads 931217 Analysing Representations of ‘Leftover’ Women in Chinese Media: Taking the Film ‘The Last Woman Standing’ and ‘I Do’ as Examples
Authors: Ting Li Liu
Abstract:
‘Leftover woman’ or ‘3S’ woman is the term used to describe a well-educated, high income, independent woman who is single and never married around 30 years in Chinese society. With the naming of this demographic of ‘leftover women’, their family, dating culture, mate selection and marriage attract public concern. Massive media representations of ‘leftover women’ occur daily; the research aims to present several media representations of women’s anxiety about their singlehood and related marital issues around thirty. The research triangulates two areas of media representation of ‘leftover women’: films and audience reviews on ‘Douban Movie’ website. Drawing on traditional media studies, Fairclough’s critical discourse analysis combined with multimodal techniques is applied to the research to analyze the representations of ‘leftover women’ and their implications for marital culture in China, in conjunction with a feminist perspective. The conference paper will discuss two case studies: the film ‘The last woman standing’ and ‘I Do’. Paying attention to different aspects of ‘leftover women’, the research aims to re-examine the representations of ‘leftover women’ in selected scenes, such as their age anxiety, family, marriage, dating process, careers, etc. The paper also includes public beliefs about ‘leftover women’ from online audience reviews. In conclusion, the emergence of ‘leftover women’ is a reflection of Chinese tradition’s impact on people’s lives and new changes in Chinese families and their attitude to marriage.Keywords: leftover women, marriage, family, media culture, China
Procedia PDF Downloads 2541216 Volume Estimation of Trees: An Exploratory Study on Pterocarpus erinaceus Logging Operations within Forest Transition and Savannah Ecological Zones of Ghana
Authors: Albert Kwabena Osei Konadu
Abstract:
Pterocarpus erinaceus, also known as Rosewood, is tropical wood, endemic in forest savannah transition zones within the middle and northern portion of Ghana. Its economic viability has made it increasingly popular and in high demand, leading to widespread conservation concerns. Ghana’s forest resource management regime for these ecozones is mainly on conservation and very little on resource utilization. Consequently, commercial logging management standards are at teething stage and not fully developed, leading to a deficiency in the monitoring of logging operations and quantification of harvested trees volumes. Tree information form (TIF); a volume estimation and tracking regime, has proven to be an effective, sustainable management tool for regulating timber resource extraction in the high forest zones of the country. This work aims to generate TIF that can track and capture requisite parameters to accurately estimate the volume of harvested rosewood within forest savannah transition zones. Tree information forms were created on three scenarios of individual billets, stacked billets and conveying vessel basis. These TIFs were field-tested to deduce the most viable option for the tracking and estimation of harvested volumes of rosewood using the smallian and cubic volume estimation formula. Overall, four districts were covered with individual billets, stacked billets and conveying vessel scenarios registering mean volumes of 25.83m3,45.08m3 and 32.6m3, respectively. These adduced volumes were validated by benchmarking to assigned volumes of the Forestry Commission of Ghana and known standard volumes of conveying vessels. The results did indicate an underestimation of extracted volumes under the quotas regime, a situation that could lead to unintended overexploitation of the species. The research revealed conveying vessels route is the most viable volume estimation and tracking regime for the sustainable management of the Pterocarpous erinaceus species as it provided a more practical volume estimate and data extraction protocol.Keywords: convention on international trade in endangered species, cubic volume formula, forest transition savannah zones, pterocarpus erinaceus, smallian’s volume formula, tree information form
Procedia PDF Downloads 1071215 Applying Theory of Inventive Problem Solving to Develop Innovative Solutions: A Case Study
Authors: Y. H. Wang, C. C. Hsieh
Abstract:
Good service design can increase organization revenue and consumer satisfaction while reducing labor and time costs. The problems facing consumers in the original serve model for eyewear and optical industry includes the following issues: 1. Insufficient information on eyewear products 2. Passively dependent on recommendations, insufficient selection 3. Incomplete records on progression of vision conditions 4. Lack of complete customer records. This study investigates the case of Kobayashi Optical, applying the Theory of Inventive Problem Solving (TRIZ) to develop innovative solutions for eyewear and optical industry. Analysis results raise the following conclusions and management implications: In order to provide customers with improved professional information and recommendations, Kobayashi Optical is suggested to establish customer purchasing records. Overall service efficiency can be enhanced by applying data mining techniques to analyze past consumer preferences and purchase histories. Furthermore, Kobayashi Optical should continue to develop a 3D virtual trial service which can allow customers for easy browsing of different frame styles and colors. This 3D virtual trial service will save customer waiting times in during peak service times at stores.Keywords: theory of inventive problem solving (TRIZ), service design, augmented reality (AR), eyewear and optical industry
Procedia PDF Downloads 2791214 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 4191213 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 2111212 Microscopic Analysis of Bulk, High-Tc Superconductors by Transmission Kikuchi Diffraction
Authors: Anjela Koblischka-Veneva, Michael R. Koblischka
Abstract:
In this contribution, the Transmission-Kikuchi Diffraction (TKD, or sometimes called t-EBSD) is applied to bulk, melt-grown YBa₂Cu₃O₇ (YBCO) superconductors prepared by the MTMG (melt-textured melt-grown) technique and the infiltration growth (IG) technique. TEM slices required for the analysis were prepared by means of Focused Ion-Beam (FIB) milling using mechanically polished sample surfaces, which enable a proper selection of the interesting regions for investigations. The required optical transparency was reached by an additional polishing step of the resulting surfaces using FIB-Ga-ion and Ar-ion milling. The improved spatial resolution of TKD enabled the investigation of the tiny YBa₂Cu₃O₅ (Y-211) particles having a diameter of about 50-100 nm embedded within the YBCO matrix and of other added secondary phase particles. With the TKD technique, the microstructural properties of the YBCO matrix are studied in detail. It is observed that the matrix shows the effects of stress/strain, depending on the size and distribution of the embedded particles, which are important for providing additional flux pinning centers in such superconducting bulk samples. Using the Kernel Average Misorientation (KAM) maps, the strain induced in the superconducting matrix around the particles, which increases the flux pinning effectivity, can be clearly revealed. This type of analysis of the EBSD/TKD data is, therefore, also important for other material systems, where nanoparticles are embedded in a matrix.Keywords: transmission Kikuchi diffraction, EBSD, TKD, embedded particles, superconductors YBa₂Cu₃O₇
Procedia PDF Downloads 1351211 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment
Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan
Abstract:
In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.Keywords: border security, sensors, abnormal activity detection, ontologies
Procedia PDF Downloads 4811210 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 2721209 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations
Authors: K. Al Ammari, B. G. Clarke
Abstract:
Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column
Procedia PDF Downloads 3741208 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: android, API Calls, machine learning, permissions combination
Procedia PDF Downloads 3291207 Feasibility and Energy Efficiency Analysis of Chilled Water Radiant Cooling System of Office Apartment in Nigeria’s Tropical Climate City
Authors: Rasaq Adekunle Olabomi
Abstract:
More than 30% of the global building energy consumption is attributed to heating, ventilation and air-conditioning (HVAC) due to increasing urbanization and the need for more personal comfort. While heating is predominant in the temperate regions (especially during winter), comfort cooling is constantly needed in tropical regions such as Nigeria. This makes cooling a major contributor to the peak electrical load in the tropics. Meanwhile, the high solar energy availability in the tropical climate region presents a higher application potentials for solar thermal cooling systems; more so, the need for cooling mostly coincides with the solar energy availability. In addition to huge energy consumption, conventional (compressor type) air-conditioning systems mostly use refrigerants that are regarded as environmental unfriendly because of their ozone depletion potentials; this has made the alternative cooling systems to become popular in the present time. The better thermal capacity and less pumping power requirement of chilled water than chilled air has also made chilled water a preferred option over the chilled air cooling system. Radiant floor chilled water cooling is particularly is also considered suitable for spaces such as meeting room, seminar hall, auditorium, airport arrival and departure halls among others. This study did the analysis of the feasibility and energy efficiency of solar thermal chilled water for radiant flood cooling of an office apartment in a tropical climate city in Nigeria with a view to recommend its up-scaling. The analysis considered the weather parameters including available solar irradiance (kWh/m2-day) as well as the technical details of the solar thermal cooling systems to determine the feasibility. Project cost, its energy savings, emission reduction potentials and cost-to-benefits ration are used to analyze its energy efficiency as well as the viability of the cooling system. The techno-economic analysis of the proposed system, carried out using RETScreen software shows that its viability in but SWOT analysis of policy and institutional framework to promote solar energy utilization for the cooling systems shows weakness such as poor infrastructure and inadequate local capacity for technological development as major challenges.Keywords: cooling load, absorption cooling system, coefficient of performance, radiant floor, cost saving, emission reduction
Procedia PDF Downloads 241206 Consumer Behavior and Knowledge on Organic Products in Thailand
Authors: Warunpun Kongsom, Chaiwat Kongsom
Abstract:
The objective of this study was to investigate the awareness, knowledge and consumer behavior towards organic products in Thailand. For this study, a purposive sampling technique was used to identify a sample group of 2,575 consumers over the age of 20 years who intended or made purchases from 1) green shops; 2) supermarkets with branches; and, 3) green markets. A questionnaire was used for data collection across the country. Descriptive statistics were used for data analysis. The results showed that more than 92% of consumers were aware of organic agriculture, but had less knowledge about it. More than 60% of consumers knew that organic agriculture production and processing did not allow the use of chemicals. And about 40% of consumers were confused between the food safety logo and the certified organic logo, and whether GMO was allowed in organic agriculture practice or not. In addition, most consumers perceived that organic agricultural products, good agricultural practice (GAP) products, agricultural chemicals free products, and hydroponic vegetable products had the same standard. In the view of organic consumers, the organic Thailand label was the most seen and reliable among various organic labels. Less than 3% of consumers thought that the International Federation of Organic Agriculture Movements (IFOAM) Global Organic Mark (GOM) was the most seen and reliable. For the behaviors of organic consumers, they purchased organic products mainly at the supermarket and green shop (55.4%), one to two times per month, and with a total expenditure of about 200 to 400 baht each time. The main reason for buying organic products was safety and free from agricultural chemicals. The considered factors in organic product selection were price (29.5%), convenience (22.4%), and a reliable certification system (21.3%). The demands for organic products were mainly rice, vegetables and fruits. Processed organic products were relatively small in quantity.Keywords: consumer behavior, consumer knowledge, organic products, Thailand
Procedia PDF Downloads 2961205 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers
Authors: Rajkumar Kolangarakandy
Abstract:
Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL
Procedia PDF Downloads 3351204 System-level Factors, Presidential Coattails and Mass Preferences: Dynamics of Party Nationalization in Contemporary Brazil (1990-2014)
Authors: Kazuma Mizukoshi
Abstract:
Are electoral politics in contemporary Brazil still local in organization and focus? The importance of this question lies in its paradoxical trajectories. First, often coupled with institutional and sociological ‘barriers’ (e.g. the selection and election of candidates relatively loyal to the local party leadership, the predominance of territorialized electoral campaigns, and the resilience of political clientelism), the regionalization of electoral politics has been a viable and practical solution especially for pragmatic politicians in some Latin American countries. On the other hand, some leftist parties that once served as minor opposition forces at the time of foundational or initial elections have certainly expanded vote shares. Some were eventually capable of holding most (if not a majority) legislative seats since the 1990s. Though not yet rigorously demonstrated, theoretically implicit in the rise of leftist parties in legislative elections is the gradual (if not complete) nationalization of electoral support—meaning the growing equality of a party’s vote share across electoral districts and its change over time. This study will develop four hypotheses to explain the dynamics of party nationalization in contemporary Brazil: district magnitude, ethnic and class fractionalization of each district, voting intentions in federal and state executive elections, and finally the left-right stances of electorates. The study will demonstrate these hypotheses by closely working with the Brazilian Electoral Study (2002-2014).Keywords: party nationalization, presidential coattails, Left, Brazil
Procedia PDF Downloads 1381203 Phytoremediation Alternative for Landfill Leachate Sludges Doña Juana Bogotá D.C. Colombia Treatment
Authors: Pinzón Uribe Luis Felipe, Chávez Porras Álvaro, Ruge Castellanos Liliana Constanza
Abstract:
According to global data, solid waste management of has low economic investment for its management in underdeveloped countries; being the main factor the advanced technologies acknowledge for proper operation and at the same time the technical development. Has been evidenced that communities have a distorted perception of the role and legalized final destinations for waste or "Landfill" places specific management; influenced primarily by their physical characteristics and the information that the media provide of these, as well as their wrong association with "open dumps". One of the major inconveniences in these landfills is the leachate sludge management from treatment plants; as this exhibit a composition highly contaminating (physical, chemical and biological) for the natural environment due to improper handling and disposal. This is the case Landfill Doña Juana (RSDJ), Bogotá, Colombia, considered among the largest in South America; where management problems have persisted for decades, since its creation being definitive on the concept that society has acquired about this form of waste disposal and improper leachate handling. Within this research process for treating phytoremediation alternatives were determined by using plants that are able to degrade heavy metals contained in these; allowing the resulting sludge to be used as a seal in the final landfill cover; within a restoration process, providing option to solve the landscape contamination problem, as well as in the communities perception and conflicts that generates landfill. For the project chemical assays were performed in sludge leachate that allowed the characterization of metals such as chromium (Cr), lead (Pb), arsenic (As) and mercury (Hg), in order to meet the amount in the biosolids regard to the provisions of the USEPA 40 CFR 503. The evaluations showed concentrations of 102.2 mg / kg of Cr, 0.49 mg / kg Pb, 0.390 mg / kg of As and 0.104 mg / kg of Hg; being lower than of the standards. A literature review on native plant species suitable for an alternative process of phytoremediation, these metals degradation capable was developed. Concluding that among them, Vetiveria zizanioides, Eichhornia crassipes and Limnobium laevigatum, for their hiperacumulativas in their leaves, stems and roots characteristics may allow these toxic elements reduction of in the environment, improving the outlook for disposal.Keywords: health, filling slurry of leachate, heavy metals, phytoremediation
Procedia PDF Downloads 3251202 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method
Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat
Abstract:
Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.Keywords: feature extraction, feature selection, image annotation, classification
Procedia PDF Downloads 5861201 Sex Work Practice and Health Seeking Behavior among Hiv Positive Female Sex Workers in Rural Karnataka, India
Authors: Rajeshwari Biradar
Abstract:
Background: The anecdotal evidences indicate that utilization of HIV services especially in Government facilities is affected by stigma and discrimination among HIV positive female sex workers (FSWs) in Karnataka. To our knowledge, there is no quantitative study on this issue. In this study an attempt is made to examine these aspects among positive FSWs exposed to prevention programs. Methods: This is a cross‐ sectional quantitative survey of HIV positive FSWs in the 3 districts of northern Karnataka using a structured questionnaire. The list of HIV Positive FSWs was organized by stratification, and 607 positive FSWs were selected using a systematic random selection. The data were analyzed using both bivariate and multivariate statistical techniques. Results: Half of the sex workers (52%) are traditional (devadasi, dedicated to the temple), 22% are widowed and the mean age is 33 years. The FSWs practice sex work on an average 13 days a month with 2.3 clients per day and was in sex work for about 13 years. Almost all of them (97%) used condom with the clients they had on the last day of sex work. About 74% were ever registered in the ART center and 47% of them reported being ever on ART, of which 6% dropped out. Multivariate results support the hypothesis that the interventions addressing stigma and discrimination enabled accessing health services in the government facilities (AOR=1.37; p=0.17). Conclusions: Based on the results of the study, programs addressing stigma, discrimination and positive prevention can be implemented in places where government health services are not utilized by HIV positive FSWs. However, the study may be limited by the fact that majority of the FSWs entered into sex work through the traditional devadasi system, which may not be the case in other parts of India.Keywords: sex work, HIV/AIDS, female sex workers, health
Procedia PDF Downloads 1871200 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: distribution network, machine learning, network topology, phase identification, smart grid
Procedia PDF Downloads 299