Search results for: mature industrial zones
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4592

Search results for: mature industrial zones

2582 Impact of Foreign Migration on Innovation in Thailand

Authors: Siriwan Saksiriruthai

Abstract:

This paper reviews and analyzes impact of foreign migration on innovation for Thailand. With the analysis of decades of industrial and economic development, Thailand has attracted investment by providing cheap labor and low cost of production. Foreign migrant substantially contribute to the development by supplying lower wages with low-skilled workers. However, it is revealed that foreign low-skilled labor influx has a negative effect on innovation. Firms concentrate on benefits from low cost of production and are not motivated to invest for innovation. Therefore, with the emerging of new economies where lower wage laborers are offered, Thailand has to promote innovation to maintain economic development sustainability.

Keywords: migration, innovation, Thailand, foreign

Procedia PDF Downloads 376
2581 Mechanical Study Material on Low Environmental Impact

Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche

Abstract:

Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).

Keywords: FAD, porthland, flexural strength, compressive strength, DRX

Procedia PDF Downloads 350
2580 Evaluation of the Spatial Regulation of Hydrogen Sulphide Producing Enzymes in the Placenta during Labour

Authors: F. Saleh, F. Lyall, A. Abdulsid, L. Marks

Abstract:

Background: Labour in human is a complex biological process that involves interactions of neurological, hormonal and inflammatory pathways, with the placenta being a key regulator of these pathways. It is known that uterine contractions and labour pain cause physiological changes in gene expression in maternal and fetal blood, and in placenta during labour. Oxidative and inflammatory stress pathways are implicated in labour and they may cause alteration of placental gene expression. Additionally, in placental tissues, labour increases the expression of genes involved in placental oxidative stress, inflammatory cytokines, angiogenic regulators and apoptosis. Recently, Hydrogen Sulphide (H2S) has been considered as an endogenous gaseous mediator which promotes vasodilation and exhibits cytoprotective anti-inflammatory properties. The endogenous H2S is synthesised predominantly by two enzymes: cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). As the H2S pathway has anti-oxidative and anti-inflammatory characteristics thus, we hypothesised that the expression of CBS and CSE in placental tissues would alter during labour. Methods: CBS and CSE expressions were examined in placentas using western blotting and RT-PCR in inner, middle and outer placental zones in placentas obtained from healthy non labouring women who delivered by caesarian section. These were compared with the equivalent zone of placentas obtained from women who had uncomplicated labour and delivered vaginally. Results: No differences in CBS and CSE mRNA or protein levels were found between the different sites within placentas in either the labour or non-labour group. There were no significant differences in either CBS or CSE expression between the two groups at the inner site and middle site. However, at the outer site there was a highly significant decrease in CBS protein expression in the labour group when compared to the non-labour group (p = 0.002). Conclusion: To the best of author’s knowledge, this is the first report to suggest that, CBS is expressed in a spatial manner within the human placenta. Further work is needed to clarify the precise function and mechanism of this spatial regulation although it is likely that inflammatory pathways regulation is a complex process in which this plays a role.

Keywords: anti-inflammatory, hydrogen sulphide, labour, oxidative stress

Procedia PDF Downloads 240
2579 The Determination of Co, Cd and Pb in Seafoods of Thewet Market, Bangkok to Develop Quality of Life of Consumer

Authors: Chinnawat Satsananan

Abstract:

The amount of heavy metals in our environment has been of great concern because of their toxicity when their concentration is more than the permissible level. These metals enter the environment by different ways such as industrial activities, soil pollution. We have used flame atomic absorption spectrometry technique for determination of the concentration of Co, Cd and Pb in different tissues of five samples of seafoods (mackerel, squid, mussels, scallops and shrimp). The concentrations of Co, Cd and Pb in all examined seafoods were less than the reported literature values (WHO). The results mentioned that the seafoods obtained from Thewet Market were safety to consumption and make the quality of life of people in the community look better.

Keywords: heavy metals, seafood, atomic absorption spectrometry, Bangkok

Procedia PDF Downloads 333
2578 Sustainable Composites for Aircraft Cabin Interior Applications

Authors: Fiorenzo Lenzi, Doris Abt, Besnik Bytyqi

Abstract:

Recent developments in composite materials for the interior cabin market provide more sustainable solutions for industrial applications. One contribution comes from epoxy-based prepregs recently developed to substitute phenolic prepregs in order to reduce the environmental impact of their production process and to eliminate health and safety issues related to their handling. Another example is the use of Mica-based products for improving the fire protection of interior cabin parts. Minerals, such as Mica, can be used as reinforcement in composites to reduce the heat release rate or, more traditionally, to improve the burn-through performance of fuselage and cargo lining components.

Keywords: prepreg, epoxy, Mica, battery protection

Procedia PDF Downloads 81
2577 Visualization of PM₂.₅ Time Series and Correlation Analysis of Cities in Bangladesh

Authors: Asif Zaman, Moinul Islam Zaber, Amin Ahsan Ali

Abstract:

In recent years of industrialization, the South Asian countries are being affected by air pollution due to a severe increase in fine particulate matter 2.5 (PM₂.₅). Among them, Bangladesh is one of the most polluting countries. In this paper, statistical analyses were conducted on the time series of PM₂.₅ from various districts in Bangladesh, mostly around Dhaka city. Research has been conducted on the dynamic interactions and relationships between PM₂.₅ concentrations in different zones. The study is conducted toward understanding the characteristics of PM₂.₅, such as spatial-temporal characterization, correlation of other contributors behind air pollution such as human activities, driving factors and environmental casualties. Clustering on the data gave an insight on the districts groups based on their AQI frequency as representative districts. Seasonality analysis on hourly and monthly frequency found higher concentration of fine particles in nighttime and winter season, respectively. Cross correlation analysis discovered a phenomenon of correlations among cities based on time-lagged series of air particle readings and visualization framework is developed for observing interaction in PM₂.₅ concentrations between cities. Significant time-lagged correlations were discovered between the PM₂.₅ time series in different city groups throughout the country by cross correlation analysis. Additionally, seasonal heatmaps depict that the pooled series correlations are less significant in warmer months, and among cities of greater geographic distance as well as time lag magnitude and direction of the best shifted correlated particulate matter time series among districts change seasonally. The geographic map visualization demonstrates spatial behaviour of air pollution among districts around Dhaka city and the significant effect of wind direction as the vital actor on correlated shifted time series. The visualization framework has multipurpose usage from gathering insight of general and seasonal air quality of Bangladesh to determining the pathway of regional transportation of air pollution.

Keywords: air quality, particles, cross correlation, seasonality

Procedia PDF Downloads 104
2576 Physical and Mechanical Behavior of Compressed Earth Blocks Stabilized with Ca(OH)2 on Sub-Humid Warm Weather

Authors: D. Castillo T., Luis F. Jimenez

Abstract:

The compressed earth blocks (CEBs) constitute an alternative as a constructive element for building homes in regions with high levels of poverty and marginalization. Such is the case of Southeastern Mexico, where the population, predominantly indigene, build their houses with feeble materials like wood and palm, vulnerable to extreme weather in the area, because they do not have the financial resources to acquire concrete blocks. There are several advantages that can provide BTCs compared to traditional vibro-compressed concrete blocks, such as the availability of materials, low manufacturing cost and reduced CO2 emissions to the atmosphere for not be subjected to a burning process. However, to improve its mechanical properties and resistance to adverse weather conditions in terms of humidity and temperature of the sub-humid climate zones, it requires the use of a chemical stabilizer; in this case we chose Ca(OH)2. The stabilization method Eades-Grim was employed, according to ASTM C977-03. This method measures the optimum amount of lime required to stabilize the soil, increasing the pH to 12.4 or higher. The minimum amount of lime required in this experiment was 1% and the maximum was 10%. The employed material was clay unconsolidated low to medium plasticity (CL type according to the Unified Soil Classification System). Based on these results, the CEBs manufacturing process was determined. The obtained blocks were from 10x15x30 cm using a mixture of soil, water and lime in different proportions. Later these blocks were put to dry outdoors and subjected to several physical and mechanical tests, such as compressive strength, absorption and drying shrinkage. The results were compared with the limits established by the Mexican Standard NMX-C-404-ONNCCE-2005 for the construction of housing walls. In this manner an alternative and sustainable material was obtained for the construction of rural households in the region, with better security conditions, comfort and cost.

Keywords: calcium hydroxide, chemical stabilization, compressed earth blocks, sub-humid warm weather

Procedia PDF Downloads 400
2575 Urban Impervious and its Impact on Storm Water Drainage Systems

Authors: Ratul Das, Udit Narayan Das

Abstract:

Surface imperviousness in urban area brings significant changes in storm water drainage systems and some recent studies reveals that the impervious surfaces that passes the storm water runoff directly to drainage systems through storm water collection systems, called directly connected impervious area (DCIA) is an effective parameter rather than total impervious areas (TIA) for computation of surface runoff. In the present study, extension of DCIA and TIA were computed for a small sub-urban area of Agartala, the capital of state Tripura. Total impervious surfaces covering the study area were identified on the existing storm water drainage map from landuse map of the study area in association with field assessments. Also, DCIA assessed through field survey were compared to DCIA computed by empirical relationships provided by other investigators. For the assessment of DCIA in the study area two methods were adopted. First, partitioning the study area into four drainage sub-zones based on average basin slope and laying of existing storm water drainage systems. In the second method, the entire study area was divided into small grids. Each grid or parcel comprised of 20m× 20m area. Total impervious surfaces were delineated from landuse map in association with on-site assessments for efficient determination of DCIA within each sub-area and grid. There was a wide variation in percent connectivity of TIA across each sub-drainage zone and grid. In the present study, total impervious area comprises 36.23% of the study area, in which 21.85% of the total study area is connected to storm water collection systems. Total pervious area (TPA) and others comprise 53.20% and 10.56% of the total area, respectively. TIA recorded by field assessment (36.23%) was considerably higher than that calculated from the available land use map (22%). From the analysis of recoded data, it is observed that the average percentage of connectivity (% DCIA with respect to TIA) is 60.31 %. The analysis also reveals that the observed DCIA lies below the line of optimal impervious surface connectivity for a sub-urban area provided by other investigators and which indicate the probable reason of water logging conditions in many parts of the study area during monsoon period.

Keywords: Drainage, imperviousness, runoff, storm water.

Procedia PDF Downloads 348
2574 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), and Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased % 29 between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32 °C in 1984 and 27-33 °C in 2014. Minimum temperature of agricultural lands was increased 3 °C and reached to 23 °C. In contrast, maximum temperature of A class decreased to 41 °C from 44 °C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2 °C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.

Keywords: census data, landsat, land surface temperature (LST), land use land cover (LULC)

Procedia PDF Downloads 391
2573 Assessing Building Rooftop Potential for Solar Photovoltaic Energy and Rainwater Harvesting: A Sustainable Urban Plan for Atlantis, Western Cape

Authors: Adedayo Adeleke, Dineo Pule

Abstract:

The ongoing load-shedding in most parts of South Africa, combined with climate change causing severe drought conditions in Cape Town, has left electricity consumers seeking alternative sources of power and water. Solar energy, which is abundant in most parts of South Africa and is regarded as a clean and renewable source of energy, allows for the generation of electricity via solar photovoltaic systems. Rainwater harvesting is the collection and storage of rainwater from building rooftops, allowing people without access to water to collect it. The lack of dependable energy and water source must be addressed by shifting to solar energy via solar photovoltaic systems and rainwater harvesting. Before this can be done, the potential of building rooftops must be assessed to determine whether solar energy and rainwater harvesting will be able to meet or significantly contribute to Atlantis industrial areas' electricity and water demands. This research project presents methods and approaches for automatically extracting building rooftops in Atlantis industrial areas and evaluating their potential for solar photovoltaics and rainwater harvesting systems using Light Detection and Ranging (LiDAR) data and aerial imagery. The four objectives were to: (1) identify an optimal method of extracting building rooftops from aerial imagery and LiDAR data; (2) identify a suitable solar radiation model that can provide a global solar radiation estimate of the study area; (3) estimate solar photovoltaic potential overbuilding rooftop; and (4) estimate the amount of rainwater that can be harvested from the building rooftop in the study area. Mapflow, a plugin found in Quantum Geographic Information System(GIS) was used to automatically extract building rooftops using aerial imagery. The mean annual rainfall in Cape Town was obtained from a 29-year rainfall period (1991- 2020) and used to calculate the amount of rainwater that can be harvested from building rooftops. The potential for rainwater harvesting and solar photovoltaic systems was assessed, and it can be concluded that there is potential for these systems but only to supplement the existing resource supply and offer relief in times of drought and load-shedding.

Keywords: roof potential, rainwater harvesting, urban plan, roof extraction

Procedia PDF Downloads 113
2572 Developing Metaverse Initiatives: Insights from a University Case Study

Authors: Jiongbin Liu, William Yeoh, Shang Gao, Xiaoliang Meng, Yuhan Zhu

Abstract:

The metaverse concept has sparked significant interest in both academic and industrial spheres. As educational institutions increasingly adopt this technology, understanding its implementation becomes crucial. In response, we conducted a comprehensive case study at a large university, systematically analyzing the nine stages of metaverse development initiatives. Our study unveiled critical insights into the planning, assessment, and execution processes, offering invaluable guidance for stakeholders. The findings highlight both the opportunities for enhanced learning experiences and the challenges related to technological integration and social interaction in higher education.

Keywords: metaverse, metaverse development framework, higher education, case study

Procedia PDF Downloads 39
2571 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 85
2570 A Review of Geotextile Tube with the Evaluation of Dewatering of High Water Content Sludge

Authors: Rajul Dwivedi, Mahesh Patel

Abstract:

Due to the scarcity of natural resources, common rivers and coastal structures are too expensive to build and maintain. One such method is to use geotextile tube technology to build marine protected structures, such as dams, canals, jetties, free breakwaters, etc. Geotextile tube technology has evolved from other construction technologies and improved into a more efficient solution. The coastal erosion problems have been exacerbated by the development of infrastructure associated with the expansion of urban and industrial activities. Resources and harbours and the removal of sea sand for use in this erosion event will accelerate the erosion of the sea. but in the coastal areas, due to depletion of sand or beach sand

Keywords: geotextile tubes, slurry, dewatering, response surface

Procedia PDF Downloads 139
2569 Private Technology Parks–The New Engine for Innovation Development in Russia

Authors: K. Volkonitskaya, S. Lyapina

Abstract:

According to the National Monitoring Centre of innovation infrastructure, scientific and technical activities and regional innovation systems by December 2014. 166 technology parks were established in Russia. Comparative analysis of technological parks performance in Russia, the USA, Israel and the European Union countries revealed significant reduction of key performance indicators in Russian innovation infrastructure institutes. The largest deviations were determined in the following indicators: new products and services launched, number of companies and jobs, amount of venture capital invested. Lower performance indicators of Russian technology parks can be partly explained by slack demand for national high-tech products and services, lack of qualified specialists in the sphere of innovation management and insufficient cooperation between different innovation infrastructure institutes. In spite of all constraints in innovation segment of Russian economy in 2010-2012 private investors for the first time proceeded to finance building of technological parks. The general purpose of the research is to answer two questions: why despite the significant investment risks private investors continue to implement such comprehensive infrastructure projects in Russia and is business model of private technological park more efficient than strategies of state innovation infrastructure institutes? The goal of the research was achieved by analyzing business models of private technological parks in Moscow, Kaliningrad, Astrakhan and Kazan. The research was conducted in two stages: the on-line survey of key performance indicators of private and state Russian technological parks and in-depth interviews with top managers and investors, who have already build private technological parks in by 2014 or are going to complete investment stage in 2014-2016. The results anticipated are intended to identify the reasons of efficient and inefficient technological parks performance. Furthermore, recommendations for improving the efficiency of state technological and industrial parks were formulated. Particularly, the recommendations affect the following issues: networking with other infrastructural institutes, services and infrastructure provided, mechanisms of public-private partnership and investment attraction. In general intensive study of private technological parks performance and development of effective mechanisms of state support can have a positive impact on the growth rates of the number of Russian technological, industrial and science parks.

Keywords: innovation development, innovation infrastructure, private technology park, public-private partnership

Procedia PDF Downloads 435
2568 Academic Knowledge Transfer Units in the Western Balkans: Building Service Capacity and Shaping the Business Model

Authors: Andrea Bikfalvi, Josep Llach, Ferran Lazaro, Bojan Jovanovski

Abstract:

Due to the continuous need to foster university-business cooperation in both developed and developing countries, some higher education institutions face the challenge of designing, piloting, operating, and consolidating knowledge and technology transfer units. University-business cooperation has different maturity stages worldwide, with some higher education institutions excelling in these practices, but with lots of others that could be qualified as intermediate, or even some situated at the very beginning of their knowledge transfer adventure. These latter face the imminent necessity to formally create the technology transfer unit and to draw its roadmap. The complexity of this operation is due to various aspects that need to align and coordinate, including a major change in mission, vision, structure, priorities, and operations. Qualitative in approach, this study presents 5 case studies, consisting of higher education institutions located in the Western Balkans – 2 in Albania, 2 in Bosnia and Herzegovina, 1 in Montenegro- fully immersed in the entrepreneurial journey of creating their knowledge and technology transfer unit. The empirical evidence is developed in a pan-European project, illustratively called KnowHub (reconnecting universities and enterprises to unleash regional innovation and entrepreneurial activity), which is being implemented in three countries and has resulted in at least 15 pilot cooperation agreements between academia and business. Based on a peer-mentoring approach including more experimented and more mature technology transfer models of European partners located in Spain, Finland, and Austria, a series of initial lessons learned are already available. The findings show that each unit developed its tailor-made approach to engage with internal and external stakeholders, offer value to the academic staff, students, as well as business partners. The latest technology underpinning KnowHub services and institutional commitment are found to be key success factors. Although specific strategies and plans differ, they are based on a general strategy jointly developed and based on common tools and methods of strategic planning and business modelling. The main output consists of providing good practice for designing, piloting, and initial operations of units aiming to fully valorise knowledge and expertise available in academia. Policymakers can also find valuable hints on key aspects considered vital for initial operations. The value of this contribution is its focus on the intersection of three perspectives (service orientation, organisational innovation, business model) since previous research has only relied on a single topic or dual approaches, most frequently in the business context and less frequently in higher education.

Keywords: business model, capacity building, entrepreneurial education, knowledge transfer

Procedia PDF Downloads 139
2567 The Feasibility and Usability of Antennas Silence Zone for Localization and Path Finding

Authors: S. Malebary, W. Xu

Abstract:

Antennas are important components that enable transmitting and receiving signals in mid-air (wireless). The radiation pattern of omni-directional (i.e., dipole) antennas, reflects the variation of power radiated by an antenna as a function of direction when transmitting. As the performance of the antenna is the same in transmitting and receiving, it also reflects the sensitivity of the antenna in different directions when receiving. The main observation when dealing with omni-directional antennas, regardless the application, is they equally radiate power in all directions in reference to Equivalent Isotropically Radiated Power (EIRP). Disseminating radio frequency signals in an omni-directional manner form a doughnut-shape-field with a cone in the middle of the elevation plane (when mounted vertically). In this paper, we investigate the existence of this physical phenomena namely silence cone zone (the zone where radiated power is nulled). First, we overview antenna types and properties that have the major impact on the shape of the electromagnetic field. Then we model various off the shelf dipoles in Matlab based on antennas’ features (dimensions, gain, operating frequency, … etc.) and compare the resulting radiation patterns. After that, we validate the existence of the null zone in Omni-directional antennas by conducting experiments and generating waveforms (using USRP1 and USRP2) at various frequencies using different types of antennas and gains in indoor/outdoor. We capture the generated waveforms around antennas' null zone in the reactive, near, and far field with a spectrum analyzer mounted on a drone, using various off the shelf antennas. We analyze the captured signals in RF-Explorer and plot the impact on received power and signal amplitude inside and around the null zone. Finally, it is concluded from evaluation and measurements the existence of null zones in Omni-directional antennas which we plan on extending this work in the near future to investigate the usability of the null zone for various applications such as localization and path finding.

Keywords: antennas, amplitude, field regions, frequency, FSPL, omni-directional, radiation pattern, RSSI, silence zone cone

Procedia PDF Downloads 301
2566 The Use of Remotely Sensed Data to Model Habitat Selections of Pileated Woodpeckers (Dryocopus pileatus) in Fragmented Landscapes

Authors: Ruijia Hu, Susanna T.Y. Tong

Abstract:

Light detection and ranging (LiDAR) and four-channel red, green, blue, and near-infrared (RGBI) remote sensed imageries allow an accurate quantification and contiguous measurement of vegetation characteristics and forest structures. This information facilitates the generation of habitat structure variables for forest species distribution modelling. However, applications of remote sensing data, especially the combination of structural and spectral information, to support evidence-based decisions in forest managements and conservation practices at local scale are not widely adopted. In this study, we examined the habitat requirements of pileated woodpecker (Dryocopus pileatus) (PW) in Hamilton County, Ohio, using ecologically relevant forest structural and vegetation characteristics derived from LiDAR and RGBI data. We hypothesized that the habitat of PW is shaped by vegetation characteristics that are directly associated with the availability of food, hiding and nesting resources, the spatial arrangement of habitat patches within home range, as well as proximity to water sources. We used 186 PW presence or absence locations to model their presence and absence in generalized additive model (GAM) at two scales, representing foraging and home range size, respectively. The results confirm PW’s preference for tall and large mature stands with structural complexity, typical of late-successional or old-growth forests. Besides, the crown size of dead trees shows a positive relationship with PW occurrence, therefore indicating the importance of declining living trees or early-stage dead trees within PW home range. These locations are preferred by PW for nest cavity excavation as it attempts to balance the ease of excavation and tree security. In addition, we found that PW can adjust its travel distance to the nearest water resource, suggesting that habitat fragmentation can have certain impacts on PW. Based on our findings, we recommend that forest managers should use different priorities to manage nesting, roosting, and feeding habitats. Particularly, when devising forest management and hazard tree removal plans, one needs to consider retaining enough cavity trees within high-quality PW habitat. By mapping PW habitat suitability for the study area, we highlight the importance of riparian corridor in facilitating PW to adjust to the fragmented urban landscape. Indeed, habitat improvement for PW in the study area could be achieved by conserving riparian corridors and promoting riparian forest succession along major rivers in Hamilton County.

Keywords: deadwood detection, generalized additive model, individual tree crown delineation, LiDAR, pileated woodpecker, RGBI aerial imagery, species distribution models

Procedia PDF Downloads 51
2565 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 524
2564 The Impact of Perceived Banking Service Quality on Customer Satisfaction

Authors: Muhammad Waqas

Abstract:

In this competitive environment, organizations in the service sector and industrial sector are trying their best to win the loyalty of their customers by providing superior quality services and innovative products to remain competitive in the market. The objective of this study is to focus on the concept that public dealing and tripping of electricity have a significant impact on customer satisfaction. This study is focused on the banking sector. It is concluded that quality in service sectors strongly depends on employees' commitment to the organization for providing superior services to the customers to enhance customers' satisfaction.

Keywords: customer complaints, banking sector, customer satisfaction, Islamic banking

Procedia PDF Downloads 86
2563 Genetic Diversity Analysis of Pearl Millet (Pennisetum glaucum [L. R. Rr.]) Accessions from Northwestern Nigeria

Authors: Sa’adu Mafara Abubakar, Muhammad Nuraddeen Danjuma, Adewole Tomiwa Adetunji, Richard Mundembe, Salisu Mohammed, Francis Bayo Lewu, Joseph I. Kiok

Abstract:

Pearl millet is the most drought tolerant of all domesticated cereals, is cultivated extensively to feed millions of people who mainly live in hash agroclimatic zones. It serves as a major source of food for more than 40 million smallholder farmers living in the marginal agricultural lands of Northern Nigeria. Pearl millet grain is more nutritious than other cereals like maize, is also a principal source of energy, protein, vitamins, and minerals for millions of poorest people in the regions where it is cultivated. Pearl millet has recorded relatively little research attention compared with other crops and no sufficient work has analyzed its genetic diversity in north-western Nigeria. Therefore, this study was undertaken with the objectives to analyze the genetic diversity of pearl millet accessions using SSR marker and to analyze the extent of evolutionary relationship among pearl millet accessions at the molecular level. The result of the present study confirmed diversity among accessions of pearl millet in the study area. Simple Sequence Repeats (SSR) markers were used for genetic analysis and evolutionary relationship of the accessions of pearl millet. To analyze the level of genetic diversity, 8 polymorphic SSR markers were used to screen 69 accessions collected based on three maturity periods. SSR markers result reveal relationships among the accessions in terms of genetic similarities, evolutionary and ancestral origin, it also reveals a total of 53 alleles recorded with 8 microsatellites and an average of 6.875 per microsatellite, the range was from 3 to 9 alleles in PSMP2248 and PSMP2080 respectively. Moreover, both the factorial analysis and the dendrogram of phylogeny tree grouping patterns and cluster analysis were almost in agreement with each other that diversity is not clustering according to geographical patterns but, according to similarity, the result showed maximum similarity among clusters with few numbers of accessions. It has been recommended that other molecular markers should be tested in the same study area.

Keywords: pearl millet, genetic diversity, simple sequence repeat (SSR)

Procedia PDF Downloads 268
2562 Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing

Authors: Mehdi Behbahani, Sebastian Rible, Charles Moulinec, Yvan Fournier, Mike Nicolai, Paolo Crosetto

Abstract:

Computational Fluid Dynamics blood-flow simulations are increasingly used to develop and validate blood-contacting medical devices. This study shows that numerical simulations can provide additional and accurate estimates of relevant hemodynamic indicators (e.g., recirculation zones or wall shear stresses), which may be difficult and expensive to obtain from in-vivo or in-vitro experiments. The most recent FDA (Food and Drug Administration) benchmark consisted of a simplified centrifugal blood pump model that contains fluid flow features as they are commonly found in these devices with a clear focus on highly turbulent phenomena. The FDA centrifugal blood pump study is composed of six test cases with different volumetric flow rates ranging from 2.5 to 7.0 liters per minute, pump speeds, and Reynolds numbers ranging from 210,000 to 293,000. Within the frame of this study different turbulence models were tested including RANS models, e.g. k-omega, k-epsilon and a Reynolds Stress Model (RSM) and, LES. The partitioners Hilbert, METIS, ParMETIS and SCOTCH were used to create an unstructured mesh of 76 million elements and compared in their efficiency. Computations were performed on the JUQUEEN BG/Q architecture applying the highly parallel flow solver Code SATURNE and typically using 32768 or more processors in parallel. Visualisations were performed by means of PARAVIEW. Different turbulence models including all six flow situations could be successfully analysed and validated against analytical considerations and from comparison to other data-bases. It showed that an RSM represents an appropriate choice with respect to modeling high-Reynolds number flow cases. Especially, the Rij-SSG (Speziale, Sarkar, Gatzki) variant turned out to be a good approach. Visualisation of complex flow features could be obtained and the flow situation inside the pump could be characterized.

Keywords: blood flow, centrifugal blood pump, high performance computing, scalability, turbulence

Procedia PDF Downloads 381
2561 Processes and Application of Casting Simulation and Its Software’s

Authors: Surinder Pal, Ajay Gupta, Johny Khajuria

Abstract:

Casting simulation helps visualize mold filling and casting solidification; predict related defects like cold shut, shrinkage porosity and hard spots; and optimize the casting design to achieve the desired quality with high yield. Flow and solidification of molten metals are, however, a very complex phenomenon that is difficult to simulate correctly by conventional computational techniques, especially when the part geometry is intricate and the required inputs (like thermo-physical properties and heat transfer coefficients) are not available. Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mockup of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome. The all casting simulation software has own requirements, like magma cast has only best for crack simulation. The latest generation software Auto CAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feed aids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. IIT Bombay has developed a set of applications for the foundry industry to improve casting yield and quality. Casting simulation is a fast and efficient solution for process for advanced tool which is the result of more than 20 years of collaboration with major industrial partners and academic institutions around the world. In this paper the process of casting simulation is studied.

Keywords: casting simulation software’s, simulation technique’s, casting simulation, processes

Procedia PDF Downloads 474
2560 Understanding the Notion between Resiliency and Recovery through a Spatial-Temporal Analysis of Section 404 Wetland Alteration Permits before and after Hurricane Ike

Authors: Md Y. Reja, Samuel D. Brody, Wesley E. Highfield, Galen D. Newman

Abstract:

Historically, wetlands in the United States have been lost due to agriculture, anthropogenic activities, and rapid urbanization along the coast. Such losses of wetlands have resulted in high flooding risk for coastal communities over the period of time. In addition, alteration of wetlands via the Section 404 Clean Water Act permits can increase the flooding risk to future hurricane events, as the cumulative impact of this program is poorly understood and under-accounted. Further, recovery after hurricane events is acting as an encouragement for new development and reconstruction activities by converting wetlands under the wetland alteration permitting program. This study investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to absorb the impacts of future storm events. Specifically, this work explores how and to what extent wetlands are being affected by the federal permitting program post-Hurricane Ike in 2008. Wetland alteration patterns are examined across three counties (Harris, Galveston, and Chambers County) along the Texas Gulf Coast over a 10-year time period, from 2004-2013 (five years before and after Hurricane Ike) by conducting descriptive spatial analyses. Results indicate that after Hurricane Ike, the number of permits substantially increased in Harris and Chambers County. The vast majority of individual and nationwide type permits were issued within the 100-year floodplain, storm surge zones, and areas damaged by Ike flooding, suggesting that recovery after the hurricane is compromising the ecological resiliency on which coastal communities depend. The authors expect that the findings of this study can increase awareness to policy makers and hazard mitigation planners regarding how to manage wetlands during a long-term recovery process to maintain their natural functions for future flood mitigation.

Keywords: ecological resiliency, Hurricane Ike, recovery, Section 404 Permitting, wetland alteration

Procedia PDF Downloads 249
2559 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach

Authors: Joseph C. Chen

Abstract:

Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.

Keywords: DMAIC, machine vision system, process capability, Taguchi Parameter Design

Procedia PDF Downloads 435
2558 Geospatial Analysis for Predicting Sinkhole Susceptibility in Greene County, Missouri

Authors: Shishay Kidanu, Abdullah Alhaj

Abstract:

Sinkholes in the karst terrain of Greene County, Missouri, pose significant geohazards, imposing challenges on construction and infrastructure development, with potential threats to lives and property. To address these issues, understanding the influencing factors and modeling sinkhole susceptibility is crucial for effective mitigation through strategic changes in land use planning and practices. This study utilizes geographic information system (GIS) software to collect and process diverse data, including topographic, geologic, hydrogeologic, and anthropogenic information. Nine key sinkhole influencing factors, ranging from slope characteristics to proximity to geological structures, were carefully analyzed. The Frequency Ratio method establishes relationships between attribute classes of these factors and sinkhole events, deriving class weights to indicate their relative importance. Weighted integration of these factors is accomplished using the Analytic Hierarchy Process (AHP) and the Weighted Linear Combination (WLC) method in a GIS environment, resulting in a comprehensive sinkhole susceptibility index (SSI) model for the study area. Employing Jenk's natural break classifier method, the SSI values are categorized into five distinct sinkhole susceptibility zones: very low, low, moderate, high, and very high. Validation of the model, conducted through the Area Under Curve (AUC) and Sinkhole Density Index (SDI) methods, demonstrates a robust correlation with sinkhole inventory data. The prediction rate curve yields an AUC value of 74%, indicating a 74% validation accuracy. The SDI result further supports the success of the sinkhole susceptibility model. This model offers reliable predictions for the future distribution of sinkholes, providing valuable insights for planners and engineers in the formulation of development plans and land-use strategies. Its application extends to enhancing preparedness and minimizing the impact of sinkhole-related geohazards on both infrastructure and the community.

Keywords: sinkhole, GIS, analytical hierarchy process, frequency ratio, susceptibility, Missouri

Procedia PDF Downloads 73
2557 Insight into Localized Fertilizer Placement in Major Cereal Crops

Authors: Solomon Yokamo, Dianjun Lu, Xiaoqin Chen, Huoyan Wang

Abstract:

The current ‘high input-high output’ nutrient management model based on homogenous spreading over the entire soil surface remains a key challenge in China’s farming systems, leading to low fertilizer use efficiency and environmental pollution. Localized placement of fertilizer (LPF) to crop root zones has been proposed as a viable approach to boost crop production while protecting environmental pollution. To assess the potential benefits of LPF on three major crops—wheat, rice, and maize—a comprehensive meta-analysis was conducted, encompassing 85 field studies published from 2002-2023. We further validated the practicability and feasibility of one-time root zone N management based on LPF for the three field crops. The meta-analysis revealed that LPF significantly increased the yields of the selected crops (13.62%) and nitrogen recovery efficiency (REN) (33.09%) while reducing cumulative nitrous oxide (N₂O) emission (17.37%) and ammonia (NH₃) volatilization (60.14%) compared to the conventional surface application (CSA). Higher grain yield and REN were achieved with an optimal fertilization depth (FD) of 5-15 cm, moderate N rates, combined NPK application, one-time deep fertilization, and coarse-textured and slightly acidic soils. Field validation experiments showed that localized one-time root zone N management without topdressing increased maize (6.2%), rice (34.6%), and wheat (2.9%) yields while saving N fertilizer (3%) and also increased the net economic benefits (23.71%) compared to CSA. A soil incubation study further proved the potential of LPF to enhance the retention and availability of mineral N in the root zone over an extended period. Thus, LPF could be an important fertilizer management strategy and should be extended to other less-developed and developing regions to win the triple benefit of food security, environmental quality, and economic gains.

Keywords: grain yield, LPF, NH₃ volatilization, N₂O emission, N recovery efficiency

Procedia PDF Downloads 16
2556 Contextual Meaning of Work and its Sociological Significance among the Yoruba People in Nigeria

Authors: Aroge Stephen Talabi

Abstract:

Work is a term that appears to be very common in usage and occurrence the world over. The meanings attached to it and what it implies equally appears to be that common and somewhat similar in description by individuals and groups as derivatives of their contexts. Work is generally seen as the exertion of efforts and the application of knowledge and skills to achieve different purposes comprising of earning a living, making money, prestige, achievement, recognition, companionship and other satisfactions. The paper examined the general meanings of work from the perspectives of various religions. It situated these meanings by drawing on the sociological significance of work among the Yoruba. It established work as social control for a reorientation in peoples approach to work. The Yoruba people of the Western Nigeria share, to a great extent, in common conceptualization and application of work as they believe and understand that their individual and community existence and living are contingent on work participation. The contextual meaning and sociological significance of work as investigated in this paper show that the Yorubas concept of work is daily applied variously in both their material and non-material cultural undertakings to influence individual and group for effective participation in productive ventures for overall social well-being. The Yoruba use all forms of training method which could be adopted by adult educators as pathways to increase individual’s work participation and to improve productivity in work organizations.The paper found out that in the Yoruba socio cultural milieu, the meanings, conceptions and the importance attached to work are used as method of inculcating in members of society the spirit of commitment and hard-work and the advantages thereof. Yoruba contexts of work are geared towards enhancement of commitment, diligence and improved productivity on-the-job behaviour. The paper, therefore, submits that using the Yoruba’s conceptions of work could enhance commitment on the parts of all those engaged in production of goods and services. The paper also suggests that the Yoruba principle and perception and application of work could be used as one of the training techniques in industrial education, which is a major aspect of adult education programmes for inculcating ethics in the workplace. Thus, effort should be made to embrace the Yoruba conception and tenet of work by all stakeholders such as the workers, group (Union), managers and the society at large. Such principles and tenet of work should be included in industrial education curriculum.

Keywords: work, contextual meaning, sociological significance, Yoruba-people, social milieu, productivity

Procedia PDF Downloads 440
2555 Effects of Effort and Water Quality on Productivity (CPUE) of Hampal (Hampala macrolepidota) Resources in Jatiluhur Dam, West Java

Authors: Ririn Marinasari, S. Pi

Abstract:

Hampal (Hampala macrolepidota) is one of Citarum river indigenous fishes that still find in Jatiluhur dam. IUCN at 2013 said that hampal listed on redlist species category, this species was rare in Jatiluhur dam. This species more and more decreasing because change of habitats characteristic such as water quality and fishing effort. This study aims to determine and identify the influence of fishing effort and the quality of water on the productivity of fish resources hampal (Hampala macrolepidota) in Jatiluhur. The study was conducted from October to November 2013. Zones of research include lacustrine zone, transition and Riverin. Hampal fish productivity value computed by Hampal’s CPUE values. The results showed that fish MSY hampal obtained from surplus production model of Schaefer is equal to 0.2045 tons / quarterly. In the years 2011-2012 have occurred over fishing in 2013 while still under fishing. Total catches have exceeded the MSY during the year 2011 and the third quarterly of 2012 tons of fish that exceed 0.2045 hampal. The rate of utilization of fish resources hampal is equal to 80% of MSY or equal to the allowable catch (Total Allowable Catch) for fish in Jatiluhur hampal based Schaefer surplus production theory. Fishing effort, water quality parameters such as DO, turbidity and negatively correlated sulfide as H2S, while the temperature and pH positively correlated to productivity or unit catches fish hampal efforts in quarterly time series in the period 2011-2013. Shows that the higher fishing effort, DO, turbidity and sulfide in H2S and diminishing the temperature and pH of the productivity decreases. Variables that affect the productivity of fishing hampal only H2S only factor beta coefficient -0.834 which indicates a negative effect. It can be caused by H2S levels are toxic and have already exceeded the quality standard, while for other water quality parameters are still below the maximum standards allowed in the waters. Result of the study can be a reference of fishing regulation for hampal conservation in Jatiluhur dam.

Keywords: effort, hampal, productivity, water quality

Procedia PDF Downloads 298
2554 Development of Technologies for Biotransformation of Aquatic Biological Resources for the Production of Functional, Specialized, Therapeutic, Preventive, and Microbiological Products

Authors: Kira Rysakova, Vitaly Novikov

Abstract:

An improved method of obtaining enzymatic collagen hydrolysate from the tissues of marine hydrobionts is proposed, which allows to obtain hydrolysate without pre-isolation of pure collagen. The method can be used to isolate enzymatic collagen hydrolysate from the waste of industrial processing of Red King crab and non-traditional objects - marine holothurias. Comparative analysis of collagen hydrolysates has shown the possibility of their use in a number of nutrient media, but this requires additional optimization of their composition and biological tests on wide sets of test strains of microorganisms.

Keywords: collagen hydrolysate, marine hydrobionts, red king crab, marine holothurias, enzymes, exclusive HPLC

Procedia PDF Downloads 167
2553 Inner Quality Parameters of Rapeseed (Brassica napus) Populations in Different Sowing Technology Models

Authors: É. Vincze

Abstract:

Demand on plant oils has increased to an enormous extent that is due to the change of human nutrition habits on the one hand, while on the other hand to the increase of raw material demand of some industrial sectors, just as to the increase of biofuel production. Besides the determining importance of sunflower in Hungary the production area, just as in part the average yield amount of rapeseed has increased among the produced oil crops. The variety/hybrid palette has changed significantly during the past decade. The available varieties’/hybrids’ palette has been extended to a significant extent. It is agreed that rapeseed production demands professionalism and local experience. Technological elements are successive; high yield amounts cannot be produced without system-based approach. The aim of the present work was to execute the complex study of one of the most critical production technology element of rapeseed production, that was sowing technology. Several sowing technology elements are studied in this research project that are the following: biological basis (the hybrid Arkaso is studied in this regard), sowing time (sowing time treatments were set so that they represent the wide period used in industrial practice: early, optimal and late sowing time) plant density (in this regard reaction of rare, optimal and too dense populations) were modelled. The multifactorial experimental system enables the single and complex evaluation of rapeseed sowing technology elements, just as their modelling using experimental result data. Yield quality and quantity have been determined as well in the present experiment, just as the interactions between these factors. The experiment was set up in four replications at the Látókép Plant Production Research Site of the University of Debrecen. Two different sowing times were sown in the first experimental year (2014), while three in the second (2015). Three different plant densities were set in both years: 200, 350 and 500 thousand plants ha-1. Uniform nutrient supply and a row spacing of 45 cm were applied. Winter wheat was used as pre-crop. Plant physiological measurements were executed in the populations of the Arkaso rapeseed hybrid that were: relative chlorophyll content analysis (SPAD) and leaf area index (LAI) measurement. Relative chlorophyll content (SPAD) and leaf area index (LAI) were monitored in 7 different measurement times.

Keywords: inner quality, plant density, rapeseed, sowing time

Procedia PDF Downloads 200