Search results for: neural perception.
1785 Sensory-Based Strategies in the School Setting: A Survey of K-12 Educators
Authors: Hoda Hashemi
Abstract:
This study aimed to explore K-12 educators’ perceptions of using sensory-based strategies (SBS) with students on the autism spectrum in classroom settings. One hundred and ninety-three educators, including 107 special education teachers, 48 general education teachers, and 38 paraprofessionals, participated in this study. They answered 44 questions about using SBS in classroom settings, the degree to which they use the strategies on a 5-point Likert scale, the outcomes they targeted, and their perception of the strategies' effectiveness. The survey results indicated that most educators rated only one sensory-based strategy, which was alternated seating options, as highly effective in addressing the targeted behaviors of students on the autism spectrum. However, in some instances, educators' perceptions of the effectiveness of some strategies did not align with other research findings, highlighting the need for further evidence to confidently implement them.Keywords: sensory-based strategies, K-12, educators, autism, survey
Procedia PDF Downloads 791784 Assessing Narcissism in Students of Psychology: An Administered Study
Authors: Sahiti Ganduri, Kavya Sreenivasan, Venya Lankala
Abstract:
The narcissistic personality is a condition that causes individuals to have an inflated perception of self, giving themselves higher self-importance. It is necessary and interesting to study narcissistic traits in students of different majors. This can be a crucial environmental or psychosocial marker/indicator of narcissism which can also be of substantial importance in the field of education. This study focuses on identifying narcissism in students of psychology background. The narcissistic personality inventory was administered to 114 psychology students of different universities (public and private) in India. The results of our study provided evidence of the fact that narcissistic traits are higher in male psychology students as compared to female psychology students. Further, this paper has provided evidence that narcissistic traits are higher in leaders as compared to non-leaders.Keywords: college students, disorder, gender, leadership, narcissistic personality, personality, students, traits
Procedia PDF Downloads 2231783 Personnel Marketing as Perceived by HR Managers in Czech Republic: Results of a Qualitative Research Study
Authors: Lukáš Mazánek, Zdeňka Konečná
Abstract:
The article is devoted to the area of personnel marketing. A comprehensive review of scientific literature and articles published predominantly in personnel-oriented journals was carried out, followed by a qualitative exploratory research with the aim to explore and explain the perception of personnel marketing. Due to the lack of research in this field in Czech Republic, we have focused on Czech HR managers, more specifically, on how they understand the tasks of personnel marketing, which tools they use and whether the companies they work for try to be a preferred employer. The answers from our respondents were used to help us determine what is important within this field. All of the respondents strive to be a preferred employer and try to achieve it by using an extensive range of marketing tools. The most frequently used tools are advertising, job fairs presentations, employee care and employer brand promotion.Keywords: Czech Republic, personnel marketing, preferred employer, qualitative research study
Procedia PDF Downloads 3391782 The Development of Local-Global Perceptual Bias across Cultures: Examining the Effects of Gender, Education, and Urbanisation
Authors: Helen J. Spray, Karina J. Linnell
Abstract:
Local-global bias in adulthood is strongly dependent on environmental factors and a global bias is not the universal characteristic of adult perception it was once thought to be: whilst Western adults typically demonstrate a global bias, Namibian adults living in traditional villages possess a strong local bias. Furthermore, environmental effects on local-global bias have been shown to be highly gender-specific; whereas urbanisation promoted a global bias in urbanised Namibian women but not men, education promoted a global bias in urbanised Namibian men but not women. Adult populations, however, provide only a snapshot of the gene-environment interactions which shape perceptual bias. Yet, to date, there has been little work on the development of local-global bias across environmental settings. In the current study, local-global bias was assessed using a similarity-matching task with Navon figures in children aged between 4 and 15 years from across three populations: traditional Namibians, urban Namibians, and urban British. For the two Namibian groups, measures of urbanisation and education were obtained. Data were subjected to both between-group and within-group analyses. Between-group analyses compared developmental trajectories across population and gender. These analyses revealed a global bias from even as early as 4 in the British sample, and showed that the developmental onset of a global bias is not fixed. Urbanised Namibian children ultimately developed a global bias that was indistinguishable from British children; however, a global bias did not emerge until much later in development. For all populations, the greatest developmental effects were observed directly following the onset of formal education. No overall gender effects were observed; however, there was a significant gender by age interaction which was difficult to reconcile with existing biological-level accounts of gender differences in the development of local-global bias. Within-group analyses compared the effects of urbanisation and education on local-global bias for traditional and urban Namibian boys and girls separately. For both traditional and urban boys, education mediated all effects of age and urbanisation; however, this was not the case for girls. Traditional Namibian girls retained a local bias regardless of age, education, or urbanisation, and in urbanised girls, the development of a global bias was not attributable to any one factor specifically. These results are broadly consistent with aforementioned findings that education promoted a global bias in urbanised Namibian men but not women. The development of local-global bias does not follow a fixed trajectory but is subject to environmental control. Understanding how variability in the development of local-global bias might arise, particularly in the context of gender, may have far-reaching implications. For example, a number of educationally important cognitive functions (e.g., spatial ability) are known to show consistent gender differences in childhood and local-global bias may mediate some of these effects. With education becoming an increasingly prevalent force across much of the developing world it will be important to understand the processes that underpin its effects and their implications.Keywords: cross-cultural, development, education, gender, local-global bias, perception, urbanisation, urbanization
Procedia PDF Downloads 1391781 Improving the Dissolution Rate of Folic Acid via the Antisolvent Vapour Precipitation
Authors: J. Y. Tan, L. C. Lum, M. G. Lee, S. Mansouri, K. Hapgood, X. D. Chen, M. W. Woo
Abstract:
Folic acid (FA) is known to be an important supplement to prevent neural tube defect (NTD) in pregnant women. Similar to some commercial formulations, sodium bicarbonate solution is used as a solvent for FA. This work uses the antisolvent vapor precipitation (AVP), incorporating ethanol vapor as the convective drying medium in place of air to produce branch-like micro-structure FA particles. Interestingly, the dissolution rate of the resultant particle is 2-3 times better than the particle produce from conventional air drying due to the higher surface area of particles produced. The higher dissolution rate could possibly improve the delivery and absorption of FA in human body. This application could potentially be extended to other commercial products, particularly in less soluble drugs to improve its solubility.Keywords: absorption, antisolvent vapor precipitation, dissolution rate, folic acid
Procedia PDF Downloads 4451780 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 1411779 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG
Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat
Abstract:
Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy
Procedia PDF Downloads 5201778 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 801777 Real Time Multi Person Action Recognition Using Pose Estimates
Authors: Aishrith Rao
Abstract:
Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks
Procedia PDF Downloads 1411776 Simulation of X-Ray Tissue Contrast and Dose Optimisation in Radiological Physics to Improve Medical Imaging Students’ Skills
Authors: Peter J. Riley
Abstract:
Medical Imaging students must understand the roles of Photo-electric Absorption (PE) and Compton Scatter (CS) interactions in patients to enable optimal X-ray imaging in clinical practice. A simulator has been developed that shows relative interaction probabilities, color bars for patient dose from PE, % penetration to the detector, and obscuring CS as Peak Kilovoltage (kVp) changes. Additionally, an anthropomorphic chest X-ray image shows the relative tissue contrasts and overlying CS-fog at that kVp, which determine the detectability of a lesion in the image. A series of interactive exercises with MCQs evaluate the student's understanding; the simulation has improved student perception of the need to acquire "sufficient" rather than maximal contrast to enable patient dose reduction at higher kVp.Keywords: patient dose optimization, radiological physics, simulation, tissue contrast
Procedia PDF Downloads 951775 Building Knowledge Partnership for Collaborative Learning in Higher Education – An On-Line ‘Eplanete’ Knowledge Mediation Platform
Authors: S. K. Ashiquer Rahman
Abstract:
This paper presents a knowledge mediation platform, “ePLANETe Blue” that addresses the challenge of building knowledge partnerships for higher education. The purpose is to present, as an institutional perception, the ‘ePLANETe' idea and functionalities as a practical and pedagogical innovation program contributing to the collaborative learning goals in higher education. In consequence, the set of functionalities now amalgamated in ‘ePLANETe’ can be seen as an investigation of the challenges of “Collaborative Learning Digital Process.” It can exploit the system to facilitate collaborative education, research and student learning in higher education. Moreover, the platform is projected to support the identification of best practices at explicit levels of action and to inspire knowledge interactions in a “virtual community” and thus to advance in deliberation and learning evaluation of higher education through the engagement of collaborative activities of different sorts.Keywords: mediation, collaboration, deliberation, evaluation
Procedia PDF Downloads 1401774 The Effectiveness of the Repositioning Campaign of PKO BP Brand on the Basis of Questionnaire Research
Authors: Danuta Szwajca
Abstract:
Image is a very important intangible asset of a contemporary enterprise, especially, in case of a bank as a public trust institution. A positive, demanded image may effectively distinguish the bank among the competition and build the customer confidence and loyalty. PKO BP is the biggest and largest bank functioning on the Polish financial market. Within the years not a very nice image of the bank has been embedded in the customers’ minds as an old-fashioned, stagnant, resistant to changes institution, what result in the customer loss, and ageing. For this reason, in 2010, the bank launched a campaign of radical image change along with a strategy of branches modernization and improvement of the product offer. The objective of the article is to make an attempt of effectiveness assessment of the brand repositioning campaign that lasted three years. The foundations of the assessment are the results of the questionnaire research concerning the way of bank’s perception before and after the campaign.Keywords: advertising campaign, brand repositioning, image of the bank, repositioning
Procedia PDF Downloads 4231773 Pre-Service EFL Teachers' Perceptions of Written Corrective Feedback in a Wiki-Based Environment
Authors: Mabel Ortiz, Claudio Díaz
Abstract:
This paper explores Chilean pre-service teachers' perceptions about the provision of corrective feedback in a wiki environment during the collaborative writing of an argumentative essay. After conducting a semi-structured interview on 22 participants, the data were processed through the content analysis technique. The results show that students have positive perceptions about corrective feedback, provided through a wiki virtual environment, which in turn facilitates feedback provision and impacts language learning effectively. Some of the positive perceptions about virtual feedback refer to permanent access, efficiency, simultaneous revision and immediacy. It would then be advisable to integrate wiki-based feedback as a methodology for the language classroom and collaborative writing tasks.Keywords: argumentative essay, focused corrective feedback, perception, wiki environment
Procedia PDF Downloads 2921772 Facial Recognition on the Basis of Facial Fragments
Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza
Abstract:
There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.Keywords: face recognition, labeled faces in the wild (LFW) database, random local descriptor (RLD), random features
Procedia PDF Downloads 3601771 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: acoustic features, autonomous robots, feature extraction, terrain classification
Procedia PDF Downloads 3691770 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 1111769 Regularization of Gene Regulatory Networks Perturbed by White Noise
Authors: Ramazan I. Kadiev, Arcady Ponosov
Abstract:
Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities
Procedia PDF Downloads 1941768 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2151767 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand
Authors: Hamed Saremi
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: anfis, dematel, brand, cosmetic product, brand value
Procedia PDF Downloads 4091766 Creating a Virtual Perception for Upper Limb Rehabilitation
Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Arthur Ricardo Deps Miguel Ferreira, John Buchanan, Amarnath Banerjee
Abstract:
This paper describes the development of a virtual-reality system ARWED, which will be used in physical rehabilitation of patients with reduced upper extremity mobility to increase limb Active Range of Motion (AROM). The ARWED system performs a symmetric reflection and real-time mapping of the patient’s healthy limb on to their most affected limb, tapping into the mirror neuron system and facilitating the initial learning phase. Using the ARWED, future experiments will test the extension of the action-observation priming effect linked to the mirror-neuron system on healthy subjects and then stroke patients.Keywords: physical rehabilitation, mirror neuron, virtual reality, stroke therapy
Procedia PDF Downloads 4321765 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset
Authors: Jaiden X. Schraut
Abstract:
Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.Keywords: chest X-ray, deep learning, image segmentation, image classification
Procedia PDF Downloads 1441764 Employee Perception of Corporate Social Responsibility and Its Impact on Organizational Performance: Evidence from the UAE
Authors: Sherine Farouk, Fauzia Jabeen
Abstract:
The purpose of this study is to examine the role played by ethical climate and CSR on organizational performance in public sector organizations. In particular, the research will shed light on the link between formalized ethical procedures and employee responses including corporate social responsibility, and organizational performance among public sector employees. Data was collected from 425 employees working in public sector organizations in Abu Dhabi, the capital of United Arab Emirates. Structural Equation Modeling will be used to test the proposed hypotheses. The paper contributes to the literature by being one of the first to study CSR and ethical climate within a Middle Eastern context, and will offer important implications for theory and practice.Keywords: corporate social responsibility, ethical climate, organizational performance, United Arab Emirates
Procedia PDF Downloads 3441763 Innovation as Entrepreneurial Drives in the Romanian Automotive Industry
Authors: Alina Petronela Negrea, Valentin Cojanu
Abstract:
The article examines the synergy between innovation and entrepreneurship by means of a qualitative research on actors in the automotive industry in the Romanian southern region, Muntenia. The region is of particular interest because most of the industry suppliers are located there, as well as because it gathers the full range of key actors involved in the innovation process. The research design aims (1) to reflect entrepreneurs’ approach to and perception on innovation; (2) to underline forces driving or stifling innovation in the automotive industry; and (3) to evaluate the awareness of the existing knowledge database and the communication channels through which it is transferred within and between innovation networks. Empirical evidence results from triangula¬tion of three data collection methods: statistical data and other publicly available materials; semi - structured inter¬views, and experiential visits. The conclusions emphasize the convergent opinion of the entrepreneurs about the vital role of innovation in their investment plans.Keywords: automotive industry, entrepreneurship, innovation, Romania
Procedia PDF Downloads 5491762 Use of Progressive Feedback for Improving Team Skills and Fair Marking of Group Tasks
Authors: Shaleeza Sohail
Abstract:
Self, and peer evaluations are some of the main components in almost all group assignments and projects in higher education institutes. These evaluations provide students an opportunity to better understand the learning outcomes of the assignment and/or project. A number of online systems have been developed for this purpose that provides automated assessment and feedback of students’ contribution in a group environment based on self and peer evaluations. All these systems lack a progressive aspect of these assessments and feedbacks which is the most crucial factor for ongoing improvement and life-long learning. In addition, a number of assignments and projects are designed in a manner that smaller or initial assessment components lead to a final assignment or project. In such cases, the evaluation and feedback may provide students an insight into their performance as a group member for a particular component after the submission. Ideally, it should also create an opportunity to improve for next assessment component as well. Self and Peer Progressive Assessment and Feedback System encourages students to perform better in the next assessment by providing a comparative analysis of the individual’s contribution score on an ongoing basis. Hence, the student sees the change in their own contribution scores during the complete project based on smaller assessment components. Self-Assessment Factor is calculated as an indicator of how close the self-perception of the student’s own contribution is to the perceived contribution of that student by other members of the group. Peer-Assessment Factor is calculated to compare the perception of one student’s contribution as compared to the average value of the group. Our system also provides a Group Coherence Factor which shows collectively how group members contribute to the final submission. This feedback is provided for students and teachers to visualize the consistency of members’ contribution perceived by its group members. Teachers can use these factors to judge the individual contributions of the group members in the combined tasks and allocate marks/grades accordingly. This factor is shown to students for all groups undertaking same assessment, so the group members can comparatively analyze the efficiency of their group as compared to other groups. Our System provides flexibility to the instructors for generating their own customized criteria for self and peer evaluations based on the requirements of the assignment. Students evaluate their own and other group members’ contributions on the scale from significantly higher to significantly lower. The preliminary testing of the prototype system is done with a set of predefined cases to explicitly show the relation of system feedback factors to the case studies. The results show that such progressive feedback to students can be used to motivate self-improvement and enhanced team skills. The comparative group coherence can promote a better understanding of the group dynamics in order to improve team unity and fair division of team tasks.Keywords: effective group work, improvement of team skills, progressive feedback, self and peer assessment system
Procedia PDF Downloads 1871761 Video Games Technologies Approach for Their Use in the Classroom
Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a set of educational materials based on video games technologies. Essentially these materials correspond to projects developed and under development as bachelor thesis of some Computer Engineering students of the Engineering School. All materials are based on the Unity SDK; integrating some devices such as kinect, leap motion, oculus rift, data gloves and Google cardboard. In detail, we present a virtual reality application for neurosciences students (suitable for neural rehabilitation), and virtual scenes for the Google cardboard, which will be used by the psychology students for phobias treatment. The objective is these materials will be located at a server to be available for all students, in the classroom or in the cloud, considering the use of smartphones has been widely extended between students.Keywords: virtual reality, interactive technologies, video games, educational materials
Procedia PDF Downloads 6571760 A Child with Attention Deficit Hyperactivity Disorder in a Trap of Expectations: About the Golem Effect at School
Authors: Natalia Kajka, Agnieszka Kulik
Abstract:
The aim of the study is to present the results regarding differences in perception of cognitive progress of children with Attention Deficit Hyperactivity Disorder (ADHD) by adults and children themselves. The experiment was attended by 45 children with ADHD, their parents and teachers. The children attended the 3-month metacognitive training. Both children and adults were examined before and after joining this project. In order to show significant differences between the first and second measurement of the test, non-parametric Wilcoxon tests were performed. The analysis showed statistically significant differences in the change of cognitive functioning in children with ADHD participating in metacognitive training, this was also confirmed by the results of the parents' research. There were no significant differences in the teachers' assessment of these children.Keywords: ADHD, executive function, Golem effect metacognitive training
Procedia PDF Downloads 1811759 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process
Authors: Dariush Jafari, Seyed Ali Jafari
Abstract:
The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.Keywords: ANN, biosorption, cadmium, packed-bed, potable water
Procedia PDF Downloads 4301758 A Pragmatic Analysis of Selected Print Media Reports on Insurgency in Nigerian Newspapers
Authors: Aliyu Uthman Abdulkadir
Abstract:
Insurgent reports in Nigeria have become a recurring focus in the media due to the significance of language choices. This paper investigates these reports with the aim of identifying various pragmatic practices and exploring the role of the media in shaping public perception of insurgency. Three Nigerian newspapers The Punch, This Day, and The Guardian were selected for analysis between December 2022 and January 2023. Five media reports were examined to uncover the pragmatic functions embedded in the discourse. The study reveals that the media employ implicit acts such as exposing, sensitizing, informing, castigating, reprimanding, and shaming to depict insurgent activities in the country. The analysis also highlights how the use of presupposed ideologies enhances the delivery and acceptance of information related to insurgent actions. The study concludes that the media's portrayal of insurgency is often biased, as reflected in the data analysis.Keywords: insurgency, pragmatic acts, bias, framing, ideoligies
Procedia PDF Downloads 151757 Umbrella Reinforcement Learning – A Tool for Hard Problems
Authors: Egor E. Nuzhin, Nikolay V. Brilliantov
Abstract:
We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space.Keywords: umbrella sampling, reinforcement learning, policy gradient, dynamic programming
Procedia PDF Downloads 211756 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 104