Search results for: velocity triple product
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5501

Search results for: velocity triple product

3521 Development of a Passive Solar Tomato Dryer with Movable Heat Storage System

Authors: Jacob T. Liberty, Wilfred I. Okonkwo

Abstract:

The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria.

Keywords: tomato, passive solar dryer, physicochemical properties, removal heat storage

Procedia PDF Downloads 307
3520 Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology

Authors: Qasim Zaheer, Jehanzeb Masud

Abstract:

The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results.

Keywords: Kelvin Helmholtz instability, embedded LES, complex flow field, ejector pump

Procedia PDF Downloads 297
3519 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence

Authors: Oluwagbemi Victor Aladeokin

Abstract:

In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.

Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area

Procedia PDF Downloads 145
3518 Numerical Simulation on Two Components Particles Flow in Fluidized Bed

Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi

Abstract:

Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.

Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow

Procedia PDF Downloads 326
3517 Preparation of Metal Containing Epoxy Polymer and Investigation of Their Properties as Fluorescent Probe

Authors: Ertuğ Yıldırım, Dile Kara, Salih Zeki Yıldız

Abstract:

Metal containing polymers (MCPs) are macro molecules usually containing metal-ligand coordination units and are a multidisciplinary research field mainly based at the interface between coordination chemistry and polymer science. The progress of this area has also been reinforced by the growth of several other closely related disciplines including macro molecular engineering, crystal engineering, organic synthesis, supra molecular chemistry and colloidal and material science. Schiff base ligands are very effective in constructing supra molecular architectures such as coordination polymers, double helical and triple helical complexes. In addition, Schiff base derivatives incorporating a fluorescent moiety are appealing tools for optical sensing of metal ions. MCPs are well-known systems in which the combinations of local parameters are possible by means of fluoro metric techniques. Generally, without incorporation of the fluorescent groups with polymers is unspecific, and it is not useful to analyze their fluorescent properties. Therefore, it is necessary to prepare a new type epoxy polymers with fluorescent groups in terms of metal sensing prop and the other photo chemical applications. In the present study metal containing polymers were prepared via poly functional monomeric Schiff base metal chelate complexes in the presence of dis functional monomers such as diglycidyl ether Bisphenol A (DGEBA). The synthesized complexes and polymers were characterized by FTIR, UV-VIS and mass spectroscopies. The preparations of epoxy polymers have been carried out at 185 °C. The prepared composites having sharp and narrow excitation/emission properties are expected to be applicable in various systems such as heat-resistant polymers and photo voltaic devices. The prepared composite is also ideal for various applications, easily prepared, safe, and maintain good fluorescence properties.

Keywords: Schiff base ligands, crystal engineering, fluorescence properties, Metal Containing Polymers (MCPs)

Procedia PDF Downloads 347
3516 Hand Gestures Based Emotion Identification Using Flex Sensors

Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan

Abstract:

In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.

Keywords: emotion identification, emotion models, gesture recognition, user perception

Procedia PDF Downloads 285
3515 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies

Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda

Abstract:

Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.

Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation

Procedia PDF Downloads 32
3514 The Effect of Vibration Amplitude on Tissue Temperature and Lesion Size When Using a Vibrating Cardiac Catheter

Authors: Kaihong Yu, Tetsui Yamashita, Shigeaki Shingyochi, Kazuo Matsumoto, Makoto Ohta

Abstract:

During cardiac ablation, high power delivery for deeper lesion formation is limited by electrode-tissue interface overheating which can cause serious complications such as thrombus. To prevent this overheating, temperature control and open irrigation are often used. In temperature control, radiofrequency generator is adjusted to deliver the maximum output power, which maintains the electrode temperature at a target temperature (commonly 55°C or 60°C). Then the electrode-tissue interface temperature is also limited. The electrode temperature is a result of heating from the contacted tissue and cooling from the surrounding blood. Because the cooling from blood is decreased under conditions of low blood flow, the generator needs to decrease the output power. Thus, temperature control cannot deliver high power under conditions of low blood flow. In open irrigation, saline in room temperature is flushed through the holes arranged in the electrode. The electrode-tissue interface is cooled by the sufficient environmental cooling. And high power delivery can also be done under conditions of low blood flow. However, a large amount of saline infusions (approximately 1500 ml) during irrigation can cause other serious complication. When open irrigation cannot be used under conditions of low blood flow, a new overheating prevention may be required. The authors have proposed a new electrode cooling method by making the catheter vibrating. The previous work has introduced that the vibration can make a cooling effect on electrode, which may result form that the vibration could increase the flow velocity around the catheter. The previous work has also proved that increasing vibration frequency can increase the cooling by vibration. However, the effect of the vibration amplitude is still unknown. Thus, the present study investigated the effect of vibration amplitude on tissue temperature and lesion size. An agar phantom model was used as a tissue-equivalent material for measuring tissue temperature. Thermocouples were inserted into the agar to measure the internal temperature. Porcine myocardium was used for lesion size measurement. A normal ablation catheter was set perpendicular to the tissue (agar or porcine myocardium) with 10 gf contact force in 37°C saline without flow. Vibration amplitude of ± 0.5, ± 0.75, and ± 1.0 mm with a constant frequency (31 Hz or 63) was used. A temperature control protocol (45°C for agar phantom, 60°C for porcine myocardium) was used for the radiofrequency applications. The larger amplitude shows the larger lesion sizes. And the higher tissue temperatures in agar phantom are also shown with the higher amplitude. With a same frequency, the larger amplitude has the higher vibrating speed. And the higher vibrating speed will increase the flow velocity around the electrode more, which leads to a larger electrode temperature decrease. To maintain the electrode at the target temperature, ablator has to increase the output power. With the higher output power in the same duration, the released energy also increases. Consequently, the tissue temperature will be increased and lead to larger lesion sizes.

Keywords: cardiac ablation, electrode cooling, lesion size, tissue temperature

Procedia PDF Downloads 371
3513 The Use of Antioxidant and Antimicrobial Properties of Plant Extracts for Increased Safety and Sustainability of Dairy Products

Authors: Loreta Serniene, Dalia Sekmokiene, Justina Tomkeviciute, Lina Lauciene, Vaida Andruleviciute, Ingrida Sinkeviciene, Kristina Kondrotiene, Neringa Kasetiene, Mindaugas Malakauskas

Abstract:

One of the most important areas of product development and research in the dairy industry is the product enrichment with active ingredients as well as leading to increased product safety and sustainability. The most expanding field of the active ingredients is the various plants' CO₂ extracts with aromatic, antioxidant and antimicrobial properties. In this study, 15 plant extracts were evaluated based on their antioxidant, antimicrobial properties as well as sensory acceptance indicators for the development of new dairy products. In order to increase the total antioxidant capacity of the milk products, it was important to determine the content of phenolic compounds and antioxidant activity of CO₂ extract. The total phenolic content of fifteen different commercial CO₂ extracts was determined by the Folin-Ciocalteu reagent and expressed as milligrams of the Gallic acid equivalents (GAE) in gram of extract. The antioxidant activities were determined by 2.2′-azinobis-(3-ethylbenzthiazoline)-6-sulfonate (ABTS) methods. The study revealed that the antioxidant activities of investigated CO₂ extract vary from 4.478-62.035 µmole Trolox/g, while the total phenolic content was in the range of 2.021-38.906 mg GAE/g of extract. For the example, the estimated antioxidant activity of Chinese cinnamon (Cinammonum aromaticum) CO₂ extract was 62.023 ± 0.15 µmole Trolox/g and the total flavonoid content reached 17.962 ± 0.35 mg GAE/g. These two parameters suggest that cinnamon could be a promising supplement for the development of new cheese. The inhibitory effects of these essential oils were tested by using agar disc diffusion method against pathogenic bacteria, most commonly found in dairy products. The obtained results showed that essential oil of lemon myrtle (Backhousia citriodora) and cinnamon (Cinnamomum cassia) has antimicrobial activity against E. coli, S. aureus, B. cereus, P. florescens, L. monocytogenes, Br. thermosphacta, P. aeruginosa and S. typhimurium with the diameter of inhibition zones variation from 10 to 52 mm. The sensory taste acceptability of plant extracts in combination with a dairy product was evaluated by a group of sensory evaluation experts (31 individuals) by the criteria of overall taste acceptability in the scale of 0 (not acceptable) to 10 (very acceptable). Each of the tested samples included 200g grams of natural unsweetened greek yogurt without additives and 1 drop of single plant extract (essential oil). The highest average of overall taste acceptability was defined for the samples with essential oils of orange (Citrus sinensis) - average score 6.67, lemon myrtle (Backhousia citriodora) – 6.62, elderberry flower (Sambucus nigra flos.) – 6.61, lemon (Citrus limon) – 5.75 and cinnamon (Cinnamomum cassia) – 5.41, respectively. The results of this study indicate plant extracts of Cinnamomum cassia and Backhousia citriodora as a promising additive not only to increase the total antioxidant capacity of the milk products and as alternative antibacterial agent to combat pathogenic bacteria commonly found in dairy products but also as a desirable flavour for the taste pallet of the consumers with expressed need for safe, sustainable and innovative dairy products. Acknowledgment: This research was funded by the European Regional Development Fund according to the supported activity 'Research Projects Implemented by World-class Researcher Groups' under Measure No. 01.2.2-LMT-K-718.

Keywords: antioxidant properties, antimicrobial properties, cinnamon, CO₂ plant extracts, dairy products, essential oils, lemon myrtle

Procedia PDF Downloads 204
3512 In vitro Evaluation of Prebiotic Potential of Wheat Germ

Authors: Lígia Pimentel, Miguel Pereira, Manuela Pintado

Abstract:

Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry.

Keywords: by-products, functional ingredients, prebiotic potential, wheat germ

Procedia PDF Downloads 487
3511 Utilization of Schnerr-Sauer Cavitation Model for Simulation of Cavitation Inception and Super Cavitation

Authors: Mohammadreza Nezamirad, Azadeh Yazdi, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi

Abstract:

In this study, the Reynolds-Stress-Navier-Stokes framework is utilized to investigate the flow inside the diesel injector nozzle. The flow is assumed to be multiphase as the formation of vapor by pressure drop is visualized. For pressure and velocity linkage, the coupled algorithm is used. Since the cavitation phenomenon inherently is unsteady, the quasi-steady approach is utilized for saving time and resources in the current study. Schnerr-Sauer cavitation model is used, which was capable of predicting flow behavior both at the initial and final steps of the cavitation process. Two different turbulent models were used in this study to clarify which one is more capable in predicting cavitation inception and super-cavitation. It was found that K-ε was more compatible with the Shnerr-Sauer cavitation model; therefore, the mentioned model is used for the rest of this study.

Keywords: CFD, RANS, cavitation, fuel, injector

Procedia PDF Downloads 209
3510 Investigating Informal Vending Practices and Social Encounters along Commercial Streets in Cairo, Egypt

Authors: Dalya M. Hassan

Abstract:

Marketplaces and commercial streets represent some of the most used and lively urban public spaces. Not only do they provide an outlet for commercial exchange, but they also facilitate social and recreational encounters. Such encounters can be influenced by both formal as well as informal vending activities. This paper explores and documents forms of informal vending practices and how they relate to social patterns that occur along the sidewalks of Commercial Streets in Cairo. A qualitative single case study approach of ‘Midan El Gami’ marketplace in Heliopolis, Cairo is adopted. The methodology applied includes direct and walk-by observations for two main commercial streets in the marketplace. Four zoomed-in activity maps are also done for three sidewalk segments that displayed varying vending and social features. Main findings include a documentation and classification of types of informal vending practices as well as a documentation of vendors’ distribution patterns in the urban space. Informal vending activities mainly included informal street vendors and shop spillovers, either as product or seating spillovers. Results indicated that staying and lingering activities were more prevalent in sidewalks that had certain physical features, such as diversity of shops, shaded areas, open frontages, and product or seating spillovers. Moreover, differences in social activity patterns were noted between sidewalks with street vendors and sidewalks with spillovers. While the first displayed more buying, selling, and people watching activities, the latter displayed more social relations and bonds amongst traders’ communities and café patrons. Ultimately, this paper provides a documentation, which suggests that informal vending can have a positive influence on creating a lively commercial street and on resulting patterns of use on the sidewalk space. The results can provide a basis for further investigations and analysis concerning this topic. This could aid in better accommodating informal vending activities within the design of future commercial streets.

Keywords: commercial streets, informal vending practices, sidewalks, social encounters

Procedia PDF Downloads 163
3509 Breast Cancer in Very Young (Less Than 25 Yeras) Women: An Institutional Analysis from Developing Country

Authors: Ajay Gogia, Svs Deo, Dn Sharma, Atul Batra, Ashutash Mishra

Abstract:

Background and Aims: Breast cancer in women aged less than 25 years (defined as very young breast cancer, VYBC) is rare and accounts for 0.25% of all breast cancer in the West. There is no data available on VYBC from developing countries. The aim of this study was to analyze the clinical, pathological, and prognostic factors and outcomes in VYBC. Methods: This retrospective analysis was performed on 80 patients aged 25 years or less (screened 8000 files of female BC) who were registered at All India Institute of Medical Sciences (AIIMS), New Delhi, India, over a 15-year period between 2011 and 2023. Results: The median age was 21.5 years (range 16-25). A positive family history (siblings and parents) was elicited in 30% of cases, and breast cancer gene (BRCA1/2) mutation was found in 33% of cases patients. Ten patients (12.5%) patients have pregnancy-associated breast cancer (BC detected during pregnancy or 1 year after postpartum period). The TNM stage distribution was Stage I was 0, stage II -30%, stage III –60% and Stage IV -10 %patients. Seventy percent of tumors were high grade, and 90% had pathological node-positive disease. Estrogen, Progesterone, and human epidermal growth factor receptor 2 (HER2)/neu positivity were 25%,25% and 35%, respectively. Triple-negative breast cancer constituted 40% of patients. With a median follow-up of 42 months, 3 years, relapse-free survival (nonmetastatic disease), progression-free survival (metastatic disease) and overall survival were 30%, 15% and 50%, respectively. Conclusions: Very young women constituted 1% of all breast cancer cases. Advanced disease at presentation and high-risk pathological features result in poor outcomes. One-third of VYBCs are associated with BRCA mutation, which requires genetic counseling and risk reduction surgery if required. Due to the aggressive behavior of BC in this age group, need early diagnosis and prompt treatment

Keywords: very young, breast cancer, outcome, developing country, India

Procedia PDF Downloads 28
3508 The Impact of Legislation on Waste and Losses in the Food Processing Sector in the UK/EU

Authors: David Lloyd, David Owen, Martin Jardine

Abstract:

Introduction: European weight regulations with respect to food products require a full understanding of regulation guidelines to assure regulatory compliance. It is suggested that the complexity of regulation leads to practices which result to over filling of food packages by food processors. Purpose: To establish current practices by food processors and the financial, sustainable and societal impacts on the food supply chain of ineffective food production practices. Methods: An analysis of food packing controls with 10 companies of varying food categories and quantitative based research of a further 15 food processes on the confidence in weight control analysis of finished food packs within their organisation. Results: A process floor analysis of manufacturing operations focussing on 10 products found over fill of packages ranging from 4.8% to 20.2%. Standard deviation figures for all products showed a potential for reducing average weight of the pack whilst still retain the legal status of the product. In 20% of cases, an automatic weight analysis machine was in situ however weight packs were still significantly overweight. Collateral impacts noted included the effect of overfill on raw material purchase and added food miles often on a global basis with one raw material alone creating 10,000 extra food miles due to the poor weight control of the processing unit. A case study of a meat and bakery product will be discussed with the impact of poor controls resulting from complex legislation. The case studies will highlight extra energy costs in production and the impact of the extra weight on fuel usage. If successful a risk assessment model used primarily on food safety but adapted to identify waste /sustainability risks will be discussed within the presentation.

Keywords: legislation, overfill, profile, waste

Procedia PDF Downloads 406
3507 Consumers Perception of Slogans/ Taglines: A Study of Higher Education Sector in India

Authors: Puja Mahesh

Abstract:

Purpose: A good slogan captures the essence of your brand's promised consumer benefit in one short phrase. A good slogan conjures up positive imagery about your business or your product. A good slogan has the element of immediacy. Immediacy does not necessarily mean that the slogan will inspire consumers to run right out and buy your product. It does mean, however, that your slogan has an immediate cognitive impact. It forces your audience to "stop-and-think" after exposure as a necessary first step toward remembering your slogan promise. A good slogan is memorable and durability. When your slogan promise is occupying prime real estate in the consumer's subconscious, it aids in recall and activates preference for your brand when you want it -when consumers are ready to buy. The objective of current study is to understand the consumer perception of slogans/taglines of higher education sector in India. Design/Methodology/Approach: Survey of 500 consumers (largely comprising of youth) will be done using questionnaire. Universities and institutes will be chosen on the basis of various streams and Credible Rankings. The perception will be taken from the respondents on the basis of scale. Findings: Catchy phrases, rhymes, music, jingles, avatars (visual representations) and unique imagery are just a few of the mnemonic clutter-busting tactics commonly used in slogans to stand apart from the competition and to aid in memory recall. The study will reveal whether it is true that catchy phrases, rhymes, music, jingles, avatars (visual representations) and unique imagery across disciplines and universities help in building stronger brands. It will also be found whether consumers pay more attention to reputation of University/ College or brand identity. Originality/Value: Researcher has not come across any study of Consumer Perception of Slogans/Taglines of Higher Education Brands in India. Also, it would be interesting to understand Consumer Perception of various colleges/streams particularly Management colleges who invest a lot of time in branding exercise.

Keywords: consumer perception, higher education, slogans, taglines

Procedia PDF Downloads 424
3506 A Paradigm Shift towards Personalized and Scalable Product Development and Lifecycle Management Systems in the Aerospace Industry

Authors: David E. Culler, Noah D. Anderson

Abstract:

Integrated systems for product design, manufacturing, and lifecycle management are difficult to implement and customize. Commercial software vendors, including CAD/CAM and third party PDM/PLM developers, create user interfaces and functionality that allow their products to be applied across many industries. The result is that systems become overloaded with functionality, difficult to navigate, and use terminology that is unfamiliar to engineers and production personnel. For example, manufacturers of automotive, aeronautical, electronics, and household products use similar but distinct methods and processes. Furthermore, each company tends to have their own preferred tools and programs for controlling work and information flow and that connect design, planning, and manufacturing processes to business applications. This paper presents a methodology and a case study that addresses these issues and suggests that in the future more companies will develop personalized applications that fit to the natural way that their business operates. A functioning system has been implemented at a highly competitive U.S. aerospace tooling and component supplier that works with many prominent airline manufacturers around the world including The Boeing Company, Airbus, Embraer, and Bombardier Aerospace. During the last three years, the program has produced significant benefits such as the automatic creation and management of component and assembly designs (parametric models and drawings), the extensive use of lightweight 3D data, and changes to the way projects are executed from beginning to end. CATIA (CAD/CAE/CAM) and a variety of programs developed in C#, VB.Net, HTML, and SQL make up the current system. The web-based platform is facilitating collaborative work across multiple sites around the world and improving communications with customers and suppliers. This work demonstrates that the creative use of Application Programming Interface (API) utilities, libraries, and methods is a key to automating many time-consuming tasks and linking applications together.

Keywords: PDM, PLM, collaboration, CAD/CAM, scalable systems

Procedia PDF Downloads 174
3505 Synthesis and Characterization of Iron and Aluminum-Containing AFm Phases

Authors: Aurore Lechevallier, Mohend Chaouche, Jerome Soudier, Guillaume Renaudin

Abstract:

The cement industry accounts for 8% of the global CO₂ emissions, and approximately 60% of these emissions are associated with the Portland cement clinker production from the decarbonization of limestone (CaCO3). Their impact on the greenhouse effect results in growing social awareness. Therefore, CO2 footprint becomes a product selection choice, and substituting Portland cement with a lower CO2-footprint alternative binder is sought. In this context, new hydraulic binders have been studied as a potential Ordinary Portland Cement substitute. Many of them are composed of iron oxides and aluminum oxides, present in the Ca₄Al₂-xFe₂+ₓO₁₀-like phase and forming Ca-LDH (i.e. AFM) as a hydration product. It has become essential to study the possible existence of Fe/Al AFM solid solutions to characterize the hydration process properly. Ca₂Al₂-xFex(OH)₆.X.nH₂O layered AFM samples intercalated with either nitrate or chloride X anions were synthesized based on the co-precipitation method under a nitrogen atmosphere to avoid the carbonation effect.AFM samples intercalated with carbonate anions were synthesized based on the anionic exchange process, using AFM-NO₃ as the source material. These three AFM samples were synthesized with varying Fe/Al molar ratios. The experimental conditions were optimized to make possible the formation of Al-AFM and Fe-AFM using the same parameters (namely pH value and salt concentration). Rietveld refinements were performed to demonstrate the existence of a solid solution between the two trivalent metallic end members. Spectroscopic analyses were used to confirm the intercalation of the targeted anion; secondary electron images were taken to analyze the AFM samples’ morphology, and energy dispersive X-ray spectroscopy (EDX) was carried out to determine the elemental composition of the AFM samples. Results of this study make it possible to quantify the Al/Fe ratio of the AFM phases precipitated in our hydraulic binder, thanks to the determined Vegard's law characteristic to the corresponding solid solutions

Keywords: AFm phase, iron-rich binder, low-carbon cement, solid solution

Procedia PDF Downloads 137
3504 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 138
3503 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

Authors: Mahmoud Huleihil

Abstract:

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

Keywords: magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine

Procedia PDF Downloads 245
3502 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction

Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop

Abstract:

A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.

Keywords: exponentially shrinking sheet, magnetic field, mixed convection, suction

Procedia PDF Downloads 330
3501 In situ Ortho-Quinone Methide Reactions for Construction of Flavonoids with Fused Ring Systems

Authors: Vidia A. Nuraini, Eugene M. H. Yee, Mohan Bhadbhade, David StC. Black, Naresh Kumar

Abstract:

Flavonoids are naturally occurring compounds that have been shown to exhibit a wide range of biological properties including anticancer and anti-inflammatory activities. However, flavonoids suffer from low bioavailability, which limits their overall utility for therapeutic applications. One of the methods to overcome this limitation is through structural modification of natural flavonoids. In this study, flavanone, isoflavanone, and isoflavene, were structurally modified through the introduction of additional fused-ring systems via ortho-quinone methide intermediates (o-QMs). These intermediates can readily undergo a [4+2] cycloaddition through an inverse-electron-demand Diels–Alder reaction with electron-rich dienophiles. A regioselective Mannich reaction using bis-(N,N-dimethylamino)methane was employed to generate the o-QM precursors of flavanone, isoflavanone, and isoflavene. The o-QM intermediates were subsequently generated in situ through thermal elimination of the dimethylamine functionality and reacted with a variety of dienophiles to produce novel flavonoids with fused-ring systems. A total of 21 novel flavonoid analogs were successfully synthesized. The X-ray crystal structure of cycloaddition adducts, particularly those derived from 3,4-dihydro-2H-pyran and p-methoxystyrene revealed a special case of enantiomeric disorder, where two enantiomers in equal amounts superpose with one another, with the exception for atoms that have opposite configuration. The anticancer properties of fused-ring systems derived from isoflavene were evaluated against the neuroblastoma SKN-BE(2)C, the triple negative breast cancer MDA-MB-231, and the glioblastoma U87 cancer cell lines. One of these cycloaddition adducts had displayed improved anti-proliferative activity against MDA-MB-231 and U87 cancer cell lines as compared to the parent compound. Further anticancer and anti-inflammatory activities of the flavanone and isoflavanone analogs are currently being investigated.

Keywords: Diels-Alder reaction, flavonoids, Mannich reaction, ortho-quinone methide.

Procedia PDF Downloads 251
3500 IT Systems of the US Federal Courts, Justice, and Governance

Authors: Joseph Zernik

Abstract:

The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.

Keywords: e-justice, federal courts, human rights, banking regulation, United States

Procedia PDF Downloads 378
3499 Photophysics and Photochemistry of Cross-Conjugated Y-Shaped Enediyne Fluorophores

Authors: Anuja Singh, Avik K. Pati, Ashok K. Mishra

Abstract:

Organic fluorophores with π-conjugated scaffolds are important because of their interesting optoelectronic properties. In recent years, our lab has been engaged in understanding the photophysics of small diacetylene bridged fluorophores and found the diynes as a promising class of π-conjugated fluorophores. Building on this understanding, recently we have focused on the photophysics of a less explored class of cross-conjugated Y-shaped enediynes (one double and two triple bonds). Here we present the photophysical properties of such enediynes which show interesting photophysical properties that include dual emissions from locally excited (LE) and intramolecular charge transfer (ICT) states and ring size dependent aggregate fluorescence in non-aqueous media. The dyes also show prominent aggregate fluorescence in mixed-aqueous solvents and solid powder form. We further show that the solid state fluorescence can be reversibly switched multiple of cycles by external stimuli, highlighting their potential applications in solid states. The enediynes with push-pull electronic substituents/moieties exhibit high contrast fluorescence color switching upon continuous photon illumination. The intriguing photophysical outcomes of the enediynyl fluorophores are judiciously exploited to generate single-component white light emission in binary solvent mixtures and sense polar aprotic vapor in polymer film matrices. The photophysical behavior of the dyes is further successfully utilized to monitor the microenvironment changes of biologically relevant anisotropic media such as bile salts. In summary, the newly introduced cross-conjugated enediynes enrich the toolbox of organic fluorophores and vouch to display versatile applications.

Keywords: aggregation in solution and solid state, enediynes, physical photochemistry and photophysics, vapor sensing and white light emission

Procedia PDF Downloads 480
3498 Reverse Logistics End of Life Products Acquisition and Sorting

Authors: Badli Shah Mohd Yusoff, Khairur Rijal Jamaludin, Rozetta Dollah

Abstract:

The emerging of reverse logistics and product recovery management is an important concept in reconciling economic and environmental objectives through recapturing values of the end of life product returns. End of life products contains valuable modules, parts, residues and materials that can create value if recovered efficiently. The main objective of this study is to explore and develop a model to recover as much of the economic value as reasonably possible to find the optimality of return acquisition and sorting to meet demand and maximize profits over time. In this study, the benefits that can be obtained for remanufacturer is to develop demand forecasting of used products in the future with uncertainty of returns and quality of products. Formulated based on a generic disassembly tree, the proposed model focused on three reverse logistics activity, namely refurbish, remanufacture and disposal incorporating all plausible means quality levels of the returns. While stricter sorting policy, constitute to the decrease amount of products to be refurbished or remanufactured and increases the level of discarded products. Numerical experiments carried out to investigate the characteristics and behaviour of the proposed model with mathematical programming model using Lingo 16.0 for medium-term planning of return acquisition, disassembly (refurbish or remanufacture) and disposal activities. Moreover, the model seeks an analysis a number of decisions relating to trade off management system to maximize revenue from the collection of use products reverse logistics services through refurbish and remanufacture recovery options. The results showed that full utilization in the sorting process leads the system to obtain less quantity from acquisition with minimal overall cost. Further, sensitivity analysis provides a range of possible scenarios to consider in optimizing the overall cost of refurbished and remanufactured products.

Keywords: core acquisition, end of life, reverse logistics, quality uncertainty

Procedia PDF Downloads 302
3497 Two Wheels Differential Type Odometry for Robot

Authors: Abhishek Jha, Manoj Kumar

Abstract:

This paper proposes a new type of two wheels differential type odometry to estimate the next position and orientation of mobile robots. The proposed odometry is composed for two independent wheels with respective encoders. The two wheels rotate independently, and the change is determined by the difference in the velocity of the two wheels. Angular velocities of the two wheels are measured by rotary encoders. A mathematical model is proposed for the mobile robots to precisely move towards the goal. Using measured values of the two encoders, the current displacement vector of a mobile robot is calculated by kinematics of the mathematical model. Using the displacement vector, the next position and orientation of the mobile robot are estimated by proposed odometry. Result of simulator experiment by the developed odometry is shown.

Keywords: mobile robot, odometry, unicycle, differential type, encoders, infrared range sensors, kinematic model

Procedia PDF Downloads 451
3496 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method

Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a

Abstract:

The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.

Keywords: damage detection, finite element, tapered pipe, vibration characteristics

Procedia PDF Downloads 169
3495 Reviving the Ancient Craft of Patteda Anchu Saree Weaving of Karnataka, India

Authors: Hemalatha Jain, M. Vasantha

Abstract:

Patteda Anchu is one of the first variety of sari woven centuries ago in Gajendragarh village from Gadag district of north Karnataka. The sari played a significant role in bringing together the socio-cultural aspect in ancient days. It was used as wedding sari for bride and also to adorn goddess Yellamma Saundatti by the devotees. Indian traditional art and crafts were rich in culture and diversity, however with the onset of liberalisation and end of the license raj lot of traditional Indian artwork are on the verge of extinction today. Patteda Anchu is one of the examples of traditional art lost to globalisation. The main aim of the study was to document the ancient weaving tradition of the Patteda Anchu and revive by exploring the weaving possibility as yardage with different product layout. To accomplish the formulated objectives a exploratory cum diagnostic study was planned. Data was collected through observations and interviews schedule during the field visits in Gajendragarh village. There are very few weavers weaving on traditional looms and many weavers who have moved to weaving other sari's or construction work were interviewed to understand the downfall of the sari. The discussions and interviews conducted with the local weavers, shop keepers, sales agents, weaving society, NGOs and Self help groups helped in unearthing the new opportunities to develop products for the local and national market and help start weaving of Patteda Anchu and expand its market. The handloom art details in terms of raw materials, loom set up, dyeing, types of Patteda Anchu, weaving process and colors were documented through photographs, video recordings and supplemented with notes. Based on the analysis of the feedback gathered it was recommended to develop products on the handloom without changing the width frame or design of the traditional weaving methods. The weavers, weavers society and other cooperatives centres also were in consent with the new product development which will help sustain the Patteda Anchu.

Keywords: Gajendragarh, patteda Anchu sari, revival of traditional art, weaving, handloom

Procedia PDF Downloads 518
3494 Demographic Profile, Risk Factors and In-hospital Outcomes of Acute Coronary Syndrome (ACS) in Young Population, in Pakistan-Single Center Real World Experience

Authors: Asma Qudrat, Abid Ullah, Rafi Ullah, Ali Raza, Shah Zeb, Syed Ali Shan Ul-Haq, Shahkar Ahmed Shah, Attiya Hameed Khan, Saad Zaheer, Umama Qasim, Kiran Jamal, Zahoor khan

Abstract:

Objectives: Coronary artery disease (CAD) is the major public health issue associated with high mortality and morbidity rate worldwide. Young patients with ACS have unique characteristics with different demographic profiles and risk factors. The precise diagnosis and early risk stratification is important in guiding treatment and predicting the prognosis of young patients with ACS. To evaluate the associated demographics, risk factors, and outcomes profile of ACS in young age patients. Methods: The research follow a retrospective design, the single centre study of patients diagnosis with the first event of ACS in young age (>18 and <40) were included. Data collection included demographic profiles, risk factors, and in-hospital outcomes of young ACS patients. The patient’s data was retrieved through Electronic Medical Records (EMR) of Peshawar Institute of Cardiology (PIC), and all characteristic were assessed. Results: In this study, 77% were male, and 23% were female patients. The risk factors were assessed with CAD and shown significant results (P < 0.01). The most common presentation was STEMI, with (45%) most in ACS young patients. The angiographic pattern showed single vessel disease (SVD) in 49%, double vessel disease (DVD) in 17% and triple vessel disease (TVD) was found in 10%, and Left Artery Disease (LAD) (54%) was present to be the most common involved artery. Conclusion: It is concluded that the male sex was predominant in ACS young age patients. SVD was the common coronary angiographic finding. Risk factors showed significant results towards CAD and common presentations.

Keywords: coronary artery disease, Non-ST elevation myocardial infarction, ST elevation myocardial infarction, unstable angina, acute coronary syndrome

Procedia PDF Downloads 163
3493 Process Evaluation for a Trienzymatic System

Authors: C. Müller, T. Ortmann, S. Scholl, H. J. Jördening

Abstract:

Multienzymatic catalysis can be used as an alternative to chemical synthesis or hydrolysis of polysaccharides for the production of high value oligosaccharides from cheap resources such as sucrose. However, development of multienzymatic processes is complex, especially with respect to suitable conditions for enzymes originating from different organisms. Furthermore, an optimal configuration of the catalysts in a reaction cascade has to be found. These challenges can be approached by design of experiments. The system investigated in this study is a trienzymatic catalyzed reaction which results in laminaribiose production from sucrose and comprises covalently immobilized sucrose phosphorylase (SP), glucose isomerase (GI) and laminaribiose phosphorylase (LP). Operational windows determined with design of experiments and kinetic data of the enzymes were used to optimize the enzyme ratio for maximum product formation and minimal production of byproducts. After adjustment of the enzyme activity ratio to 1: 1.74: 2.23 (SP: LP: GI), different process options were investigated in silico. The considered options included substrate dependency, the use of glucose as co-substrate and substitution of glucose isomerase by glucose addition. Modeling of batch operation in a stirred tank reactor led to yields of 44.4% whereas operation in a continuous stirred tank reactor resulted in product yields of 22.5%. The maximum yield in a bienzymatic system comprised of sucrose phosphorylase and laminaribiose phosphorylase was 67.7% with sucrose and different amounts of glucose as substrate. The experimental data was in good compliance with the process model for batch operation. The continuous operation will be investigated in further studies. Simulation of operational process possibilities enabled us to compare various operational modes regarding different aspects such as cost efficiency, with the minimum amount of expensive and time-consuming practical experiments. This gives us more flexibility in process implementation and allows us, for example, to change the production goal from laminaribiose to higher oligosaccharides.

Keywords: design of experiments, enzyme kinetics, multi-enzymatic system, in silico process development

Procedia PDF Downloads 336
3492 Safeguarding Product Quality through Pre-Qualification of Material Manufacturers: A Ship and Offshore Classification Society's Perspective

Authors: Sastry Y. Kandukuri, Isak Andersen

Abstract:

Despite recent advances in the manufacturing sector, quality issues remain a frequent occurrence, and can result in fatal accidents, equipment downtime, and loss of life. Adequate quality is of high importance in high-risk industries such as sea-going vessels and offshore installations in which third party quality assurance and product control play an important essential role in ensuring manufacturing quality of critical components. Classification societies play a vital role in mitigating risk in these industries by making sure that all the stakeholders i.e. manufacturers, builders, and end users are provided with adequate rules and standards that effectively ensures components produced at a high level of quality based on the area of application and risk of its failure. Quality issues have also been linked to the lack of competence or negligence of stakeholders in supply value chain. However, continued actions and regulatory reforms through modernization of rules and requirements has provided additional tools for purchasers and manufacturers to confront these issues. Included among these tools are updated ‘approval of manufacturer class programs’ aimed at developing and implementing a set of standardized manufacturing quality metrics for use by the manufacturer and verified by the classification society. The establishment and collection of manufacturing and testing requirements described in these programs could provide various stakeholders – from industry to vessel owners – with greater insight into the state of quality at a given manufacturing facility, and allow stakeholders to anticipate better and address quality issues while simultaneously reducing unnecessary failures that are costly to the industry. The publication introduces, explains and discusses critical manufacturing and testing requirements set in a leading class society’s approval of manufacturer regime and its rationale and some case studies.

Keywords: classification society, manufacturing, materials processing, materials testing, quality control

Procedia PDF Downloads 355