Search results for: linguistic capabilities
113 Understanding Beginning Writers' Narrative Writing with a Multidimensional Assessment Approach
Authors: Huijing Wen, Daibao Guo
Abstract:
Writing is thought to be the most complex facet of language arts. Assessing writing is difficult and subjective, and there are few scientifically validated assessments exist. Research has proposed evaluating writing using a multidimensional approach, including both qualitative and quantitative measures of handwriting, spelling and prose. Given that narrative writing has historically been a staple of literacy instruction in primary grades and is one of the three major genres Common Core State Standards required students to acquire starting in kindergarten, it is essential for teachers to understand how to measure beginning writers writing development and sources of writing difficulties through narrative writing. Guided by the theoretical models of early written expression and using empirical data, this study examines ways teachers can enact a comprehensive approach to understanding beginning writer’s narrative writing through three writing rubrics developed for a Curriculum-based Measurement (CBM). The goal is to help classroom teachers structure a framework for assessing early writing in primary classrooms. Participants in this study included 380 first-grade students from 50 classrooms in 13 schools in three school districts in a Mid-Atlantic state. Three writing tests were used to assess first graders’ writing skills in relation to both transcription (i.e., handwriting fluency and spelling tests) and translational skills (i.e., a narrative prompt). First graders were asked to respond to a narrative prompt in 20 minutes. Grounded in theoretical models of earlier expression and empirical evidence of key contributors to early writing, all written samples to the narrative prompt were coded three ways for different dimensions of writing: length, quality, and genre elements. To measure the quality of the narrative writing, a traditional holistic rating rubric was developed by the researchers based on the CCSS and the general traits of good writing. Students' genre knowledge was measured by using a separate analytic rubric for narrative writing. Findings showed that first-graders had emerging and limited transcriptional and translational skills with a nascent knowledge of genre conventions. The findings of the study provided support for the Not-So-Simple View of Writing in that fluent written expression, measured by length and other important linguistic resources measured by the overall quality and genre knowledge rubrics, are fundamental in early writing development. Our study echoed previous research findings on children's narrative development. The study has practical classroom application as it informs writing instruction and assessment. It offered practical guidelines for classroom instruction by providing teachers with a better understanding of first graders' narrative writing skills and knowledge of genre conventions. Understanding students’ narrative writing provides teachers with more insights into specific strategies students might use during writing and their understanding of good narrative writing. Additionally, it is important for teachers to differentiate writing instruction given the individual differences shown by our multiple writing measures. Overall, the study shed light on beginning writers’ narrative writing, indicating the complexity of early writing development.Keywords: writing assessment, early writing, beginning writers, transcriptional skills, translational skills, primary grades, simple view of writing, writing rubrics, curriculum-based measurement
Procedia PDF Downloads 77112 Exploration of Barriers and Challenges to Innovation Process for SMEs: Possibilities to Promote Cooperation Between Scientific and Business Institutions to Address it
Authors: Indre Brazauskaite, Vilte Auruskeviciene
Abstract:
Significance of the study is outlined through current strategic management challenges faced by SMEs. First, innovation is recognized as competitive advantage in the market, having ever changing market conditions. It is of constant interest from both practitioners and academics to capture and capitalize on business opportunities or mitigate the foreseen risks. Secondly, it is recognized that integrated system is needed for proper implementation of innovation process, especially during the period of business incubation, associated with relatively high risks of new product failure. Finally, ability to successful commercialize innovations leads to tangible business results that allow to grow organizations further. This is particularly relevant to SMEs due to limited structures, resources, or capabilities. Cooperation between scientific and business institutions could be a tool of mutual interest to observe, address, and further develop innovations during the incubation period, which is the most demanding and challenging during the innovation process. Material aims to address the following problematics: i) indicate the major barriers and challenges in innovation process that SMEs are facing, ii) outline the possibilities for these barriers and challenges to be addressed by cooperation between scientific and business institutions. Basis for this research is stage-by-stage integrated innovation management process which presents existing challenges and needed aid in operational decision making. The stage-by-stage innovation management process exploration highlights relevant research opportunities that have high practical relevance in the field. It is expected to reveal the possibility for business incubation programs that could combine interest from both – practices and academia. Methodology. Scientific meta-analysis of to-date scientific literature that explores innovation process. Research model is built on the combination of stage-gate model and lean six sigma approach. It outlines the following steps: i) pre-incubation (discovery and screening), ii) incubation (scoping, planning, development, and testing), and iii) post-incubation (launch and commercialization) periods. Empirical quantitative research is conducted to address barriers and challenges related to innovation process among SMEs that limits innovations from successful launch and commercialization and allows to identify potential areas for cooperation between scientific and business institutions. Research sample, high level decision makers representing trading SMEs, are approached with structured survey based on the research model to investigate the challenges associated with each of the innovation management step. Expected findings. First, the current business challenges in the innovation process are revealed. It will outline strengths and weaknesses of innovation management practices and systems across SMEs. Secondly, it will present material for relevant business case investigation for scholars to serve as future research directions. It will contribute to a better understanding of quality innovation management systems. Third, it will contribute to the understanding the need for business incubation systems for mutual contribution from practices and academia. It can increase relevance and adaptation of business research.Keywords: cooperation between scientific and business institutions, innovation barriers and challenges, innovation measure, innovation process, SMEs
Procedia PDF Downloads 151111 Cyber-Med: Practical Detection Methodology of Cyber-Attacks Aimed at Medical Devices Eco-Systems
Authors: Nir Nissim, Erez Shalom, Tomer Lancewiki, Yuval Elovici, Yuval Shahar
Abstract:
Background: A Medical Device (MD) is an instrument, machine, implant, or similar device that includes a component intended for the purpose of the diagnosis, cure, treatment, or prevention of disease in humans or animals. Medical devices play increasingly important roles in health services eco-systems, including: (1) Patient Diagnostics and Monitoring; Medical Treatment and Surgery; and Patient Life Support Devices and Stabilizers. MDs are part of the medical device eco-system and are connected to the network, sending vital information to the internal medical information systems of medical centers that manage this data. Wireless components (e.g. Wi-Fi) are often embedded within medical devices, enabling doctors and technicians to control and configure them remotely. All these functionalities, roles, and uses of MDs make them attractive targets of cyber-attacks launched for many malicious goals; this trend is likely to significantly increase over the next several years, with increased awareness regarding MD vulnerabilities, the enhancement of potential attackers’ skills, and expanded use of medical devices. Significance: We propose to develop and implement Cyber-Med, a unique collaborative project of Ben-Gurion University of the Negev and the Clalit Health Services Health Maintenance Organization. Cyber-Med focuses on the development of a comprehensive detection framework that relies on a critical attack repository that we aim to create. Cyber-Med will allow researchers and companies to better understand the vulnerabilities and attacks associated with medical devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The Cyber-Med detection framework will consist of two independent, but complementary detection approaches: one for known attacks, and the other for unknown attacks. These modules incorporate novel ideas and algorithms inspired by our team's domains of expertise, including cyber security, biomedical informatics, and advanced machine learning, and temporal data mining techniques. The establishment and maintenance of Cyber-Med’s up-to-date attack repository will strengthen the capabilities of Cyber-Med’s detection framework. Major Findings: Based on our initial survey, we have already found more than 15 types of vulnerabilities and possible attacks aimed at MDs and their eco-system. Many of these attacks target individual patients who use devices such pacemakers and insulin pumps. In addition, such attacks are also aimed at MDs that are widely used by medical centers such as MRIs, CTs, and dialysis engines; the information systems that store patient information; protocols such as DICOM; standards such as HL7; and medical information systems such as PACS. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched against MDs. Very little research has been conducted in order to protect these devices from cyber-attacks, since most of the development and engineering efforts are aimed at the devices’ core medical functionality, the contribution to patients’ healthcare, and the business aspects associated with the medical device.Keywords: medical device, cyber security, attack, detection, machine learning
Procedia PDF Downloads 357110 The Development of Congeneric Elicited Writing Tasks to Capture Language Decline in Alzheimer Patients
Authors: Lise Paesen, Marielle Leijten
Abstract:
People diagnosed with probable Alzheimer disease suffer from an impairment of their language capacities; a gradual impairment which affects both their spoken and written communication. Our study aims at characterising the language decline in DAT patients with the use of congeneric elicited writing tasks. Within these tasks, a descriptive text has to be written based upon images with which the participants are confronted. A randomised set of images allows us to present the participants with a different task on every encounter, thus allowing us to avoid a recognition effect in this iterative study. This method is a revision from previous studies, in which participants were presented with a larger picture depicting an entire scene. In order to create the randomised set of images, existing pictures were adapted following strict criteria (e.g. frequency, AoA, colour, ...). The resulting data set contained 50 images, belonging to several categories (vehicles, animals, humans, and objects). A pre-test was constructed to validate the created picture set; most images had been used before in spoken picture naming tasks. Hence the same reaction times ought to be triggered in the typed picture naming task. Once validated, the effectiveness of the descriptive tasks was assessed. First, the participants (n=60 students, n=40 healthy elderly) performed a typing task, which provided information about the typing speed of each individual. Secondly, two descriptive writing tasks were carried out, one simple and one complex. The simple task contains 4 images (1 animal, 2 objects, 1 vehicle) and only contains elements with high frequency, a young AoA (<6 years), and fast reaction times. Slow reaction times, a later AoA (≥ 6 years) and low frequency were criteria for the complex task. This task uses 6 images (2 animals, 1 human, 2 objects and 1 vehicle). The data were collected with the keystroke logging programme Inputlog. Keystroke logging tools log and time stamp keystroke activity to reconstruct and describe text production processes. The data were analysed using a selection of writing process and product variables, such as general writing process measures, detailed pause analysis, linguistic analysis, and text length. As a covariate, the intrapersonal interkey transition times from the typing task were taken into account. The pre-test indicated that the new images lead to similar or even faster reaction times compared to the original images. All the images were therefore used in the main study. The produced texts of the description tasks were significantly longer compared to previous studies, providing sufficient text and process data for analyses. Preliminary analysis shows that the amount of words produced differed significantly between the healthy elderly and the students, as did the mean length of production bursts, even though both groups needed the same time to produce their texts. However, the elderly took significantly more time to produce the complex task than the simple task. Nevertheless, the amount of words per minute remained comparable between simple and complex. The pauses within and before words varied, even when taking personal typing abilities (obtained by the typing task) into account.Keywords: Alzheimer's disease, experimental design, language decline, writing process
Procedia PDF Downloads 276109 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review
Authors: Anastasia Tsakiridi
Abstract:
Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.Keywords: supply chain management, logistics, systematic literature review, GIS
Procedia PDF Downloads 143108 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 78107 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics
Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh
Abstract:
Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.Keywords: antibiotic resistance, fish gut, metabolic pathways, microbial diversity
Procedia PDF Downloads 144106 Educational Audit and Curricular Reforms in the Arabian Context
Authors: Irum Naz
Abstract:
In the Arabian higher education context, linguistic proficiency in the English language is considered crucial for the developmental sustainability, economic growth, and stability of communities and societies. Qatar’s educational reforms package, through the 2030 vision, identifies the acquisition of English at K-12 as an essential survival communication tool for globalization, believing that Qatari students need better preparation to take on the responsibilities of leadership and to participate effectively in the country’s surging economy. The idea of introducing Qatari students to modern curricula benchmarked to high-student-performance curricula in developed countries is one of the components of reformatory design principles of Education for New Era reform project that is mutually consented to and supported by the Office of Shared Services, Communications Office, and Supreme Education Council. In appreciation of the government’s vision, the English Language Centre (ELC) at the Community College of Qatar ran an internal educational audit and conducted evaluative research to understand and appraise the value, impact, and practicality of the existing ELC language development program. This study sought to identify the type of change that could identify and improve the quality of Foundation Program courses and the manners in which second language learners could be assisted to transit smoothly between (ELC) levels. Following the interpretivist paradigm and mixed research method, the data was gathered through a bicyclic research model and a triangular design. The analyses of the data suggested that there was a need for improvement in the ELC program as a whole, and particularly in terms of curriculum, student learning outcomes, and the general learning environment in the department. Key findings suggest that the target program would benefit from significant revisions, which would include narrowing the focus of the courses, providing sets of specific learning objectives, and preventing repetition between levels. Another promising finding was about the assessment tools and process. The data suggested that a set of standardized assessments that more closely suited the programs of study should be devised. It was also recommended that students undergo a more comprehensive placement process to ensure that they begin the program at an appropriate level and get the maximum benefit from their learning experience. Although this ties into the idea of curriculum revamp, it was expected that students could leave the ELC having had exposure to courses in English for specific purposes. The idea of a more reliable exit assessment for students was raised frequently so ELC could regulate itself and ensure optimum learning outcomes. Another important recommendation was the provision of a Student Learning Center for students that would help them to receive personalized tuition, differentiated instruction, and self-driven and self-evaluated learning experience. In addition, an extra study level was recommended to be added to the program to accommodate the different levels of English language proficiency represented among ELC students. The evidence collected in the course of conducting the study suggests that significant change is needed in the structure of the ELC program, specifically about curriculum, the program learning outcomes, and the learning environment in general.Keywords: educational audit, ESL, optimum learning outcomes, Qatar’s educational reforms, self-driven and self-evaluated learning experience, Student Learning Center
Procedia PDF Downloads 186105 The Origins of Representations: Cognitive and Brain Development
Authors: Athanasios Raftopoulos
Abstract:
In this paper, an attempt is made to explain the evolution or development of human’s representational arsenal from its humble beginnings to its modern abstract symbols. Representations are physical entities that represent something else. To represent a thing (in a general sense of “thing”) means to use in the mind or in an external medium a sign that stands for it. The sign can be used as a proxy of the represented thing when the thing is absent. Representations come in many varieties, from signs that perceptually resemble their representative to abstract symbols that are related to their representata through conventions. Relying the distinction among indices, icons, and symbols, it is explained how symbolic representations gradually emerged from indices and icons. To understand the development or evolution of our representational arsenal, the development of the cognitive capacities that enabled the gradual emergence of representations of increasing complexity and expressive capability should be examined. The examination of these factors should rely on a careful assessment of the available empirical neuroscientific and paleo-anthropological evidence. These pieces of evidence should be synthesized to produce arguments whose conclusions provide clues concerning the developmental process of our representational capabilities. The analysis of the empirical findings in this paper shows that Homo Erectus was able to use both icons and symbols. Icons were used as external representations, while symbols were used in language. The first step in the emergence of representations is that a sensory-motor purely causal schema involved in indices is decoupled from its normal causal sensory-motor functions and serves as a representation of the object that initially called it into play. Sensory-motor schemes are tied to specific contexts of the organism-environment interactions and are activated only within these contexts. For a representation of an object to be possible, this scheme must be de-contextualized so that the same object can be represented in different contexts; a decoupled schema loses its direct ties to reality and becomes mental content. The analysis suggests that symbols emerged due to selection pressures of the social environment. The need to establish and maintain social relationships in ever-enlarging groups that would benefit the group was a sufficient environmental pressure to lead to the appearance of the symbolic capacity. Symbols could serve this need because they can express abstract relationships, such as marriage or monogamy. Icons, by being firmly attached to what can be observed, could not go beyond surface properties to express abstract relations. The cognitive capacities that are required for having iconic and then symbolic representations were present in Homo Erectus, which had a language that started without syntactic rules but was structured so as to mirror the structure of the world. This language became increasingly complex, and grammatical rules started to appear to allow for the construction of more complex expressions required to keep up with the increasing complexity of social niches. This created evolutionary pressures that eventually led to increasing cranial size and restructuring of the brain that allowed more complex representational systems to emerge.Keywords: mental representations, iconic representations, symbols, human evolution
Procedia PDF Downloads 59104 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 82103 Using Business Interactive Games to Improve Management Skills
Authors: Nuno Biga
Abstract:
Continuous processes’ improvement is a permanent challenge for managers of any organization. Lean management means that efficiency gains can be obtained through a systematic framework able to explore synergies between processes, eliminate waste of time, and other resources. Leaderships in organizations determine the efficiency of the teams through their influence on collaborators, their motivation, and consolidation of ownership (group) feeling. The “organization health” depends on the leadership style, which is directly influenced by the intrinsic characteristics of each personality and leadership ability (leadership competencies). Therefore, it’s important that managers can correct in advance any deviation from expected leadership exercises. Top management teams must assume themselves as regulatory agents of leadership within the organization, ensuring monitoring of actions and the alignment of managers in accordance with the humanist standards anchored in a visible Code of Ethics and Conduct. This article is built around an innovative model of “Business Interactive Games” (BI GAMES) that simulates a real-life management environment. It shows that the strategic management of operations depends on a complex set of endogenous and exogenous variables to the intervening agents that require specific skills and a set of critical processes to monitor. BI GAMES are designed for each management reality and have already been applied successfully in several contexts over the last five years comprising the educational and enterprise ones. Results from these experiences are used to demonstrate how serious games in working living labs contributed to improve the organizational environment by focusing on the evaluation of players’ (agents’) skills, empower its capabilities, and the critical factors that create value in each context. The implementation of the BI GAMES simulator highlights that leadership skills are decisive for the performance of teams, regardless of the sector of activity and the specificities of each organization whose operation is intended to simulate. The players in the BI GAMES can be managers or employees of different roles in the organization or students in the learning context. They interact with each other and are asked to decide/make choices in the presence of several options for the follow-up operation, for example, when the costs and benefits are not fully known but depend on the actions of external parties (e.g., subcontracted enterprises and actions of regulatory bodies). Each team must evaluate resources used/needed in each operation, identify bottlenecks in the system of operations, assess the performance of the system through a set of key performance indicators, and set a coherent strategy to improve efficiency. Through the gamification and the serious games approach, organizational managers will be able to confront the scientific approach in strategic decision-making versus their real-life approach based on experiences undertaken. Considering that each BI GAME’s team has a leader (chosen by draw), the performance of this player has a direct impact on the results obtained. Leadership skills are thus put to the test during the simulation of the functioning of each organization, allowing conclusions to be drawn at the end of the simulation, including its discussion amongst participants.Keywords: business interactive games, gamification, management empowerment skills, simulation living labs
Procedia PDF Downloads 113102 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes
Authors: Madushani Rodrigo, Banuka Athuraliya
Abstract:
In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16
Procedia PDF Downloads 124101 India’s Foreign Policy toward its South Asian Neighbors: Retrospect and Prospect
Authors: Debasish Nandy
Abstract:
India’s foreign policy towards all of her neighbor countries is determinate on the basis of multi-dimensional factors. India’s relations with its South Asian neighbor can be classified into three categories. In the first category, there are four countries -Sri Lanka, Bangladesh, Nepal, and Afghanistan- whose bilateral relationships have encompassed cooperation, irritants, problems and crisis at different points in time. With Pakistan, the relationship has been perpetually adversarial. The third category includes Bhutan and Maldives whose relations are marked by friendship and cooperation, free of any bilateral problems. It is needless to say that Jawaharlal Nehru emphasized on friendly relations with the neighboring countries. The subsequent Prime Ministers of India especially I.K. Gujral had advocated in making of peaceful and friendly relations with the subcontinental countries. He had given a unique idea to foster bilateral relations with the neighbors. His idea is known as ‘Gujral Doctrine’. A dramatical change has been witnessed in Indian foreign policy since 1991.In the post-Cold War period, India’s national security has been vehemently threatened by terrorism, which originated from Pakistan-Afghanistan and partly Bangladesh. India has required a cooperative security, which can be made by mutual understanding among the South Asian countries. Additionally, the countries of South Asia need to evolve the concept of ‘Cooperative Security’ to explain the underlying logic of regional cooperation. According to C. Rajamohan, ‘cooperative security could be understood, as policies of governments, which see themselves as former adversaries or potential adversaries to shift from or avoid confrontationist policies.’ A cooperative security essentially reflects a policy of dealing peacefully with conflicts, not merely by abstention from violence or threats but by active engagement in negotiation, a search for practical solutions and with a commitment to preventive measures. Cooperative assumes the existence of a condition in which the two sides possess the military capabilities to harm each other. Establishing cooperative security runs into a complex process building confidence. South Asian nations often engaged with hostility to each other. Extra-regional powers have been influencing their powers in this region since a long time. South Asian nations are busy to purchase military equipment. In spite of weakened economic systems, these states are spending a huge amount of money for their security. India is the big power in this region in every aspect. The big states- small states syndrome is a negative factor in this respect. However, India will have to an initiative to extended ‘track II diplomacy’ or soft diplomacy for its security as well as the security of this region.Confidence building measures could help rejuvenate not only SAARC but also build trust and mutual confidence between India and its neighbors in South Asia. In this paper, I will focus on different aspects of India’s policy towards it, South-Asian neighbors. It will also be searched that how India is dealing with these countries by using a mixed type of diplomacy – both idealistic and realistic points of view. Security and cooperation are two major determinants of India’s foreign policy towards its South Asian neighbors.Keywords: bilateral, diplomacy, infiltration, terrorism
Procedia PDF Downloads 541100 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli
Authors: Ashima Sharma
Abstract:
Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding
Procedia PDF Downloads 21099 Seismic Analysis of Vertical Expansion Hybrid Structure by Response Spectrum Method Concern with Disaster Management and Solving the Problems of Urbanization
Authors: Gautam, Gurcharan Singh, Mandeep Kaur, Yogesh Aggarwal, Sanjeev Naval
Abstract:
The present ground reality scenario of suffering of humanity shows the evidence of failure to take wrong decisions to shape the civilization with Irresponsibilities in the history. A strong positive will of right responsibilities make the right civilization structure which affects itself and the whole world. Present suffering of humanity shows and reflect the failure of past decisions taken to shape the true culture with right social structure of society, due to unplanned system of Indian civilization and its rapid disaster of population make the failure to face all kind of problems which make the society sufferer. Our India is still suffering from disaster like earthquake, floods, droughts, tsunamis etc. and we face the uncountable disaster of deaths from the beginning of humanity at the present time. In this research paper our focus is to make a Disaster Resistance Structure having the solution of dense populated urban cities area by high vertical expansion HYBRID STRUCTURE. Our efforts are to analyse the Reinforced Concrete Hybrid Structure at different seismic zones, these concrete frames were analyzed using the response spectrum method to calculate and compare the different seismic displacement and drift. Seismic analysis by this method generally is based on dynamic analysis of building. Analysis results shows that the Reinforced Concrete Building at seismic Zone V having maximum peak story shear, base shear, drift and node displacement as compare to the analytical results of Reinforced Concrete Building at seismic Zone III and Zone IV. This analysis results indicating to focus on structural drawings strictly at construction site to make a HYBRID STRUCTURE. The study case is deal with the 10 story height of a vertical expansion Hybrid frame structure at different zones i.e. zone III, zone IV and zone V having the column 0.45x0.36mt and beam 0.6x0.36mt. with total height of 30mt, to make the structure more stable bracing techniques shell be applied like mage bracing and V shape bracing. If this kind of efforts or structure drawings are followed by the builders and contractors then we save the lives during earthquake disaster at Bhuj (Gujarat State, India) on 26th January, 2001 which resulted in more than 19,000 deaths. This kind of Disaster Resistance Structure having the capabilities to solve the problems of densely populated area of cities by the utilization of area in vertical expansion hybrid structure. We request to Government of India to make new plans and implementing it to save the lives from future disasters instead of unnecessary wants of development plans like Bullet Trains.Keywords: history, irresponsibilities, unplanned social structure, humanity, hybrid structure, response spectrum analysis, DRIFT, and NODE displacement
Procedia PDF Downloads 21198 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 3797 The Relationships between Sustainable Supply Chain Management Practices, Digital Transformation, and Enterprise Performance in Vietnam
Authors: Thi Phuong Pham
Abstract:
This paper explores the intricate relationships between Sustainable Supply Chain Management (SSCM) practices, digital transformation (DT), and enterprise performance within the context of Vietnam. Over the past two decades, there has been a paradigm shift in supply chain management, with sustainability gaining prominence due to increasing concerns about climate change, labor practices, and the environmental impact of business operations. In the ever-evolving realm of global business, sustainability and digital transformation (DT) intersecting dynamics have become pivotal catalysts for organizational success. This research investigates how integrating SSCM with DT can enhance enterprise performance, a subject of significant relevance as Vietnam undergoes rapid economic growth and digital transformation. The primary objectives of this research are twofold: (1) to examine the effects of SSCM practices on enterprise performance in three critical aspects: economic, environmental, and social performance in Vietnam and (2) to explore the mediating role of DT in this relationship. By analyzing these dynamics, the study aims to provide valuable insights for policymakers and the academic community regarding the potential benefits of aligning SSCM principles with digital technologies. To achieve these objectives, the research employs a robust mixed-method approach. The research begins with a comprehensive literature review to establish a theoretical framework that underpins the empirical analysis. Data collection was conducted through a structured survey targeting Vietnamese enterprises, with the survey instrument designed to measure SSCM practices, DT, and enterprise performance using a five-point Likert scale. The reliability and validity of the survey were ensured by pre-testing with industry practitioners and refining the questionnaire based on their feedback. For data analysis, structural equation modeling (SEM) was employed to quantify the direct effects of SSCM on enterprise performance, while mediation analysis using the PROCESS Macro 4.0 in SPSS was conducted to assess the mediating role of DT. The findings reveal that SSCM practices positively influence enterprise performance by enhancing operational efficiency, reducing costs, and improving sustainability metrics. Furthermore, DT acts as a significant mediator, amplifying the positive impacts of SSCM practices through improved data management, enhanced communication, and more agile supply chain processes. These results underscore the critical role of DT in maximizing the benefits of SSCM practices, particularly in a developing economy like Vietnam. This research contributes to the existing body of knowledge by highlighting the synergistic effects of SSCM and DT on enterprise performance. It offers practical implications for businesses that enhance their sustainability and digital capabilities, providing a roadmap for integrating these two pivotal aspects to achieve competitive advantage. The study's insights can also inform governmental policies designed to foster sustainable economic growth and digital innovation in Vietnam.Keywords: sustainable supply chain management, digital transformation, enterprise performance, Vietnam
Procedia PDF Downloads 2596 Longitudinal impact on Empowerment for Ugandan Women with Post-Primary Education
Authors: Shelley Jones
Abstract:
Assumptions abound that education for girls will, as a matter of course, lead to their economic empowerment as women; yet. little is known about the ways in which schooling for girls, who traditionally/historically would not have had opportunities for post-primary, or perhaps even primary education – such as the participants in this study based in rural Uganda - in reality, impacts their economic situations. There is a need forlongitudinal studies in which women share experiences, understandings, and reflections of their lives that can inform our knowledge of this. In response, this paper reports on stage four of a longitudinal case study (2004-2018) focused on education and empowerment for girls and women in rural Uganda, in which 13 of the 15 participants from the original study participated. This paper understands empowerment as not simply increased opportunities (e.g., employment) but also real gains in power, freedoms that enable agentive action, and authentic and viable choices/alternatives that offer ‘exit options’ from unsatisfactory situations. As with the other stages, this study used a critical, postmodernist, global feminist ethnographic methodology, multimodal and qualitative data collection. Participants participated in interviews, focus group discussions, and a two-day workshop, which explored their understandings of how/if they understood post-primary education to have contributed to their economic empowerment. A constructivist grounded theory approach was used for data analysis to capture major themes. Findings indicate that although all participants believe that post-primary education provided them with economic opportunities they would not have had otherwise, the parameters of their economic empowerment were severely constrained by historic and extant sociocultural, economic, political, and institutional structures that continue to disempower girls and women, as well as additional financial responsibilities that they assumed to support others. Even though the participants had post-primary education, and they were able to obtain employment or operate their own businesses that they would not likely have been able to do without post-primary education, the majority of the participants’ incomes were not sufficient to elevate them financially above the extreme poverty level, especially as many were single mothers and the sole income earners in their households. Furthermore, most deemed their working conditions unsatisfactory and their positions precarious; they also experienced sexual harassment and abuse in the labour force. Additionally, employment for the participants resulted in a double work burden: long days at work, surrounded by many hours of domestic work at home (which, even if they had spousal partners, still fell almost exclusively to women). In conclusion, although the participants seem to have experienced some increase in economic empowerment, largely due to skills, knowledge, and qualifications gained at the post-primary level, numerous barriers prevented them from maximizing their capabilities and making significant gains in empowerment. There is need, in addition to providing education (primary, secondary, and tertiary) to girls, to address systemic gender inequalities that mitigate against women’s empowerment, as well as opportunities and freedom for women to come together and demand fair pay, reasonable working conditions, and benefits, freedom from gender-based harassment and assault in the workplace, as well as advocate for equal distribution of domestic work as a cultural change.Keywords: girls' post-primary education, women's empowerment, uganda, employment
Procedia PDF Downloads 14895 Virtual Reality Applications for Building Indoor Engineering: Circulation Way-Finding
Authors: Atefeh Omidkhah Kharashtomi, Rasoul Hedayat Nejad, Saeed Bakhtiyari
Abstract:
Circulation paths and indoor connection network of the building play an important role both in the daily operation of the building and during evacuation in emergency situations. The degree of legibility of the paths for navigation inside the building has a deep connection with the perceptive and cognitive system of human, and the way the surrounding environment is being perceived. Human perception of the space is based on the sensory systems in a three-dimensional environment, and non-linearly, so it is necessary to avoid reducing its representations in architectural design as a two-dimensional and linear issue. Today, the advances in the field of virtual reality (VR) technology have led to various applications, and architecture and building science can benefit greatly from these capabilities. Especially in cases where the design solution requires a detailed and complete understanding of the human perception of the environment and the behavioral response, special attention to VR technologies could be a priority. Way-finding in the indoor circulation network is a proper example for such application. Success in way-finding could be achieved if human perception of the route and the behavioral reaction have been considered in advance and reflected in the architectural design. This paper discusses the VR technology applications for the way-finding improvements in indoor engineering of the building. In a systematic review, with a database consisting of numerous studies, firstly, four categories for VR applications for circulation way-finding have been identified: 1) data collection of key parameters, 2) comparison of the effect of each parameter in virtual environment versus real world (in order to improve the design), 3) comparing experiment results in the application of different VR devices/ methods with each other or with the results of building simulation, and 4) training and planning. Since the costs of technical equipment and knowledge required to use VR tools lead to the limitation of its use for all design projects, priority buildings for the use of VR during design are introduced based on case-studies analysis. The results indicate that VR technology provides opportunities for designers to solve complex buildings design challenges in an effective and efficient manner. Then environmental parameters and the architecture of the circulation routes (indicators such as route configuration, topology, signs, structural and non-structural components, etc.) and the characteristics of each (metrics such as dimensions, proportions, color, transparency, texture, etc.) are classified for the VR way-finding experiments. Then, according to human behavior and reaction in the movement-related issues, the necessity of scenario-based and experiment design for using VR technology to improve the design and receive feedback from the test participants has been described. The parameters related to the scenario design are presented in a flowchart in the form of test design, data determination and interpretation, recording results, analysis, errors, validation and reporting. Also, the experiment environment design is discussed for equipment selection according to the scenario, parameters under study as well as creating the sense of illusion in the terms of place illusion, plausibility and illusion of body ownership.Keywords: virtual reality (VR), way-finding, indoor, circulation, design
Procedia PDF Downloads 7594 Family Firm Internationalization: Identification of Alternative Success Pathways
Authors: Sascha Kraus, Wolfgang Hora, Philipp Stieg, Thomas Niemand, Ferdinand Thies, Matthias Filser
Abstract:
In most countries, small and medium-sized enterprises (SME) are the backbone of the economy due to their impact on job creation, innovation and wealth creation. Moreover, the ongoing globalization makes it inevitable – even for SME that traditionally focused on their domestic markets – to internationalize their business activities to realize further growth and survive in international markets. Thus, internationalization has become one of the most common growth strategies for SME and has received increasing scholarly attention over the last two decades. One the downside internationalization can be also regarded as the most complex strategy that a firm can undertake. Particularly for family firms, that are often characterized by limited financial capital, a risk-averse nature and limited growth aspirations, it could be argued that family firms are more likely to face greater challenges when taking the pathway to internationalization. Especially the triangulation of family, ownership, and management (so-called ‘familiness’) manifests in a unique behavior and decision-making process which is often characterized by the importance given to noneconomic goals and distinguishes a family firm from other businesses. Taking this into account, the concept of socio-emotional wealth (SEW) has been evolved to describe the behavior of family firms. In order to investigate how different internal and external firm characteristics shape internationalization success of family firms, we drew on a sample consisting of 297 small and medium-sized family firms from Germany, Austria, Switzerland, and Liechtenstein. Thus, we include SEW as essential family firm characteristic and added the two major intra-organizational characteristics, entrepreneurial orientation (EO), absorptive capacity (AC) as well as collaboration intensity (CI) and relational knowledge (RK) as two major external network characteristics. Based on previous research we assume that these characteristics are important to explain internationalization success of family firm SME. Regarding the data analysis, we applied a Fuzzy Set Qualitative Comparative Analysis (fsQCA), an approach that allows identifying configurations of firm characteristics, specifically used to study complex causal relationships where traditional regression techniques reach their limits. Results indicate that several combinations of these family firm characteristics can lead to international success, with no permanently required key characteristic. Instead, there are many roads to walk down for family firms to achieve internationalization success. Consequently, our data states that family owned SME are heterogeneous and internationalization is a complex and dynamic process. Results further show that network related characteristics occur in all sets, thus represent an essential element in the internationalization process of family owned SME. The contribution of our study is twofold, as we investigate different forms of international expansion for family firms and how to improve them. First, we are able to broaden the understanding of the intersection between family firm and SME internationalization with respect to major intra-organizational and network-related variables. Second, from a practical perspective, we offer family firm owners a basis for setting up internal capabilities to achieve international success.Keywords: entrepreneurial orientation, family firm, fsQCA, internationalization, socio-emotional wealth
Procedia PDF Downloads 24293 Biofuels from Hybrid Poplar: Using Biochemicals and Wastewater Treatment as Opportunities for Early Adoption
Authors: Kevin W. Zobrist, Patricia A. Townsend, Nora M. Haider
Abstract:
Advanced Hardwood Biofuels Northwest (AHB) is a consortium funded by the United States Department of Agriculture (USDA) to research the potential for a system to produce advanced biofuels (jet fuel, diesel, and gasoline) from hybrid poplar in the Pacific Northwest region of the U.S. An Extension team was established as part of the project to examine community readiness and willingness to adopt hybrid as a purpose-grown bioenergy crop. The Extension team surveyed key stakeholder groups, including growers, Extension professionals, policy makers, and environmental groups, to examine attitudes and concerns about growing hybrid poplar for biofuels. The surveys found broad skepticism about the viability of such a system. The top concern for most stakeholder groups was economic viability and the availability of predictable markets. Growers had additional concerns stemming from negative past experience with hybrid poplar as an unprofitable endeavor for pulp and paper production. Additional barriers identified included overall land availability and the availability of water and water rights for irrigation in dry areas of the region. Since the beginning of the project, oil and natural gas prices have plummeted due to rapid increases in domestic production. This has exacerbated the problem with economic viability by making biofuels even less competitive than fossil fuels. However, the AHB project has identified intermediate market opportunities to use poplar as a renewable source for other biochemicals produced by petroleum refineries, such as acetic acid, ethyl acetate, ethanol, and ethylene. These chemicals can be produced at a lower cost with higher yields and higher, more-stable prices. Despite these promising market opportunities, the survey results suggest that it will still be challenging to induce growers to adopt hybrid poplar. Early adopters will be needed to establish an initial feedstock supply for a budding industry. Through demonstration sites and outreach events to various stakeholder groups, the project attracted interest from wastewater treatment facilities, since these facilities are already growing hybrid poplar plantations for applying biosolids and treated wastewater for further purification, clarification, and nutrient control through hybrid poplar’s phytoremediation capabilities. Since these facilities are already using hybrid poplar, selling the wood as feedstock for a biorefinery would be an added bonus rather than something requiring a high rate of return to compete with other crops and land uses. By holding regional workshops and conferences with wastewater professionals, AHB Extension has found strong interest from wastewater treatment operators. In conclusion, there are several significant barriers to developing a successful system for producing biofuels from hybrid poplar, with the largest barrier being economic viability. However, there is potential for wastewater treatment facilities to serve as early adopters for hybrid poplar production for intermediate biochemicals and eventually biofuels.Keywords: hybrid poplar, biofuels, biochemicals, wastewater treatment
Procedia PDF Downloads 26892 Official Game Account Analysis: Factors Influence Users' Judgments in Limited-Word Posts
Authors: Shanhua Hu
Abstract:
Social media as a critical propagandizing form of film, video games, and digital products has received substantial research attention, but there exists several critical barriers such as: (1) few studies exploring the internal and external connections of a product as part of the multimodal context that gives rise to readability and commercial return; (2) the lack of study of multimodal analysis in product’s official account of game publishers and its impact on users’ behaviors including purchase intention, social media engagement, and playing time; (3) no standardized ecologically-valid, game type-varying data can be used to study the complexity of official account’s postings within a time period. This proposed research helps to tackle these limitations in order to develop a model of readability study that is more ecologically valid, robust, and thorough. To accomplish this objective, this paper provides a more diverse dataset comprising different visual elements and messages collected from the official Twitter accounts of the Top 20 best-selling games of 2021. Video game companies target potential users through social media, a popular approach is to set up an official account to maintain exposure. Typically, major game publishers would create an official account on Twitter months before the game's release date to update on the game's development, announce collaborations, and reveal spoilers. Analyses of tweets from those official Twitter accounts would assist publishers and marketers in identifying how to efficiently and precisely deploy advertising to increase game sales. The purpose of this research is to determine how official game accounts use Twitter to attract new customers, specifically which types of messages are most effective at increasing sales. The dataset includes the number of days until the actual release date on Twitter posts, the readability of the post (Flesch Reading Ease Score, FRES), the number of emojis used, the number of hashtags, the number of followers of the mentioned users, the categorization of the posts (i.e., spoilers, collaborations, promotions), and the number of video views. The timeline of Twitter postings from official accounts will be compared to the history of pre-orders and sales figures to determine the potential impact of social media posts. This study aims to determine how the above-mentioned characteristics of official accounts' Twitter postings influence the sales of the game and to examine the possible causes of this influence. The outcome will provide researchers with a list of potential aspects that could influence people's judgments in limited-word posts. With the increased average online time, users would adapt more quickly than before in online information exchange and readings, such as the word to use sentence length, and the use of emojis or hashtags. The study on the promotion of official game accounts will not only enable publishers to create more effective promotion techniques in the future but also provide ideas for future research on the influence of social media posts with a limited number of words on consumers' purchasing decisions. Future research can focus on more specific linguistic aspects, such as precise word choice in advertising.Keywords: engagement, official account, promotion, twitter, video game
Procedia PDF Downloads 7891 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications
Authors: António J. Gano, Carmen Rangel
Abstract:
Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS
Procedia PDF Downloads 10390 Determinants of Corporate Social Responsibility Adoption: Evidence from China
Authors: Jing (Claire) LI
Abstract:
More than two decades from 2000 to 2020 of economic reforms have brought China unprecedented economic growth. There is an urgent call of research towards corporate social responsibility (CSR) in the context of China because while China continues to develop into a global trading market, it suffers from various serious problems relating to CSR. This study analyses the factors affecting the adoption of CSR practices by Chinese listed companies. The author proposes a new framework of factors of CSR adoption. Following common organisational factors and external factors in the literature (including organisational support, company size, shareholder pressures, and government support), this study introduces two additional factors, dynamic capability and regional culture. A survey questionnaire was conducted on the CSR adoption of Chinese listed companies in Shen Zhen and Shang Hai index from December 2019 to March 2020. The survey was conducted to collect data on the factors that affect the adoption of CSR. After collection of data, this study performed factor analysis to reduce the number of measurement items to several main factors. This procedure is to confirm the proposed framework and ensure the significant factors. Through analysis, this study identifies four grouped factors as determinants of the CSR adoption. The first factor loading includes dynamic capability and organisational support. The study finds that they are positively related to the first factor, so the first factor mainly reflects the capabilities of companies, which is one component in internal factors. In the second factor, measurement items of stakeholder pressures mainly are from regulatory bodies, customer and supplier, employees and community, and shareholders. In sum, they are positively related to the second factor and they reflect stakeholder pressures, which is one component of external factors. The third factor reflects organisational characteristics. Variables include company size and cultural score. Among these variables, company size is negatively related to the third factor. The resulted factor loading of the third factor implies that organisational factor is an important determinant of CSR adoption. Cultural consistency, the variable in the fourth factor, is positively related to the factor. It represents the difference between perception of managers and actual culture of the organisations in terms of cultural dimensions, which is one component in internal factors. It implies that regional culture is an important factor of CSR adoption. Overall, the results are consistent with previous literature. This study is of significance from both theoretical and empirical perspectives. First, from the significance of theoretical perspective, this research combines stakeholder theory, dynamic capability view of a firm, and neo-institutional theory in CSR research. Based on association of these three theories, this study introduces two new factors (dynamic capability and regional culture) to have a better framework for CSR adoption. Second, this study contributes to empirical literature of CSR in the context of China. Extant Chinese companies lack recognition of the importance of CSR practices adoption. This study built a framework and may help companies to design resource allocation strategies and evaluate future CSR and management practices in an early stage.Keywords: China, corporate social responsibility, CSR adoption, dynamic capability, regional culture
Procedia PDF Downloads 13689 Development and Validation of a Quantitative Measure of Engagement in the Analysing Aspect of Dialogical Inquiry
Authors: Marcus Goh Tian Xi, Alicia Chua Si Wen, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee
Abstract:
The Map of Dialogical Inquiry provides a conceptual look at the underlying nature of future-oriented skills. According to the Map, learning is learner-oriented, with conversational time shifted from teachers to learners, who play a strong role in deciding what and how they learn. For example, in courses operating on the principles of Dialogical Inquiry, learners were able to leave the classroom with a deeper understanding of the topic, broader exposure to differing perspectives, and stronger critical thinking capabilities, compared to traditional approaches to teaching. Despite its contributions to learning, the Map is grounded in a qualitative approach both in its development and its application for providing feedback to learners and educators. Studies hinge on openended responses by Map users, which can be time consuming and resource intensive. The present research is motivated by this gap in practicality by aiming to develop and validate a quantitative measure of the Map. In addition, a quantifiable measure may also strengthen applicability by making learning experiences trackable and comparable. The Map outlines eight learning aspects that learners should holistically engage. This research focuses on the Analysing aspect of learning. According to the Map, Analysing has four key components: liking or engaging in logic, using interpretative lenses, seeking patterns, and critiquing and deconstructing. Existing scales of constructs (e.g., critical thinking, rationality) related to these components were identified so that the current scale could adapt items from. Specifically, items were phrased beginning with an “I”, followed by an action phrase, to fulfil the purpose of assessing learners' engagement with Analysing either in general or in classroom contexts. Paralleling standard scale development procedure, the 26-item Analysing scale was administered to 330 participants alongside existing scales with varying levels of association to Analysing, to establish construct validity. Subsequently, the scale was refined and its dimensionality, reliability, and validity were determined. Confirmatory factor analysis (CFA) revealed if scale items loaded onto the four factors corresponding to the components of Analysing. To refine the scale, items were systematically removed via an iterative procedure, according to their factor loadings and results of likelihood ratio tests at each step. Eight items were removed this way. The Analysing scale is better conceptualised as unidimensional, rather than comprising the four components identified by the Map, for three reasons: 1) the covariance matrix of the model specified for the CFA was not positive definite, 2) correlations among the four factors were high, and 3) exploratory factor analyses did not yield an easily interpretable factor structure of Analysing. Regarding validity, since the Analysing scale had higher correlations with conceptually similar scales than conceptually distinct scales, with minor exceptions, construct validity was largely established. Overall, satisfactory reliability and validity of the scale suggest that the current procedure can result in a valid and easy-touse measure for each aspect of the Map.Keywords: analytical thinking, dialogical inquiry, education, lifelong learning, pedagogy, scale development
Procedia PDF Downloads 9188 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms
Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee
Abstract:
Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences
Procedia PDF Downloads 27787 Organizational Resilience in the Perspective of Supply Chain Risk Management: A Scholarly Network Analysis
Authors: William Ho, Agus Wicaksana
Abstract:
Anecdotal evidence in the last decade shows that the occurrence of disruptive events and uncertainties in the supply chain is increasing. The coupling of these events with the nature of an increasingly complex and interdependent business environment leads to devastating impacts that quickly propagate within and across organizations. For example, the recent COVID-19 pandemic increased the global supply chain disruption frequency by at least 20% in 2020 and is projected to have an accumulative cost of $13.8 trillion by 2024. This crisis raises attention to organizational resilience to weather business uncertainty. However, the concept has been criticized for being vague and lacking a consistent definition, thus reducing the significance of the concept for practice and research. This study is intended to solve that issue by providing a comprehensive review of the conceptualization, measurement, and antecedents of operational resilience that have been discussed in the supply chain risk management literature (SCRM). We performed a Scholarly Network Analysis, combining citation-based and text-based approaches, on 252 articles published from 2000 to 2021 in top-tier journals based on three parameters: AJG ranking and ABS ranking, UT Dallas and FT50 list, and editorial board review. We utilized a hybrid scholarly network analysis by combining citation-based and text-based approaches to understand the conceptualization, measurement, and antecedents of operational resilience in the SCRM literature. Specifically, we employed a Bibliographic Coupling Analysis in the research cluster formation stage and a Co-words Analysis in the research cluster interpretation and analysis stage. Our analysis reveals three major research clusters of resilience research in the SCRM literature, namely (1) supply chain network design and optimization, (2) organizational capabilities, and (3) digital technologies. We portray the research process in the last two decades in terms of the exemplar studies, problems studied, commonly used approaches and theories, and solutions provided in each cluster. We then provide a conceptual framework on the conceptualization and antecedents of resilience based on studies in these clusters and highlight potential areas that need to be studied further. Finally, we leverage the concept of abnormal operating performance to propose a new measurement strategy for resilience. This measurement overcomes the limitation of most current measurements that are event-dependent and focus on the resistance or recovery stage - without capturing the growth stage. In conclusion, this study provides a robust literature review through a scholarly network analysis that increases the completeness and accuracy of research cluster identification and analysis to understand conceptualization, antecedents, and measurement of resilience. It also enables us to perform a comprehensive review of resilience research in SCRM literature by including research articles published during the pandemic and connects this development with a plethora of articles published in the last two decades. From the managerial perspective, this study provides practitioners with clarity on the conceptualization and critical success factors of firm resilience from the SCRM perspective.Keywords: supply chain risk management, organizational resilience, scholarly network analysis, systematic literature review
Procedia PDF Downloads 7486 Applying an Automatic Speech Intelligent System to the Health Care of Patients Undergoing Long-Term Hemodialysis
Authors: Kuo-Kai Lin, Po-Lun Chang
Abstract:
Research Background and Purpose: Following the development of the Internet and multimedia, the Internet and information technology have become crucial avenues of modern communication and knowledge acquisition. The advantages of using mobile devices for learning include making learning borderless and accessible. Mobile learning has become a trend in disease management and health promotion in recent years. End-stage renal disease (ESRD) is an irreversible chronic disease, and patients who do not receive kidney transplants can only rely on hemodialysis or peritoneal dialysis to survive. Due to the complexities in caregiving for patients with ESRD that stem from their advanced age and other comorbidities, the patients’ incapacity of self-care leads to an increase in the need to rely on their families or primary caregivers, although whether the primary caregivers adequately understand and implement patient care is a topic of concern. Therefore, this study explored whether primary caregivers’ health care provisions can be improved through the intervention of an automatic speech intelligent system, thereby improving the objective health outcomes of patients undergoing long-term dialysis. Method: This study developed an automatic speech intelligent system with healthcare functions such as health information voice prompt, two-way feedback, real-time push notification, and health information delivery. Convenience sampling was adopted to recruit eligible patients from a hemodialysis center at a regional teaching hospital as research participants. A one-group pretest-posttest design was adopted. Descriptive and inferential statistics were calculated from the demographic information collected from questionnaires answered by patients and primary caregivers, and from a medical record review, a health care scale (recorded six months before and after the implementation of intervention measures), a subjective health assessment, and a report of objective physiological indicators. The changes in health care behaviors, subjective health status, and physiological indicators before and after the intervention of the proposed automatic speech intelligent system were then compared. Conclusion and Discussion: The preliminary automatic speech intelligent system developed in this study was tested with 20 pretest patients at the recruitment location, and their health care capacity scores improved from 59.1 to 72.8; comparisons through a nonparametric test indicated a significant difference (p < .01). The average score for their subjective health assessment rose from 2.8 to 3.3. A survey of their objective physiological indicators discovered that the compliance rate for the blood potassium level was the most significant indicator; its average compliance rate increased from 81% to 94%. The results demonstrated that this automatic speech intelligent system yielded a higher efficacy for chronic disease care than did conventional health education delivered by nurses. Therefore, future efforts will continue to increase the number of recruited patients and to refine the intelligent system. Future improvements to the intelligent system can be expected to enhance its effectiveness even further.Keywords: automatic speech intelligent system for health care, primary caregiver, long-term hemodialysis, health care capabilities, health outcomes
Procedia PDF Downloads 11085 A Study on Economic Impacts of Entrepreneurial Firms and Self-Employment: Minority Ethnics in Putatan, Penampang, Inanam, Menggatal, Uitm, Tongod, Sabah, Malaysia
Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Andrew Nicholas, Dewi Binti Tajuddin
Abstract:
Starting and surviving a business is influenced by various entrepreneurship socio-economics activities. The study revealed that some of the entrepreneurs are not registered under SME but running own business as an intermediary with the private organization entrusted as “Self-Employed.” SME is known as “Small Medium Enterprise” contributes growth in Malaysia. Therefore, the entrepreneurialism business interest and entrepreneurial intention enhancing new spurring production, expanding employment opportunities, increasing productivity, promoting exports, stimulating innovation and providing new avenue in the business market place. This study has identified the unique contribution to the full understanding of complex mechanisms through entrepreneurship obstacles and education impacts on happiness and well-being to society. Moreover, “Ethnic” term has defined as a curious meaning refers to a classification of a large group of people customs implies to ancestral, racial, national, tribal, religious, linguistic and cultural origins. It is a social phenomenon.1 According to Sabah data population is amounting to 2,389,494 showed the predominant ethnic group being the Kadazan Dusun (18.4%) followed by Bajau (17.3%) and Malays (15.3%). For the year 2010, data statistic immigrants population report showed the amount to 239,765 people which cover 4% of the Sabahan’s population.2 Sabah has numerous group of talented entrepreneurs. The business environment among the minority ethnics are influenced with the business sentiment competition. The literature on ethnic entrepreneurship recognizes two main type entrepreneurships: the middleman and enclave entrepreneurs. According to Adam Smith,3 there are evidently some principles disposition to admire and maintain the distinction business rank status and cause most universal business sentiments. Due to credit barriers competition, the minority ethnics are losing the business market and since 2014, many illegal immigrants have been found to be using permits of the locals to operate businesses in Malaysia.4 The development of small business entrepreneurship among the minority ethnics in Sabah evidenced based variety of complex perception and differences concepts. The studies also confirmed the effects of heterogeneity on group decision and thinking caused partly by excessive pre-occupation with maintaining cohesiveness and the presence of cultural diversity in groups should reduce its probability.5 The researchers proposed that there are seven success determinants particularly to determine the involvement of minority ethnics comparing to the involvement of the immigrants in Sabah. Although, (SMEs) have always been considered the backbone of the economy development, the minority ethnics are often categorized it as the “second-choice.’ The study showed that illegal immigrants entrepreneur imposed a burden on Sabahan social programs as well as the prison, court and health care systems. The tension between the need for cheap labor and the impulse to protect Malaysian in Sabah workers, entrepreneurs and taxpayers, among the subjects discussed in this study. This is clearly can be advantages and disadvantages to the Sabah economic development.Keywords: entrepreneurial firms, self-employed, immigrants, minority ethnic, economic impacts
Procedia PDF Downloads 41484 Describing Cognitive Decline in Alzheimer's Disease via a Picture Description Writing Task
Authors: Marielle Leijten, Catherine Meulemans, Sven De Maeyer, Luuk Van Waes
Abstract:
For the diagnosis of Alzheimer's disease (AD), a large variety of neuropsychological tests are available. In some of these tests, linguistic processing - both oral and written - is an important factor. Language disturbances might serve as a strong indicator for an underlying neurodegenerative disorder like AD. However, the current diagnostic instruments for language assessment mainly focus on product measures, such as text length or number of errors, ignoring the importance of the process that leads to written or spoken language production. In this study, it is our aim to describe and test differences between cognitive and impaired elderly on the basis of a selection of writing process variables (inter- and intrapersonal characteristics). These process variables are mainly related to pause times, because the number, length, and location of pauses have proven to be an important indicator of the cognitive complexity of a process. Method: Participants that were enrolled in our research were chosen on the basis of a number of basic criteria necessary to collect reliable writing process data. Furthermore, we opted to match the thirteen cognitively impaired patients (8 MCI and 5 AD) with thirteen cognitively healthy elderly. At the start of the experiment, participants were each given a number of tests, such as the Mini-Mental State Examination test (MMSE), the Geriatric Depression Scale (GDS), the forward and backward digit span and the Edinburgh Handedness Inventory (EHI). Also, a questionnaire was used to collect socio-demographic information (age, gender, eduction) of the subjects as well as more details on their level of computer literacy. The tests and questionnaire were followed by two typing tasks and two picture description tasks. For the typing tasks participants had to copy (type) characters, words and sentences from a screen, whereas the picture description tasks each consisted of an image they had to describe in a few sentences. Both the typing and the picture description tasks were logged with Inputlog, a keystroke logging tool that allows us to log and time stamp keystroke activity to reconstruct and describe text production processes. The main rationale behind keystroke logging is that writing fluency and flow reveal traces of the underlying cognitive processes. This explains the analytical focus on pause (length, number, distribution, location, etc.) and revision (number, type, operation, embeddedness, location, etc.) characteristics. As in speech, pause times are seen as indexical of cognitive effort. Results. Preliminary analysis already showed some promising results concerning pause times before, within and after words. For all variables, mixed effects models were used that included participants as a random effect and MMSE scores, GDS scores and word categories (such as determiners and nouns) as a fixed effect. For pause times before and after words cognitively impaired patients paused longer than healthy elderly. These variables did not show an interaction effect between the group participants (cognitively impaired or healthy elderly) belonged to and word categories. However, pause times within words did show an interaction effect, which indicates pause times within certain word categories differ significantly between patients and healthy elderly.Keywords: Alzheimer's disease, keystroke logging, matching, writing process
Procedia PDF Downloads 366