Search results for: sensory processing patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6883

Search results for: sensory processing patterns

4903 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
4902 Young Adults’ Media Addiction Coping Strategies: A Longitudinal Study

Authors: Johanna Lindstrom, Jacob Mickelsson

Abstract:

Changes in the current media environment are transforming peoples’ everyday media consumption patterns all over the world. Digital media have become a natural, almost unavoidable, part of everyday lives of humans. While this has led to many positive consequences, there is also a growing concern for harmful effects. This paper contributes to knowledge about “the dark side” of media use by considering the topic of media addiction and subsequent coping strategies among young adults. The paper draws on a longitudinal media diary study conducted among young university students between the years 2013 and 2021. A total of 1029 diaries have been collected (approximately 100 each year), aiming at capturing the students’ everyday media behavior. In this paper, reflective narratives in the diaries have been analyzed, aiming at answering the following questions: Which of their own media behaviors do the students perceive as particularly destructive, addictive or problematic? How do they cope with such behaviors? Results from the study indicate a noticeable increase in reflections on addictive media behavior over the years. For example, compared to earlier years, the amount of such reflections significantly started to increase in the diaries in 2016 and 2017, and this trend has continued ever since. Furthermore, the nature of these reflections has changed, displaying a growing concern for one’s own excessive media use and general wellbeing. Media addiction seems particularly difficult to cope with as digital media is literally everywhere and media use in general is described as consistent and habitual, in terms of regularly repeated routines that are fragmented but performed continuously and often unintentionally throughout the day. Reflections on “the dark side” of everyday media consumption become particularly prominent in times of the Covid -19 pandemic. However, this trend was noticeable well before the pandemic started. The study also identifies a countertrend regarding reflections on how to deal and cope with problematic media behavioral patterns. This countertrend portrays a general development of increased awareness of factors that may trigger compulsive behavior and how to avoid or handle such trigger points. The countertrend is particularly evident in recent years, despite the ongoing pandemic and subsequent increases in time spent using media. Addictive media behavior may lead to severe consequences for students’ learning processes and general well-being. Increased awareness of this growing trend and coping strategies are needed on an individual as well as a broader educational level.

Keywords: coping strategies, media addiction, media behavior, well-being

Procedia PDF Downloads 202
4901 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing

Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill

Abstract:

In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.

Keywords: idea ontology, innovation management, semantic search, open information extraction

Procedia PDF Downloads 188
4900 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells

Authors: Amina Farooq, Nauman Zafar Butt

Abstract:

This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.

Keywords: impedance, biochip, cell counting, microfluidics

Procedia PDF Downloads 162
4899 Isotopic Evidence (He, Ne, Ar) for Deep Fluid in the Caucasus Continental Collision Zone

Authors: Larisa Liamina, Vasily Lavrushin, Salvatore Inguaggiato

Abstract:

This study presents and summarizes the results of researching the isotopic signature of helium in the deep fluid eastern part of the Southern slope of the Greater Caucasus and the Lesser Caucasus (Azerbaijan and Armenia) for the period from 2010 to 2016. The results of isotope ratios of 3He/4He in 59 samples of the gas phase of geothermal fluids and mud volcanoes are presented. New data have been obtained not only on the isotopic ratios of helium, but also neon and argon. The R/Ra ratio was analyzed along the Ankara-Sevan ophiolite structure. The patterns of lateral variations of the 3He/4He ratio of different geological structural elements of the studied region are revealed.

Keywords: isotopes helium, deep fluids, tectonic structures, Caucasus

Procedia PDF Downloads 46
4898 A Cohort and Empirical Based Multivariate Mortality Model

Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong

Abstract:

This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.

Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management

Procedia PDF Downloads 55
4897 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context

Authors: Martin Kittel, Alexander Roth

Abstract:

The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.

Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility

Procedia PDF Downloads 72
4896 Management of Urinary Tract Infections by Nurse Practitioners in a Canadian Pediatric Emergency Department: A Rretrospective Cohort Study

Authors: T. Mcgraw, F. N. Morin, N. Desai

Abstract:

Background: Antimicrobial resistance is a critical issue in global health care and a significant contributor to increased patient morbidity and mortality. Suspected urinary tract infection (UTI) is a key area of inappropriate antibiotic prescription in pediatrics. Management patterns of infectious diseases have been shown to vary by provider type within a single setting. The aim of this study was to assess compliance with national UTI management guidelines by nurse practitioners in a pediatric emergency department (ED). Methods: This was a post-hoc analysis of a retrospective cohort study to review and evaluate visits to a tertiary care freestanding pediatric emergency department. Patients were included if they were 60 days to 36 months old and discharged with a diagnosis of UTI or ‘rule-out UTI’ between July 2015 and July 2020. Primary outcome measure was proportion of visits seen by Nurse Practitioners (NP) which were associated with national guideline compliance in the diagnosis and treatment of suspected UTI. We performed descriptive statistics and comparative analyses to determine differences in practice patterns between NPs, and physicians. Results: A total of 636 charts were reviewed, of which 402 patients met inclusion criteria. 17 patients were treated by NPs, 385 were treated by either Pediatric Emergency Medicine physicians (PEM) or non-PEM physicians. Overall, the proportion of infants receiving guideline-compliant care was 25.9% (21.8-30.4%). Of those who were prescribed antibiotics, 79.6% (74.7-83.8%) received first line guideline recommended therapy and 58.9% (53.8-63.8%) received fully compliant therapy with respect to age, dose, duration, and frequency. In patients treated by NPs, 16/17 (94%(95% CI:73.0-99.0)) required antibiotics, 15/16 (93%(95% CI: 71.7-98.9)) were treated with first line agent (cephalexin), 8/16 (50%(95% CI:28-72)) were guideline compliant of dose and duration. 5/8 (63%(95% CI:30.6-86.3)) were noncompliant for dose being too high. There was no difference in receiving guideline compliant empiric antibiotic therapy between physicians and nurse practitioners (OR: 0.837 CI: 0.302-2.69). Conclusion: In this post-hoc analysis, guideline noncompliance by nurse practitioners is common in children tested and treated for UTIs in a pediatric emergency department. Care by a Nurse Practitioner was not associated with greater rate of noncompliance than care by a Pediatric Emergency Medicine physician. Future appropriately powered studies may focus on confirming these results.

Keywords: antibiotic stewardship, infectious disease, nurse practitioner, urinary tract infection

Procedia PDF Downloads 104
4895 The Proposal of a Shared Mobility City Index to Support Investment Decision Making for Carsharing

Authors: S. Murr, S. Phillips

Abstract:

One of the biggest challenges entering a market with a carsharing or any other shared mobility (SM) service is sound investment decision-making. To support this process, the authors think that a city index evaluating different criteria is necessary. The goal of such an index is to benchmark cities along a set of external measures to answer the main two challenges: financially viability and the understanding of its specific requirements. The authors have consulted several shared mobility projects and industry experts to create such a Shared Mobility City Index (SMCI). The current proposal of the SMCI consists of 11 individual index measures: general data (demographics, geography, climate and city culture), shared mobility landscape (current SM providers, public transit options, commuting patterns and driving culture) and political vision and goals (vision of the Mayor, sustainability plan, bylaws/tenders supporting SM). To evaluate the suitability of the index, 16 cities on the East Coast of North America were selected and secondary research was conducted. The main sources of this study were census data, organisational records, independent press releases and informational websites. Only non-academic sources where used because the relevant data for the chosen cities is not published in academia. Applying the index measures to the selected cities resulted in three major findings. Firstly, density (city area divided by number of inhabitants) is not an indicator for the number of SM services offered: the city with the lowest density has five bike and carsharing options. Secondly, there is a direct correlation between commuting patterns and how many shared mobility services are offered. New York, Toronto and Washington DC have the highest public transit ridership and the most shared mobility providers. Lastly, except one, all surveyed cities support shared mobility with their sustainability plan. The current version of the shared mobility index is proving a practical tool to evaluate cities, and to understand functional, political, social and environmental considerations. More cities will have to be evaluated to refine the criteria further. However, the current version of the index can be used to assess cities on their suitability for shared mobility services and will assist investors deciding which city is a financially viable market.

Keywords: carsharing, transportation, urban planning, shared mobility city index

Procedia PDF Downloads 303
4894 The Development and Change of Settlement in Tainan County (1904-2015) Using Historical Geographic Information System

Authors: Wei Ting Han, Shiann-Far Kung

Abstract:

In the early time, most of the arable land is dry farming and using rainfall as water sources for irrigation in Tainan county. After the Chia-nan Irrigation System (CIS) was completed in 1930, Chia-nan Plain was more efficient allocation of limited water sources or irrigation, because of the benefit from irrigation systems, drainage systems, and land improvement projects. The problem of long-term drought, flood and salt damage in the past were also improved by CIS. The canal greatly improved the paddy field area and agricultural output, Tainan county has become one of the important agricultural producing areas in Taiwan. With the development of water conservancy facilities, affected by national policies and other factors, many agricultural communities and settlements are formed indirectly, also promoted the change of settlement patterns and internal structures. With the development of historical geographic information system (HGIS), Academia Sinica developed the WebGIS theme with the century old maps of Taiwan which is the most complete historical map of database in Taiwan. It can be used to overlay historical figures of different periods, present the timeline of the settlement change, also grasp the changes in the natural environment or social sciences and humanities, and the changes in the settlements presented by the visualized areas. This study will explore the historical development and spatial characteristics of the settlements in various areas of Tainan County. Using of large-scale areas to explore the settlement changes and spatial patterns of the entire county, through the dynamic time and space evolution from Japanese rule to the present day. Then, digitizing the settlement of different periods to perform overlay analysis by using Taiwan historical topographic maps in 1904, 1921, 1956 and 1989. Moreover, using document analysis to analyze the temporal and spatial changes of regional environment and settlement structure. In addition, the comparison analysis method is used to classify the spatial characteristics and differences between the settlements. Exploring the influence of external environments in different time and space backgrounds, such as government policies, major construction, and industrial development. This paper helps to understand the evolution of the settlement space and the internal structural changes in Tainan County.

Keywords: historical geographic information system, overlay analysis, settlement change, Tainan County

Procedia PDF Downloads 128
4893 Improving Taint Analysis of Android Applications Using Finite State Machines

Authors: Assad Maalouf, Lunjin Lu, James Lynott

Abstract:

We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid.

Keywords: android, static analysis, string analysis, taint analysis

Procedia PDF Downloads 181
4892 Patterns of Eosinophilia in Cardiac Patients and its Association with Endomyocardial Disease Presenting to Tertiary Care Hospital in Peshawar

Authors: Rashid Azeem

Abstract:

Introduction: Eosinophilia, which can be categorized as mild, moderate, and severe form on the basis of increasing eosinophil counts, might be responsible for a wide range of cardiac manifestations, varying from a simple myocarditis to a severe state like endomyocardial fibrosis. Eosinophils are involved in the pathogenesis of a variety of cardiovascular disorder like Loffler endocarditis, eosinophilic granulomatosis with polyangitis (EGPH), and hyper eosinophilic (HES). Among them HES carries and incidence rate b/w 48% and 75% and is the main causes of cardiac motility and mobility due to eosinophilia involvement. Aims and objectives: The aim of this study is to determine the frequency of eosinophilia in cardiac patients and to ascertain the evidence of endomyocardial diseases in eosinophilic patients in a cardiology institution Material and Methods: This cross sectional analytical study was conducted in hematology Department of Peshawar institute of Cardiology after approval from hospital ethical and research committee. All 70 patients were subjected to detailed history and clinical examination. Investigation like CBC, Chest X-ray, ECG, Echo, Angiography findings were used to monitor patient’s clinical status. Data is analyzed using SPSS version 25 and MS Excel. Results: Out of 70 patients in our study, a total of 66 patients(94 %) shows evidence of cardiac manifestations. In our study, we have observed a number of abnormal ECG patterns in cardiac patients presenting with eosinophilia, like T wave changes, loss of R wave, sinus bradycardia with LVH strain, and ST wave abnormality. abnormal echocardiographic findings were observed in our patients, like valvular abnormalities (in 45.7%), RWMA abnormalities (in 2.8%), isolated ventricular dysfunction (in 21.4%), and in 10% patients, normal echocardiography. We further noted abnormal coronary angiography findings in cardiac patients with eosinophilia ranging from single vessel to multi vessel occlusions. Conclusions: Eosinophils are involved in the pathogenesis of a variety of cardiovascular disorders which can be detected by various diagnostic means, and the severity of the disease increases with time and with increasing eosinophil count ranging from simple myocarditis to a fatal condition like endomyocardial fibrosis. Thus, increased eosinophilic count as a laboratory parameter in cardiac patients may be a sign of endomyocardial damage which will further help cardiologist to intervene more aggressively then routine approach to a cardiac patient.

Keywords: eosinophilia, endomyocardial fibrosis, cardiac, hypereosinophilic syndrome

Procedia PDF Downloads 65
4891 Dynamic EEG Desynchronization in Response to Vicarious Pain

Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy

Abstract:

The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.

Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition

Procedia PDF Downloads 283
4890 Role of Hyperbaric Oxygen Therapy in Management of Diabetic Foot

Authors: Magdy Al Shourbagi

Abstract:

Diabetes mellitus is the commonest cause of neuropathy. The common pattern is a distal symmetrical sensory polyneuropathy, associated with autonomic disturbances. Less often, Diabetes mellitus is responsible for a focal or multifocal neuropathy. Common causes for non-healing of diabetic foot are the infection and ischemia. Diabetes mellitus is associated with a defective cellular and humoral immunity. Particularly, decreased phagocytosis, decreased chemotaxis, impaired bacterial killing and abnormal lymphocytic function resulting in a reduced inflammatory reaction and defective wound healing. Hyperbaric oxygen therapy is defined by the Undersea and Hyperbaric Medical Society as a treatment in which a patient intermittently breathes 100% oxygen and the treatment chamber is pressurized to a pressure greater than sea level (1 atmosphere absolute). The pressure increase may be applied in mono-place (single person) or multi-place chambers. Multi-place chambers are pressurized with air, with oxygen given via face mask or endotracheal tube; while mono-place chambers are pressurized with oxygen. Oxygen gas plays an important role in the physiology of wound healing. Hyperbaric oxygen therapy can raise tissue oxygen tensions to levels where wound healing can be expected. HBOT increases the killing ability of leucocytes also it is lethal for certain anaerobic bacteria and inhibits toxin formation in many other anaerobes. Multiple anecdotal reports and studies in HBO therapy in diabetic patients report that HBO can be an effective adjunct therapy in the management of diabetic foot wounds and is associated with better functional outcomes.

Keywords: hyperbari oxygen therapy, diabetic foot, neuropathy, multiplace chambers

Procedia PDF Downloads 290
4889 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation

Procedia PDF Downloads 207
4888 Geographic Information System (GIS) for Structural Typology of Buildings

Authors: Néstor Iván Rojas, Wilson Medina Sierra

Abstract:

Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.

Keywords: microzonation, buildings, geo-processing, cadastral number

Procedia PDF Downloads 334
4887 The Impact of Online Learning on Visual Learners

Authors: Ani Demetrashvili

Abstract:

As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.

Keywords: online learning, visual learners, digital education, technology in learning

Procedia PDF Downloads 39
4886 Improving Fused Deposition Modeling Efficiency: A Parameter Optimization Approach

Authors: Wadea Ameen

Abstract:

Rapid prototyping (RP) technology, such as fused deposition modeling (FDM), is gaining popularity because it can produce functioning components with intricate geometric patterns in a reasonable amount of time. A multitude of process variables influences the quality of manufactured parts. In this study, four important process parameters such as layer thickness, model interior fill style, support fill style and orientation are considered. Their influence on three responses, such as build time, model material, and support material, is studied. Experiments are conducted based on factorial design, and the results are presented.

Keywords: fused deposition modeling, factorial design, optimization, 3D printing

Procedia PDF Downloads 22
4885 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data

Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis

Abstract:

Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.

Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction

Procedia PDF Downloads 589
4884 Effect of Anisotropy on Steady Creep in a Whisker Reinforced Functionally Graded Composite Disc

Authors: V. K. Gupta, Tejeet Singh

Abstract:

In many whisker reinforced composites, anisotropy may result due to material flow during processing operations such as forging, extrusion etc. The consequence of anisotropy, introduced during processing of disc material, has been investigated on the steady state creep deformations of the rotating disc. The disc material is assumed to undergo plastic deformations according to Hill’s anisotropic criterion. Steady state creep has been analyzed in a constant thickness rotating disc made of functionally graded 6061Al-SiCw (where the subscript ‘w’ stands for whisker) using Hill’s The content of reinforcement (SiCw) in the disc is assumed to decrease linearly from the inner to outer radius. The stresses and strain rates in the disc are estimated by solving the force equilibrium equation along with the constitutive equations describing multi-axial creep. The results obtained for anisotropic FGM disc have been compared with those estimated for isotropic FGM disc having the same average whisker content. The anisotropic constants, appearing in Hill’s yield criterion, have been obtained from the available experimental results. The results show that the presence of anisotropy reduces the tangential stress in the middle of the disc but near the inner and outer radii the tangential stress is higher when compared to isotropic disc. On the other hand, the steady state creep rates in the anisotropic disc are reduced significantly over the entire disc radius, with the maximum reduction observed at the inner radius. Further, in the presence of anisotropy the distribution of strain rate becomes relatively uniform over the entire disc, which may be responsible for reducing the extent of distortion in the disc.

Keywords: anisotropy, creep, functionally graded composite, rotating disc

Procedia PDF Downloads 392
4883 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 77
4882 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry

Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood

Abstract:

The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.

Keywords: ADV, experimental data, multiple Reynolds number, post-processing

Procedia PDF Downloads 148
4881 How to Talk about It without Talking about It: Cognitive Processing Therapy Offers Trauma Symptom Relief without Violating Cultural Norms

Authors: Anne Giles

Abstract:

Humans naturally wish they could forget traumatic experiences. To help prevent future harm, however, the human brain has evolved to retain data about experiences of threat, alarm, or violation. When given compassionate support and assistance with thinking helpfully and realistically about traumatic events, most people can adjust to experiencing hardships, albeit with residual sad, unfortunate memories. Persistent, recurrent, intrusive memories, difficulty sleeping, emotion dysregulation, and avoidance of reminders, however, may be symptoms of Post-traumatic Stress Disorder (PTSD). Brain scans show that PTSD affects brain functioning. We currently have no physical means of restoring the system of brain structures and functions involved with PTSD. Medications may ease some symptoms but not others. However, forms of "talk therapy" with cognitive components have been found by researchers to reduce, even resolve, a broad spectrum of trauma symptoms. Many cultures have taboos against talking about hardships. Individuals may present themselves to mental health care professionals with severe, disabling trauma symptoms but, because of cultural norms, be unable to speak about them. In China, for example, relationship expectations may include the belief, "Bad things happening in the family should stay in the family (jiāchǒu bùkě wàiyán 家丑不可外扬)." The concept of "family (jiā 家)" may include partnerships, close and extended families, communities, companies, and the nation itself. In contrast to many trauma therapies, Cognitive Processing Therapy (CPT) for Post-traumatic Stress Disorder asks its participants to focus not on "what" happened but on "why" they think the trauma(s) occurred. The question "why" activates and exercises cognitive functioning. Brain scans of individuals with PTSD reveal executive functioning portions of the brain inadequately active, with emotion centers overly active. CPT conceptualizes PTSD as a network of cognitive distortions that keep an individual "stuck" in this under-functioning and over-functioning dynamic. Through asking participants forms of the question "why," plus offering a protocol for examining answers and relinquishing unhelpful beliefs, CPT assists individuals in consciously reactivating the cognitive, executive functions of their brains, thus restoring normal functioning and reducing distressing trauma symptoms. The culturally sensitive components of CPT that allow people to "talk about it without talking about it" may offer the possibility for worldwide relief from symptoms of trauma.

Keywords: cognitive processing therapy (CPT), cultural norms, post-traumatic stress disorder (PTSD), trauma recovery

Procedia PDF Downloads 213
4880 Geographic Information System and Dynamic Segmentation of Very High Resolution Images for the Semi-Automatic Extraction of Sandy Accumulation

Authors: A. Bensaid, T. Mostephaoui, R. Nedjai

Abstract:

A considerable area of Algerian lands is threatened by the phenomenon of wind erosion. For a long time, wind erosion and its associated harmful effects on the natural environment have posed a serious threat, especially in the arid regions of the country. In recent years, as a result of increases in the irrational exploitation of natural resources (fodder) and extensive land clearing, wind erosion has particularly accentuated. The extent of degradation in the arid region of the Algerian Mecheria department generated a new situation characterized by the reduction of vegetation cover, the decrease of land productivity, as well as sand encroachment on urban development zones. In this study, we attempt to investigate the potential of remote sensing and geographic information systems for detecting the spatial dynamics of the ancient dune cords based on the numerical processing of LANDSAT images (5, 7, and 8) of three scenes 197/37, 198/36 and 198/37 for the year 2020. As a second step, we prospect the use of geospatial techniques to monitor the progression of sand dunes on developed (urban) lands as well as on the formation of sandy accumulations (dune, dunes fields, nebkha, barkhane, etc.). For this purpose, this study made use of the semi-automatic processing method for the dynamic segmentation of images with very high spatial resolution (SENTINEL-2 and Google Earth). This study was able to demonstrate that urban lands under current conditions are located in sand transit zones that are mobilized by the winds from the northwest and southwest directions.

Keywords: land development, GIS, segmentation, remote sensing

Procedia PDF Downloads 155
4879 Measuring the Effect of Continuous Performance Test-3 Administration on Regional Cerebral Blood Flow with Single-Photon Emission Computed Tomography in Adult ADHD

Authors: Claire Stafford, Charles Golden, Daniel Amen, Kristen Willeumier

Abstract:

The aim of this study is to investigate the effect of the administration of the Conners Continuous Performance Test (CPT-3) on cerebral blood flow (CBF) in adults with ADHD. The data for this study was derived from a large SPECT database. Participants in the ADHD group (n=81, Mage=37.97) were similar to those in the healthy control group (n=8503, Mage=41.86). All participants were assessed for cerebral blood flow levels before and after CPT-3 administration. Both age and gender were considered covariates. Multiple 2-by-2 ANCOVAs with repeated measures were conducted with sphericity assumed. The main effects of CPT-3 administration on CBF levels were significant in the left and right side of the frontal and occipital, and right temporal lobe. The main effects of ADHD diagnosis were significant in all brain areas assessed. The interaction between CPT-3 administration and ADHD diagnosis was significant in the left and right side of the limbic system, basal ganglia, the frontal lobe, and occipital lobe. Post hoc tests with a Bonferroni adjustment revealed that CBF levels increased following CPT-3 administration but less so in the ADHD group. Individuals had higher levels of CBF following the administration of CPT-3. Due to a significant interaction, we can infer that ADHD diagnosis changes the effect of CPT-3 administration on CBF levels. This is consistent with our hypothesis considering that CPT-3 is a test of sustained attention, a common challenge for children with ADHD. The aforementioned interaction was not found to be significant in the parietal lobe. This may be due to the nature of CPT- 3 which does not require an integration of sensory information.

Keywords: SPECT, ADHD, conners continuous performance test, cerebral blood flow

Procedia PDF Downloads 102
4878 Design and Evaluation of a Fully-Automated Fluidized Bed Dryer for Complete Drying of Paddy

Authors: R. J. Pontawe, R. C. Martinez, N. T. Asuncion, R. V. Villacorte

Abstract:

Drying of high moisture paddy remains a major problem in the Philippines, especially during inclement weather condition. To alleviate the problem, mechanical dryers were used like a flat bed and recirculating batch-type dryers. However, drying to 14% (wet basis) final moisture content is long which takes 10-12 hours and tedious which is not the ideal for handling high moisture paddy. Fully-automated pilot-scale fluidized bed drying system with 500 kilograms per hour capacity was evaluated using a high moisture paddy. The developed fluidized bed dryer was evaluated using four drying temperatures and two variations in fluidization time at a constant airflow, static pressure and tempering period. Complete drying of paddy with ≥28% (w.b.) initial MC was attained after 2 passes of fluidized-bed drying at 2 minutes exposure to 70 °C drying temperature and 4.9 m/s superficial air velocity, followed by 60 min ambient air tempering period (30 min without ventilation and 30 min with air ventilation) for a total drying time of 2.07 h. Around 82% from normal mechanical drying time was saved at 70 °C drying temperature. The drying cost was calculated to be P0.63 per kilogram of wet paddy. Specific heat energy consumption was only 2.84 MJ/kg of water removed. The Head Rice Yield recovery of the dried paddy passed the Philippine Agricultural Engineering Standards. Sensory evaluation showed that the color and taste of the samples dried in the fluidized bed dryer were comparable to air dried paddy. The optimum drying parameters of using fluidized bed dryer is 70 oC drying temperature at 2 min fluidization time, 4.9 m/s superficial air velocity, 10.16 cm grain depth and 60 min ambient air tempering period.

Keywords: drying, fluidized bed dryer, head rice yield, paddy

Procedia PDF Downloads 325
4877 Effectiveness of Visual Auditory Kinesthetic Tactile Technique on Reading Level among Dyslexic Children in Helikx Open School and Learning Centre, Salem

Authors: J. Mano Ranjini

Abstract:

Each and every child is special, born with a unique talent to explore this world. The word Dyslexia is derived from the Greek language in which “dys” meaning poor or inadequate and “lexis” meaning words or language. Dyslexia describes about a different kind of mind, which is often gifted and productive, that learns the concept differently. The main aim of the study is to bring the positive outcome of the reading level by examining the effectiveness of Visual Auditory Kinesthetic Tactile technique on Reading Level among Dyslexic Children at Helikx Open School and Learning Centre. A Quasi experimental one group pretest post test design was adopted for this study. The Reading Level was assessed by using the Schonell Graded Word Reading Test. Thirty subjects were drawn by using purposive sampling technique and the intervention Visual Auditory Kinesthetic Tactile technique was implemented to the Dyslexic Children for 30 consecutive days followed by the post Reading Level assessment revealed the improvement in the mean score value of reading level by 12%. Multi-sensory (VAKT) teaching uses all learning pathways in the brain (visual, auditory, kinesthetic-tactile) in order to enhance memory and learning and the ability in uplifting emotional, physical and societal dimensions. VAKT is an effective method to improve the reading skill of the Dyslexic Children that ensures the enormous significance of learning thereby influencing the wholesome of the child’s life.

Keywords: visual auditory kinesthetic tactile technique, reading level, dyslexic children, Helikx Open School

Procedia PDF Downloads 600
4876 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 139
4875 Distinct Patterns of Resilience Identified Using Smartphone Mobile Experience Sampling Method (M-ESM) and a Dual Model of Mental Health

Authors: Hussain-Abdulah Arjmand, Nikki S. Rickard

Abstract:

The response to stress can be highly heterogenous, and may be influenced by methodological factors. The integrity of data will be optimized by measuring both positive and negative affective responses to an event, by measuring responses in real time as close to the stressful event as possible, and by utilizing data collection methods that do not interfere with naturalistic behaviours. The aim of the current study was to explore short term prototypical responses to major stressor events on outcome measures encompassing both positive and negative indicators of psychological functioning. A novel mobile experience sampling methodology (m-ESM) was utilized to monitor both effective responses to stressors in real time. A smartphone mental health app (‘Moodprism’) which prompts users daily to report both their positive and negative mood, as well as whether any significant event had occurred in the past 24 hours, was developed for this purpose. A sample of 142 participants was recruited as part of the promotion of this app. Participants’ daily reported experience of stressor events, levels of depressive symptoms and positive affect were collected across a 30 day period as they used the app. For each participant, major stressor events were identified on the subjective severity of the event rated by the user. Depression and positive affect ratings were extracted for the three days following the event. Responses to the event were scaled relative to their general reactivity across the remainder of the 30 day period. Participants were first clustered into groups based on initial reactivity and subsequent recovery following a stressor event. This revealed distinct patterns of responding along depressive symptomatology and positive affect. Participants were then grouped based on allocations to clusters in each outcome variable. A highly individualised nature in which participants respond to stressor events, in symptoms of depression and levels of positive affect, was observed. A complete description of the novel profiles identified will be presented at the conference. These findings suggest that real-time measurement of both positive and negative functioning to stressors yields a more complex set of responses than previously observed with retrospective reporting. The use of smartphone technology to measure individualized responding also proved to shed significant insight.

Keywords: depression, experience sampling methodology, positive functioning, resilience

Procedia PDF Downloads 237
4874 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 24