Search results for: multi-phase induction machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3647

Search results for: multi-phase induction machine

1667 Awarding Copyright Protection to Artificial Intelligence Technology for its Original Works: The New Way Forward

Authors: Vibhuti Amarnath Madhu Agrawal

Abstract:

Artificial Intelligence (AI) and Intellectual Property are two emerging concepts that are growing at a fast pace and have the potential of having a huge impact on the economy in the coming times. In simple words, AI is nothing but work done by a machine without any human intervention. It is a coded software embedded in a machine, which over a period of time, develops its own intelligence and begins to take its own decisions and judgments by studying various patterns of how people think, react to situations and perform tasks, among others. Intellectual Property, especially Copyright Law, on the other hand, protects the rights of individuals and Companies in content creation that primarily deals with application of intellect, originality and expression of the same in some tangible form. According to some of the reports shared by the media lately, ChatGPT, an AI powered Chatbot, has been involved in the creation of a wide variety of original content, including but not limited to essays, emails, plays and poetry. Besides, there have been instances wherein AI technology has given creative inputs for background, lights and costumes, among others, for films. Copyright Law offers protection to all of these different kinds of content and much more. Considering the two key parameters of Copyright – application of intellect and originality, the question, therefore, arises that will awarding Copyright protection to a person who has not directly invested his / her intellect in the creation of that content go against the basic spirit of Copyright laws? This study aims to analyze the current scenario and provide answers to the following questions: a. If the content generated by AI technology satisfies the basic criteria of originality and expression in a tangible form, why should such content be denied protection in the name of its creator, i.e., the specific AI tool / technology? B. Considering the increasing role and development of AI technology in our lives, should it be given the status of a ‘Legal Person’ in law? C. If yes, what should be the modalities of awarding protection to works of such Legal Person and management of the same? Considering the current trends and the pace at which AI is advancing, it is not very far when AI will start functioning autonomously in the creation of new works. Current data and opinions on this issue globally reflect that they are divided and lack uniformity. In order to fill in the existing gaps, data obtained from Copyright offices from the top economies of the world have been analyzed. The role and functioning of various Copyright Societies in these countries has been studied in detail. This paper provides a roadmap that can be adopted to satisfy various objectives, constraints and dynamic conditions related AI technology and its protection under Copyright Law.

Keywords: artificial intelligence technology, copyright law, copyright societies, intellectual property

Procedia PDF Downloads 71
1666 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation

Procedia PDF Downloads 279
1665 DUSP16 Inhibition Rescues Neurogenic and Cognitive Deficits in Alzheimer's Disease Mice Models

Authors: Huimin Zhao, Xiaoquan Liu, Haochen Liu

Abstract:

The major challenge facing Alzheimer's Disease (AD) drug development is how to effectively improve cognitive function in clinical practice. Growing evidence indicates that stimulating hippocampal neurogenesis is a strategy for restoring cognition in animal models of AD. The mitogen-activated protein kinase (MAPK) pathway is a crucial factor in neurogenesis, which is negatively regulated by Dual-specificity phosphatase 16 (DUSP16). Transcriptome analysis of post-mortem brain tissue revealed up-regulation of DUSP16 expression in AD patients. Additionally, DUSP16 was involved in regulating the proliferation and neural differentiation of neural progenitor cells (NPCs). Nevertheless, whether the effect of DUSP16 on ameliorating cognitive disorders by influencing NPCs differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, we found that increased DUSP16 expression in both 3×Tg and SAMP8 models of AD led to NPC differentiation impairments. By silencing DUSP16, cognitive benefits, the induction of AHN and synaptic plasticity, were observed in AD mice. Furthermore, we found that DUSP16 is involved in the process of NPC differentiation by regulating c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, the increased DUSP16 may be regulated by the ETS transcription factor (ELK1), which binds to the promoter region of DUSP16. Loss of ELK1 resulted in decreased DUSP16 mRNA and protein levels. Our data uncover a potential regulatory role for DUSP16 in adult hippocampal neurogenesis and provide a possibility to find the target of AD intervention.

Keywords: alzheimer's disease, cognitive function, DUSP16, hippocampal neurogenesis

Procedia PDF Downloads 72
1664 Market Index Trend Prediction using Deep Learning and Risk Analysis

Authors: Shervin Alaei, Reza Moradi

Abstract:

Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.

Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks

Procedia PDF Downloads 156
1663 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions

Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan

Abstract:

Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.

Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec

Procedia PDF Downloads 176
1662 Music Listening in Dementia: Current Developments and the Potential for Automated Systems in the Home: Scoping Review and Discussion

Authors: Alexander Street, Nina Wollersberger, Paul Fernie, Leonardo Muller, Ming Hung HSU, Helen Odell-Miller, Jorg Fachner, Patrizia Di Campli San Vito, Stephen Brewster, Hari Shaji, Satvik Venkatesh, Paolo Itaborai, Nicolas Farina, Alexis Kirke, Sube Banerjee, Eduardo Reck Miranda

Abstract:

Escalating neuropsychiatric symptoms (NPS) in people with dementia may lead to earlier care home admission. Music listening has been reported to stimulate cognitive function, potentially reducing agitation in this population. We present a scoping review, reporting on current developments and discussing the potential for music listening with related technology in managing agitation in dementia care. Of two searches for music listening studies, one focused on older people or people living with dementia where music listening interventions, including technology, were delivered in participants’ homes or in institutions to address neuropsychiatric symptoms, quality of life and independence. The second included any population focusing on the use of music technology for health and wellbeing. In search one 70/251 full texts were included. The majority reported either statistical significance (6, 8.5%), significance (17, 24.2%) or improvements (26, 37.1%). Agitation was specifically reported in 36 (51.4%). The second search included 51/99 full texts, reporting improvement (28, 54.9%), significance (11, 21.5%), statistical significance (1, 1.9%) and no difference compared to the control (6, 11.7%). The majority in the first focused on mood and agitation, and the second on mood and psychophysiological responses. Five studies used AI or machine learning systems to select music, all involving healthy controls and reporting benefits. Most studies in both reviews were not conducted in a home environment (review 1 = 12; 17.1%; review 2 = 11; 21.5%). Preferred music listening may help manage NPS in the care home settings. Based on these and other data extracted in the review, a reasonable progression would be to co-design and test music listening systems and protocols for NPS in all settings, including people’s homes. Machine learning and automated technology for music selection and arousal adjustment, driven by live biodata, have not been explored in dementia care. Such approaches may help deliver the right music at the appropriate time in the required dosage, reducing the use of medication and improving quality of life.

Keywords: music listening, dementia, agitation, scoping review, technology

Procedia PDF Downloads 112
1661 Potential Therapeutic Effect of Obestatin in Oral Mucositis

Authors: Agnieszka Stempniewicz, Piotr Ceranowicz, Wojciech Macyk, Jakub Cieszkowski, Beata Kuśnierz-Cabała, Katarzyna Gałązka, Zygmunt Warzecha

Abstract:

Objectives: There are numerous strategies for the prevention or treatment of oral mucositis. However, their effectiveness is limited and does not correspond to expectations. Recent studies have shown that obestatin exhibits a protective effect and accelerates the healing of gastrointestinal mucosa. The aim of the present study was to examine the influence of obestatin administration on oral ulcers in rats. Methods: lingual ulcers were induced by the use of acetic acid. Rats were treated twice a day intraperitoneally with saline or obestatin(4, 8, or 16 nmol/kg/dose) for five days. The study determined: lingual mucosa morphology, cell proliferation, mucosal blood flow, and mucosal pro-inflammatory interleukin-1β level(IL-1β). Results: In animals without induction of oral ulcers, treatment with obestatin was without any effect. Obestatin administration in rats with lingual ulcers increased the healing rate of these ulcers. Obestatin given at the dose of 8 or 16 nmol/kg/dose caused the strongest and similar therapeutic effect. This result was associated with a significant increase in blood flow and cell proliferation in gingival mucosa, as well as a significant decrease in IL-1β level. Conclusions: Obestatin accelerates the healing of lingual ulcers in rats. This therapeutic effect is well-correlated with an increase in blood flow and cell proliferation in oral mucosa, as well as a decrease in pro-inflammatory IL-1β levels. Obestatin is a potentially useful candidate for the prevention and treatment of oral mucositis. Acknowledgment: Agnieszka Stempniewicz acknowledges the support of InterDokMed project no. POWR.03.02.00- 00-I013/16.

Keywords: oral mucositis, ulcers, obestatin, lingual mucosa

Procedia PDF Downloads 73
1660 Deep Learning to Enhance Mathematics Education for Secondary Students in Sri Lanka

Authors: Selvavinayagan Babiharan

Abstract:

This research aims to develop a deep learning platform to enhance mathematics education for secondary students in Sri Lanka. The platform will be designed to incorporate interactive and user-friendly features to engage students in active learning and promote their mathematical skills. The proposed platform will be developed using TensorFlow and Keras, two widely used deep learning frameworks. The system will be trained on a large dataset of math problems, which will be collected from Sri Lankan school curricula. The results of this research will contribute to the improvement of mathematics education in Sri Lanka and provide a valuable tool for teachers to enhance the learning experience of their students.

Keywords: information technology, education, machine learning, mathematics

Procedia PDF Downloads 83
1659 Makhraj Recognition Using Convolutional Neural Network

Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak

Abstract:

This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.

Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow

Procedia PDF Downloads 335
1658 Minimizing Total Completion Time in No-Wait Flowshops with Setup Times

Authors: Ali Allahverdi

Abstract:

The m-machine no-wait flowshop scheduling problem is addressed in this paper. The objective is to minimize total completion time subject to the constraint that the makespan value is not greater than a certain value. Setup times are treated as separate from processing times. Several recent algorithms are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that the best proposed algorithm performs significantly better than the earlier existing best algorithm.

Keywords: scheduling, no-wait flowshop, algorithm, setup times, total completion time, makespan

Procedia PDF Downloads 340
1657 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 75
1656 Towards Creative Movie Title Generation Using Deep Neural Models

Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie

Abstract:

Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.

Keywords: creativity, deep machine learning, natural language generation, movies

Procedia PDF Downloads 326
1655 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses

Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau

Abstract:

Planning the order picking lists of warehouses to achieve when the costs associated with logistics on the operational performance is a significant challenge. In e-commerce era, this task is especially important productive processes are high. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, the definition of which features should be processed by such algorithms is not a simple task, being crucial to the proposed technique’s success. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A Zone2 picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.

Keywords: order picking, warehouse, clustering, unsupervised learning

Procedia PDF Downloads 159
1654 Gesture-Controlled Interface Using Computer Vision and Python

Authors: Vedant Vardhan Rathour, Anant Agrawal

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks

Procedia PDF Downloads 12
1653 Asynchronous Sequential Machines with Fault Detectors

Authors: Seong Woo Kwak, Jung-Min Yang

Abstract:

A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.

Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector

Procedia PDF Downloads 349
1652 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 79
1651 The Effect of Jujube Extract and Resistance Training on the Reduction of Complications Caused by the Induction of Anabolic Steroid Boldenone on the Histopathological Changes of Pancreatic Tissue of Male Wistar Rats

Authors: Sayyed-javad Ziaolhagh, Ali-Reza Saadatifar

Abstract:

Introduction: Athletes frequently perform anabolic steroid resistance exercise, but the effects of medical doses and abuse along with resistance exercise on structural damage to the Pancreases and also jujube extract are unknown. The aim of this study was to investigate the effects of resistance training on body weight and hip fractures induced by boldenone injection in male rats. Materials and methods: In this experimental study, 30 male Wistar rats aged 8-12 weeks (weight 202±9.34 g) were randomly divided into five groups: control, boldenone, extract of iujuba+boldenone, boldenone+resistance training and boldenone+resistance training +extract of jujuba. The resistance training program included climbing the ladder for 8 weeks, 3 days a week, 1 session training in a day and each session consisted of the 3 sets and 5 repetitions. Injection was conducted in depth in the hamstring once a week on an appointed day. After anesthesia, autopsy was performed, and the cardiac tissue was isolated. Results: Results showed that boldenone caused tissue damage, congestion, and nuclei unclear and diffuse. In the group "resistance + Boldenone," The Pancreases tissue showed a high degree of hyperemia, and the muscle cells were somewhat abnormal. In boldenone + jujube, the appearance of the tissue was normal, and the rejuvenating effect was visible. Conclusion: Boldenone appears to cause structural damage to the Pancreases tissue. Strength training with Jujube Extract can reduce part of the pancreatic system disorders (necrosis and inflammation) caused by anabolic steroid use.

Keywords: boldenone, Jujube extract, pancreases tissue, resistance training

Procedia PDF Downloads 70
1650 Two-Stage Flowshop Scheduling with Unsystematic Breakdowns

Authors: Fawaz Abdulmalek

Abstract:

The two-stage flowshop assembly scheduling problem is considered in this paper. There are more than one parallel machines at stage one and an assembly machine at stage two. The jobs will be processed into the flowshop based on Johnson rule and two extensions of Johnson rule. A simulation model of the two-stage flowshop is constructed where both machines at stage one are subject to random failures. Three simulation experiments will be conducted to test the effect of the three job ranking rules on the makespan. Johnson Largest heuristic outperformed both Johnson rule and Johnson Smallest heuristic for two performed experiments for all scenarios where each experiments having five scenarios.

Keywords: flowshop scheduling, random failures, johnson rule, simulation

Procedia PDF Downloads 339
1649 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
1648 Linking Metabolism, Pluripotency and Epigenetic Changes during Early Differentiation of Embryonic Stem Cells

Authors: Arieh Moussaieff, Bénédicte Elena-Herrmann, Yaakov Nahmias, Daniel Aberdam

Abstract:

Differentiation of pluripotent stem cells is a slow process, marked by the gradual loss of pluripotency factors over days in culture. While the first few days of differentiation show minor changes in the cellular transcriptome, intracellular signaling pathways remain largely unknown. Recently, several groups demonstrated that the metabolism of pluripotent mouse and human cells is different from that of somatic cells, showing a marked increase in glycolysis previously identified in cancer as the Warburg effect. Here, we sought to identify the earliest metabolic changes induced at the first hours of differentiation. High-resolution NMR analysis identified 35 metabolites and a distinct, gradual transition in metabolism during early differentiation. Metabolic and transcriptional analyses showed the induction of glycolysis toward acetate and acetyl-coA in pluripotent cells, and an increase in cholesterol biosynthesis during early differentiation. Importantly, this metabolic pathway regulated differentiation of human and mouse embryonic stem cells. Acetate delayed differentiation preventing differentiation-induced histone de-acetylation in a dose-dependent manner. Glycolytic inhibitors upstream of acetate caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our data suggests that a rapid loss of glycolysis in early differentiation down-regulates acetate and acetyl-coA production, causing a loss of histone acetylation and concomitant loss of pluripotency. It demonstrate that pluripotent stem cells utilize a novel metabolism pathway to maintain pluripotency through acetate/acetyl-coA and highlights the important role metabolism plays in pluripotency and early differentiation of stem cells.

Keywords: pluripotency, metabolomics, epigenetics, acetyl-coA

Procedia PDF Downloads 470
1647 Evaluation of Chemopreventive Activity of Medicinal Plant, Gromwell Seed against Tumor Promoting Stage

Authors: Harukuni Tokuda, Takanari Arai, Xu FengHao, Nobutaka Suzuki

Abstract:

In our continuous search for anti-tumor promoting, chemopreventive active potency from natural source material, a kind of healthy tea, Gromwell seed (Coix lachryma-jobi) ext., and including compounds Monoolein and Trilinolein have been screened using the in vitro synergistic assay indicated by inhibitory effects on the induction of Epstein-Barr virus early antigen (EBV-EA) by TPA. In assay, Gromwell seed aqueous extract and hot aqueous extract exhibited the potential inhibitory effects on EBV-EA activation without strong cytotoxicity on Raji cells. In our experimental system, the inhibitory effects of both Gromwell extracts and compounds were greater than that of beta-carotene, which is known anti-tumor promoting agent and/or chemopreventive agent. These compounds were evaluated for their in vitro inhibitory effect on EBV-EA activation induced by TPA. The percentages of the inhibition of TPA-induced EBV-EA activation for these materials were 60% and 30% at concentration 100 μg. Based on the results obtained in vitro, we studied the inhibitory effect of compounds, in an in vivo two-stage carcinogenesis test of mouse skin papilloma using DMBA as an initiator and TPA as a potential promoter. The control animals showed a 100% incidence of papilloma at 20 weeks after DMBA-TPA tumor promotion, while treatment with compounds reduced the percentage of number of tumor to 60 % after 20 weeks. Results from in vitro and in vivo studies showing chemopreventive activity against TPA promoting stage and these data support the effective potency of carcinogenic stage in clinical evaluation of integrative oncology.

Keywords: gromwell seed, medicinal plant, chemoprevention, pharmaceutical medicine

Procedia PDF Downloads 408
1646 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite

Authors: Maciej Szeląg, Stanisław Fic

Abstract:

The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters

Procedia PDF Downloads 388
1645 Mediation Role of Teachers’ Surface Acting and Deep Acting on the Relationship between Calling Orientation and Work Engagement

Authors: Yohannes Bisa Biramo

Abstract:

This study examined the meditational role of surface acting and deep acting on the relationship between calling orientation and work engagement of teachers in secondary schools of Wolaita Zone, Wolaita, Ethiopia. A predictive non-experimental correlational design was performed among 300 secondary school teachers. Stratified random sampling followed by a systematic random sampling technique was used as the basis for selecting samples from the target population. To analyze the data, Structural Equation Modeling (SEM) was used to test the association between the independent variables and the dependent variables. Furthermore, the goodness of fit of the study variables was tested using SEM to see and explain the path influence of the independent variable on the dependent variable. Confirmatory factor analysis (CFA) was conducted to test the validity of the scales in the study and to assess the measurement model fit indices. The analysis result revealed that calling was significantly and positively correlated with surface acting, deep acting and work engagement. Similarly, surface acting was significantly and positively correlated with deep acting and work engagement. And also, deep acting was significantly and positively correlated with work engagement. With respect to mediation analysis, the result revealed that surface acting mediated the relationship between calling and work engagement and also deep acting mediated the relationship between calling and work engagement. Besides, by using the model of the present study, the school leaders and practitioners can identify a core area to be considered in recruiting and letting teachers teach, in giving induction training for newly employed teachers and in performance appraisal.

Keywords: calling, surface acting, deep acting, work engagement, mediation, teachers

Procedia PDF Downloads 84
1644 CP-96345 Rregulates Hydrogen Sulphide Induced TLR4 Signaling Pathway Adhesion Molecules in Caerulein Treated Pancreatic Acinar Cells

Authors: Ramasamy Tamizhselvi, Leema George, Madhav Bhatia

Abstract:

We have earlier shown that mouse pancreatic acinar cells produce hydrogen sulfide (H2S) and play a role in the pathogenesis of acute pancreatitis. This study is to determine the effect of H2S on TLR4 mediated innate immune signaling in acute pancreatitis via substance P (SP). Male Swiss mice were treated with hourly intraperitoneal injection of caerulein (50μg/kg) for 10 hour. DL-propargylglycine (PAG) (100 mg/kg i.p.), an inhibitor of H2S formation was administered 1h after the induction of acute pancreatitis. Pancreatic acinar cells from male Swiss mice were incubated with or without caerulein (10–7 M for 60 min) and CP-96345 (NK1R inhibitor). To better understand the effect of H2S in inflammation, acinar cells were stimulated with caerulein after addition of H2S donor, NaHS. In addition, caerulein treated pancreatic acinar cells were pretreated with PAG (30 µM), for 1h. H2S inhibitor, PAG, eliminated TLR4, IRAK4, TRAF6 and NF-kB levels in an in vitro and in vivo model of caerulein-induced acute pancreatitis. PPTA gene deletion reduced TLR4, MyD88, IRAK4, TRAF6, adhesion molecules and NF-kB in caerulein treated pancreatic acinar cells whereas administration of NaHS resulted in further rise in TLR4 and NF-kB levels in caerulein treated pancreatic acinar cells. In addition, acini isolated from mice and treated with PPTA gene receptor NK1R antagonist CP96345 did not exhibit further increase in TLR4, IRAK4, TRAF6, adhesion molecules and NF-kB levels after NaHS pretreatment. The present findings show for the first time that in acute pancreatitis, H2S up-regulates TLR4 pathway and NF-kB via substance P.

Keywords: preprotachykinin-A gene, H2S, TLR4, acute pancreatitis

Procedia PDF Downloads 276
1643 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 486
1642 Albendazole Ameliorates Inflammatory Response in a Rat Model of Acute Mesenteric Ischemia Reperfusion Injury

Authors: Kamyar Moradi

Abstract:

Background: Acute mesenteric ischemia is known as a life-threatening condition. Re-establishment of blood flow in this condition can lead to mesenteric ischemia reperfusion (MIR) injury, which is accompanied by inflammatory response. Still, clear blueprint of inflammatory mechanism underlying MIR injury has not been provided. Interestingly, Albendazole has exhibited notable effects on inflammation and cytokine production. In this study, we aimed to evaluate outcomes of MIR injury following pretreatment with Albendazole with respect to assessment of mesenteric inflammation and ischemia threshold. Methods: Male rats were randomly divided into sham operated, vehicle treated, Albendazole 100 mg/kg, and Albendazole 200 mg/kg groups. MIR injury was induced by occlusion of superior mesenteric artery for 30 minutes followed by 120 minutes of reperfusion. Samples were utilized for assessment of epithelial survival and villous height. Immunohistochemistry study revealed intestinal expression of TNF-α and HIF-1-α. Gene expression of NF-κB/TLR4/TNF-α/IL-6 was measured using RTPCR. Also, protein levels of inflammatory cytokines in serum and intestine were assessed by ELISA method. Results: Histopathological study demonstrated that pretreatment with Albendazole could ameliorate decline in villous height and epithelial survival following MIR injury. Also, systemic inflammation was suppressed after administration of Albendazole. Analysis of possible participating inflammatory pathway could demonstrate that intestinal expression of NF-κB/TLR4/TNF-α/IL-6 is significantly attenuated in treated groups. Eventually, IHC study illustrated concordant decline in mesenteric expression of HIF-1-α/TNF-α. Conclusion: Single dose pretreatment with Albendazole could ameliorate inflammatory response and enhance ischemia threshold following induction of MIR injury. Still, more studies would clarify existing causality in this phenomenon.

Keywords: albendazole, ischemia reperfusion injury, inflammation, mesenteric ischemia

Procedia PDF Downloads 169
1641 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol

Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee

Abstract:

In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.

Keywords: apoptosis, cancer, G1 arrest, panaxydol

Procedia PDF Downloads 322
1640 Ensuring Cyber Security Using Kippo Honeypots

Authors: S. Vivekananda Pandian

Abstract:

A major challenging task in this current scenario is protecting your computer and other electronic gadgets against Cyber-attacks. In this current era Cyber warfare becomes a major threat to the entire world which targets a particular organization or a country spreading the Malwares, Breaching the securities, causing major loss to the organization. Several sectors both public and private are computerized such as Energy sectors, Oil refinery sectors, Defense sectors and Aviation sectors are prone to attacks. Several attacks are unknown while accessing the internet. To study the characteristics and Intention of the Attacker Kippo Honeypots are used. Honeypots are the trap set by us which enables them to monitor the malicious activities and detailed study about attackers which leads to strengthening of the security.

Keywords: attackers, security, Kippo Honeypots, virtual machine

Procedia PDF Downloads 427
1639 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 245
1638 Simulation of Hydraulic Fracturing Fluid Cleanup for Partially Degraded Fracturing Fluids in Unconventional Gas Reservoirs

Authors: Regina A. Tayong, Reza Barati

Abstract:

A stable, fast and robust three-phase, 2D IMPES simulator has been developed for assessing the influence of; breaker concentration on yield stress of filter cake and broken gel viscosity, varying polymer concentration/yield stress along the fracture face, fracture conductivity, fracture length, capillary pressure changes and formation damage on fracturing fluid cleanup in tight gas reservoirs. This model has been validated as against field data reported in the literature for the same reservoir. A 2-D, two-phase (gas/water) fracture propagation model is used to model our invasion zone and create the initial conditions for our clean-up model by distributing 200 bbls of water around the fracture. A 2-D, three-phase IMPES simulator, incorporating a yield-power-law-rheology has been developed in MATLAB to characterize fluid flow through a hydraulically fractured grid. The variation in polymer concentration along the fracture is computed from a material balance equation relating the initial polymer concentration to total volume of injected fluid and fracture volume. All governing equations and the methods employed have been adequately reported to permit easy replication of results. The effect of increasing capillary pressure in the formation simulated in this study resulted in a 10.4% decrease in cumulative production after 100 days of fluid recovery. Increasing the breaker concentration from 5-15 gal/Mgal on the yield stress and fluid viscosity of a 200 lb/Mgal guar fluid resulted in a 10.83% increase in cumulative gas production. For tight gas formations (k=0.05 md), fluid recovery increases with increasing shut-in time, increasing fracture conductivity and fracture length, irrespective of the yield stress of the fracturing fluid. Mechanical induced formation damage combined with hydraulic damage tends to be the most significant. Several correlations have been developed relating pressure distribution and polymer concentration to distance along the fracture face and average polymer concentration variation with injection time. The gradient in yield stress distribution along the fracture face becomes steeper with increasing polymer concentration. The rate at which the yield stress (τ_o) is increasing is found to be proportional to the square of the volume of fluid lost to the formation. Finally, an improvement on previous results was achieved through simulating yield stress variation along the fracture face rather than assuming constant values because fluid loss to the formation and the polymer concentration distribution along the fracture face decreases as we move away from the injection well. The novelty of this three-phase flow model lies in its ability to (i) Simulate yield stress variation with fluid loss volume along the fracture face for different initial guar concentrations. (ii) Simulate increasing breaker activity on yield stress and broken gel viscosity and the effect of (i) and (ii) on cumulative gas production within reasonable computational time.

Keywords: formation damage, hydraulic fracturing, polymer cleanup, multiphase flow numerical simulation

Procedia PDF Downloads 130