Search results for: multi stage flash distillation
5498 Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down
Authors: Vishal Kumar Singh
Abstract:
Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development.Keywords: bioprocess development, scale up, scale down, computation fluid dynamics, multi-objective, Ansys CFX, design of experiment
Procedia PDF Downloads 855497 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 1065496 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 2155495 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows
Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid
Abstract:
Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil
Procedia PDF Downloads 1345494 Thermophysical Properties of Water-Based Carboxylated Multi-Wall Carbon Nanotubes Nanofluids
Authors: Ahmad Amiri, Hamed Khajeh Arzani, Md. Salim Newaz Kazi, Bee Teng Chew
Abstract:
Obviously, the behavior of thermophysical properties of covalently functionalized MWNT-based water nanofluids cannot be predicted from the predicted models. We present a study of the specific heat capacity, effective thermal conductivity, density and viscosity of coolants containing functionalized multi-wall carbon nanotubes (MWNT-COOH) with carboxyl groups at different temperatures. After synthesizing of MWNT-COOH-based water, measurements on the prepared coolants were made at various concentrations by different experimental methods. While thermal conductivity of nanofluids illustrated a significant increase, the specific heat capacity of the samples showed a downward behavior with increasing temperature. The viscosity was investigated in different shear rates and temperatures. Interestingly, the specific heat capacity of all prepared nanofluids was decreased with increasing concentration. Also, the density of the MWNT-COOH-based water nanofluids increased and decreased smoothly with increasing MWNT-COOH concentration and temperature, respectively.Keywords: carbon nanotubes, coolant, heat capacity, density, viscosity, thermal conductivity
Procedia PDF Downloads 1995493 Study on the Layout of 15-Minute Community-Life Circle in the State of “Community Segregation” Based on Poi: Shengwei Community and Other Two Communities in Chongqing
Authors: Siyuan Cai
Abstract:
This paper takes community segregation during major infectious diseases as the background, based on the physiological needs and safety needs of citizens during home segregation, and based on the selection of convenient facilities and medical facilities as the main research objects. Based on the POI data of public facilities in Chongqing, the spatial distribution characteristics of the convenience and medical facilities in the 15-minute living circle centered on three neighborhoods in Shapingba, namely Shengwei Community, Anju Commmunity and Fengtian Garden Community, were explored by means of GIS spatial analysis. The results show that the spatial distribution of convenience and medical facilities in this area has significant clustering characteristics, with a point-like distribution pattern of "dense in the west and sparse in the east", and a grouped and multi-polar spatial structure. The spatial structure is multi-polar and has an obvious tendency to the intersections and residential areas with dense pedestrian flow. This study provides a preliminary exploration of the distribution of medical and convenience facilities within the 15-minute living circle of a segregated community, which makes up for the lack of spatial research in this area.Keywords: ArcGIS, community segregation, convenient facilities; distribution pattern, medical facilities, POI, 15-minute community life circle
Procedia PDF Downloads 1275492 Focus on Sustainable Future of New Vernacular Architecture — Building "Vernacular Consciousness" in the New Ara
Authors: Ji Min China
Abstract:
The 20th century was the century of globalization. Developed transportation and the progress of information media made the earth into a global village. The differences between regions is increasingly reduced, "cultural convergence" phenomenon intensified, regional specialties and traditional culture has been eroded. In the field of architecture, while experienced orderly rational modernism baptism, it is increasingly recognized that set the expense of cultural differences and forced to follow the universal international-style building has been outdated. At the same time, in the 21st century environmental issues has been paid more and more attention, and the concept of sustainable development and sustainable building have been proposed.This makes the domestic and foreign architects began to explore the possibilities of building and reflect local cultural characteristics of the new vernacular architecture as a viable diversified architectural tendencies by domestic and foreign architects’ favor. The author will use the production and creative process of the new vernacular architecture at home and abroad as the background, and select some outstanding examples of the analysis and discussion, then reinterpret the "new vernacular architecture" in China now. This paper will pay more attention to how to master the true meaning of the here and now "new vernacular" as well as its multiple dimensions of sustainability in the future. It also determines the paper will be a two-way aspect and multi-dimensional understanding and mining of the "new vernacular".Keywords: new vernacular architecture, regional culture, multi dimension, sustainable
Procedia PDF Downloads 4615491 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer
Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali
Abstract:
Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design
Procedia PDF Downloads 1925490 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach
Authors: Apu Kumar Saha, Mrinmoy Majumder
Abstract:
The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering
Procedia PDF Downloads 5525489 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst
Authors: D. Mowla, N. Rasti, P. Keshavarz
Abstract:
Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.Keywords: biodiesel, renewable fuel, transesterification, waste cooking oil
Procedia PDF Downloads 2435488 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder
Procedia PDF Downloads 2645487 PLA Production from Multi Supply Lignocellulosic Biomass Residues: A Pathway for Agrifood Sector
Authors: Sónia Ribeiro, Diana Farinha, Hélia Sales, Rita Pontes, João Nunes
Abstract:
The demand and commitment to sustainability in the agrifood sector introduce news opportunities for new composite materials. Composite materials are emerging as a vital entity for the sustainable development. Polylactic acid (PLA) has been recognized as a potential polymer with attractive characteristics for agrifood sector applications. PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The production of PLA from lignocellulosic biomass residues matrix is a key option towards a sustainable and circular bioeconomy and a non-competitive application with feed and food sector. The Flui and BeirInov projects presents news developments in the production of PLA composites to value the Portuguese forest ecosystem, with high amount of lignocellulosic biomass residues and available. A performance production of lactic acid from lignocellulosic biomass undergoes a process of autohydrolysis, saccharification and fermentation, originating a lactic acid fermentation medium with a 72.27g.L-1 was obtained and a final purification of 72%. The high purification PLA from multi lignocellulosic residues representing one economic expensive process, and a new materials and application for the polymers and a combination with others types of composites matrix characteristic is the drive-up for this green market.Keywords: polylactic acid, lignocellulosic biomass, agrifood, composite materials
Procedia PDF Downloads 775486 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 1225485 Radical Degradation of Acetaminophen with Peroxymonosulfate-Based Oxidation Processes
Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin
Abstract:
Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2>0.95). While the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-Dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.Keywords: acetaminophen, peroxymonosulfate, radicals, Electron Paramagnetic Resonance (ESR)
Procedia PDF Downloads 3555484 Robotic Lingulectomy for Primary Lung Cancer: A Video Presentation
Authors: Abraham J. Rizkalla, Joanne F. Irons, Christopher Q. Cao
Abstract:
Purpose: Lobectomy was considered the standard of care for early-stage non-small lung cancer (NSCLC) after the Lung Cancer Study Group trial demonstrated increased locoregional recurrence for sublobar resections. However, there has been heightened interest in segmentectomies for selected patients with peripheral lesions ≤2cm, as investigated by the JCOG0802 and CALGB140503 trials. Minimally invasive robotic surgery facilitates segmentectomies with improved maneuverability and visualization of intersegmental planes using indocyanine green. We hereby present a patient who underwent robotic lingulectomy for an undiagnosed ground-glass opacity. Methodology: This video demonstrates a robotic portal lingulectomy using three 8mm ports and a 12mm port. Stereoscopic direct vision facilitated the identification of the lingula artery and vein, and intra-operative bronchoscopy was performed to confirm the lingula bronchus. The intersegmental plane was identified by indocyanine green and a near-infrared camera. Thorough lymph node sampling was performed in accordance with international standards. Results: The 18mm lesion was successfully excised with clear margins to achieve R0 resection with no evidence of malignancy in the 8 lymph nodes sampled. Histopathological examination revealed lepidic predominant adenocarcinoma, pathological stage IA. Conclusion: This video presentation exemplifies the standard approach for robotic portal lingulectomy in appropriately selected patients.Keywords: lung cancer, robotic segmentectomy, indocyanine green, lingulectomy
Procedia PDF Downloads 725483 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument
Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki
Abstract:
According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test
Procedia PDF Downloads 3055482 Extent of Fruit and Vegetable Waste at Wholesaler Stage of the Food Supply Chain in Western Australia
Authors: P. Ghosh, S. B. Sharma
Abstract:
The growing problem of food waste is causing unacceptable economic, environmental and social impacts across the globe. In Australia, food waste is estimated at about AU$8 billion per year; however, information on the extent of wastage at different stages of the food value chain from farm to fork is very limited. This study aims to identify causes for and extent of food waste at wholesaler stage of the food value chain in the state of Western Australia. It also explores approaches applied to reduce and utilize food waste by the wholesalers. The study was carried out at Perth city market in Caning Vale, the main wholesale distribution centre for fruits and vegetables in Western Australia. A survey questionnaire was prepared and shared with 51 wholesalers and their responses to 10 targeted questions on quantity of produce (fruits and vegetables) delivery received and further supplied, reasons for waste generation and innovations applied or being considered to reduce and utilize food waste. Data were computed using the Statistical Package for the Social Sciences (SPSS version 21). Among the wholesalers 52% were primary wholesalers (buy produce directly from growers) and 48% were secondary wholesalers (buy produce in bulk from major wholesalers and supply to the local retail market, caterers, and customers with specific requirements). Average fruit and vegetable waste was 180 Kilogram per week per primary wholesaler and 30 Kilogram per secondary wholesaler. Based on this survey, the fruit and vegetable waste at wholesaler stage was estimated at about 286 tonnes per year. The secondary wholesalers distributed pre-ordered commodities, which minimized the potential to cause waste. Non-parametric test (Mann Whitney test) was carried out to assess contributions of wholesalers to waste generation. Over 56% of secondary wholesalers generally had nothing to bin as waste. Pearson’s correlation coefficient analysis showed positive correlation (r = 0.425; P=0.01) between the quantity of produce received and waste generated. Low market demand was the predominant reason identified by the wholesalers for waste generation. About a third of the wholesalers suggested that high cosmetic standards for fruits and vegetables - appearance, shape, and size - should be relaxed to reduce waste. Donation of unutilized fruits and vegetables to charity was overwhelmingly (95%) considered as one of the best options for utilization of discarded produce. The extent of waste at other stages of fruit and vegetable supply chain is currently being studied.Keywords: food waste, fruits and vegetables, supply chain, waste generation
Procedia PDF Downloads 3165481 Tectono-Stratigraphic Architecture, Depositional Systems and Salt Tectonics to Strike-Slip Faulting in Kribi-Campo-Cameroon Atlantic Margin with an Unsupervised Machine Learning Approach (West African Margin)
Authors: Joseph Bertrand Iboum Kissaaka, Charles Fonyuy Ngum Tchioben, Paul Gustave Fowe Kwetche, Jeannette Ngo Elogan Ntem, Joseph Binyet Njebakal, Ribert Yvan Makosso-Tchapi, François Mvondo Owono, Marie Joseph Ntamak-Nida
Abstract:
Located in the Gulf of Guinea, the Kribi-Campo sub-basin belongs to the Aptian salt basins along the West African Margin. In this paper, we investigated the tectono-stratigraphic architecture of the basin, focusing on the role of salt tectonics and strike-slip faults along the Kribi Fracture Zone with implications for reservoir prediction. Using 2D seismic data and well data interpreted through sequence stratigraphy with integrated seismic attributes analysis with Python Programming and unsupervised Machine Learning, at least six second-order sequences, indicating three main stages of tectono-stratigraphic evolution, were determined: pre-salt syn-rift, post-salt rift climax and post-rift stages. The pre-salt syn-rift stage with KTS1 tectonosequence (Barremian-Aptian) reveals a transform rifting along NE-SW transfer faults associated with N-S to NNE-SSW syn-rift longitudinal faults bounding a NW-SE half-graben filled with alluvial to lacustrine-fan delta deposits. The post-salt rift-climax stage (Lower to Upper Cretaceous) includes two second-order tectonosequences (KTS2 and KTS3) associated with the salt tectonics and Campo High uplift. During the rift-climax stage, the growth of salt diapirs developed syncline withdrawal basins filled by early forced regression, mid transgressive and late normal regressive systems tracts. The early rift climax underlines some fine-grained hangingwall fans or delta deposits and coarse-grained fans from the footwall of fault scarps. The post-rift stage (Paleogene to Neogene) contains at least three main tectonosequences KTS4, KTS5 and KTS6-7. The first one developed some turbiditic lobe complexes considered as mass transport complexes and feeder channel-lobe complexes cutting the unstable shelf edge of the Campo High. The last two developed submarine Channel Complexes associated with lobes towards the southern part and braided delta to tidal channels towards the northern part of the Kribi-Campo sub-basin. The reservoir distribution in the Kribi-Campo sub-basin reveals some channels, fan lobes reservoirs and stacked channels reaching up to the polygonal fault systems.Keywords: tectono-stratigraphic architecture, Kribi-Campo sub-basin, machine learning, pre-salt sequences, post-salt sequences
Procedia PDF Downloads 615480 Peace through Language Policy as a Solution to the Ethnic Conflict in Sri Lanka
Authors: R. M. W. Rajapakshe
Abstract:
Sri Lanka, which is officially called the Democratic Socialist Republic of Sri Lanka is an island nation situated near India. It is a multi-lingual, multi- religious and multi – ethnic country, where Sinhalese form the majority and the Tamils form the largest ethnic minority. The composition of the population (ethnic basis) in Sri Lanka is as follows: Sinhalese: 74.5%, Tamil (Sri Lankan): 12.6%, Muslim: 7.5 %, Tamil (Indian): 5.5%, Malay: 0.3%, Burgher: 0.3 %, other: 0.2 %. The Tamil people use the Tamil language as their mother tongue and the Sinhala people use the Sinhala language as their mother tongue. A very few people in both communities use English as their mother tongue and however, a large number of people use English as a second language. The Sinhala Language was declared the only official language in Sri Lanka in 1959. However, it was not acceptable to Tamil politicians as well as to the common Tamil people and it was the beginning of long standing ethnic crisis which later became a military war where a lot of blood was shed. As a solution to the above ethnic crisis the thirteenth amendment to the constitution of Sri Lanka was introduced in 1987 and according to it both Sinhala and Tamil were declared official languages and English as the link language in Sri Lanka. Thus, a new programme namely, second language teaching programme under which Sinhala was taught to Tamil students and Tamil was taught to Sinhala students, was introduced at government schools. Language teaching includes knowledge of the culture of the target language. As all cultures are mixed and have common features students have reduced their enmity about the other community and learned to respect the other culture. On the other hand as all languages are mixed, students came to the understanding that there are no pure languages. Thus, they learned to respect the other language. In the case of Sri Lanka the Sinhala language is mixed with the Tamil language and vice versa. Thus, the development of second language teaching is the prominent way to solve the above ethnic problem and this study clearly shows it. However, the above programme suffers with lack of trained second language teachers, infrastructure facilities and insufficient funds and, they can be considered as the main obstacles to develop the second language teaching programme. Yet, there are no satisfactory answers to those problems. The data were collected from relevant books, articles and other documents based on research and forty five recordings, each with one hour duration, of natural conversations covering all factions of the Sinhala community.Keywords: ethnic crisis, official language, second language teaching, Sinhala, Tami
Procedia PDF Downloads 3475479 Identifying the Barriers behind the Lack of Six Sigma Use in Libyan Manufacturing Companies
Authors: Osama Elgadi, Martin Birkett, Wai Ming Cheung
Abstract:
This paper investigates the barriers behind the underutilisation of six sigma in Libyan manufacturing companies (LMCs). A mixed-method methodology is proposed, starting by conducting interviews to collect qualitative data followed by the development of a questionnaire to obtain quantitative data. The focus of this paper is on discussing the findings of the interview stage and how these can be used to further develop the questionnaire stage. The interview results showed that only four key barriers were highlighted as being encountered by LMCs. With a difference in terms of their significance, these factors were identified, and placed in descending order according to their importance, namely: “Lack of top management commitment”, “Lack of training”, “Lack of knowledge about six sigma”, and “Culture effect”. The findings also showed that some barriers which, were found in previous studies of six sigma implementation were not considered as barriers to LMCs but can, in fact, be considered as success factors or enablers for six sigma adoption. These factors were identified as: “sufficiency of time and financial resources”; “customers unsatisfied”; “good communication between all departments in the company”; “we are certain about its results and benefits to our company and unhappy with the current quality system”. These results suggest that LMCs face fewer barriers to adopting six sigma than many well-established global companies operating in other countries and could take advantage of these successful factors by developing and implementing a six sigma framework to improve their product quality and competitiveness.Keywords: six sigma, barriers, Libyan manufacturing companies, interview
Procedia PDF Downloads 2345478 Experiences of Timing Analysis of Parallel Embedded Software
Authors: Muhammad Waqar Aziz, Syed Abdul Baqi Shah
Abstract:
The execution time analysis is fundamental to the successful design and execution of real-time embedded software. In such analysis, the Worst-Case Execution Time (WCET) of a program is a key measure, on the basis of which system tasks are scheduled. The WCET analysis of embedded software is also needed for system understanding and to guarantee its behavior. WCET analysis can be performed statically (without executing the program) or dynamically (through measurement). Traditionally, research on the WCET analysis assumes sequential code running on single-core platforms. However, as computation is steadily moving towards using a combination of parallel programs and multi-core hardware, new challenges in WCET analysis need to be addressed. In this article, we report our experiences of performing the WCET analysis of Parallel Embedded Software (PES) running on multi-core platform. The primary purpose was to investigate how WCET estimates of PES can be computed statically, and how they can be derived dynamically. Our experiences, as reported in this article, include the challenges we faced, possible suggestions to these challenges and the workarounds that were developed. This article also provides observations on the benefits and drawbacks of deriving the WCET estimates using the said methods and provides useful recommendations for further research in this area.Keywords: embedded software, worst-case execution-time analysis, static flow analysis, measurement-based analysis, parallel computing
Procedia PDF Downloads 3275477 Multi-omics Integrative Analysis with Genome-Scale Metabolic Model Simulation Reveals Reaction Essentiality data in Human Astrocytes Under the Lipotoxic Effect of Palmitic Acid
Authors: Janneth Gonzalez, Andres Pinzon Velasco, Maria Angarita, Nicolas Mendoza
Abstract:
Astrocytes play an important role in various processes in the brain, including pathological conditions such as neurodegenerative diseases. Recent studies have shown that the increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatory pathways in the brain. The use of synthetic neurosteroids such as tibolone has demonstrated neuro-protective mechanisms. However, there are few studies on the neuro-protective mechanisms of tibolone, especially at the systemic (omic) level. In this study, we performed the integration of multi-omic data (transcriptome and proteome) into a human astrocyte genomic scale metabolic model to study the astrocytic response during palmitate treatment. We evaluated metabolic fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment under PA inflammation). We also use control theory to identify those reactions that control the astrocytic system. Our results suggest that PA generates a modulation of central and secondary metabolism, showing a change in energy source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of ketone bodies formation.We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory scenario but not in the protective tibolone one. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a fundamental role in the (de)regulation in metabolic pathways that increase neurotoxicity and represent potential treatment targets. Finally, this study framework facilitates the understanding of metabolic regulation strategies, andit can be used for in silico exploring the mechanisms of astrocytic cell regulation, directing a more complex future experimental work in neurodegenerative diseases.Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics, control theory
Procedia PDF Downloads 1245476 Transcriptome Analysis of Protestia brevitarsis seulensis with Focus On Wing Development and Metamorphosis in Developmental Stages
Authors: Jihye Hwang, Eun Hwa Choi, Su Youn Baek, Bia Park, Gyeongmin Kim, Chorong Shin, Joon Ha Lee, Jae-Sam Hwang, Ui Wook Hwang
Abstract:
White-spotted flower chafers are widely distributed in Asian countries and traditionally used for the treatment of chronic fatigue, blood circulation, and paralysis in the oriental medicine field. The evolution and development of insect wings and metamorphosis remain under-discovered subjects in arthropod evolutionary researches. Gene expression abundance analyses along with developmental stages based on the large-scale RNA-seq data are also still rarely done. Here we report the de novo assembly of a Protestia brevitarsis seulensis transcriptome along four different developmental stages (egg, larva, pupa, and adult) to explore its development and evolution of wings and metamorphosis. The de novo transcriptome assembly consists of 23,551 high-quality transcripts and is approximately 96.7% complete. Out of 8,545 transcripts, 5,183 correspond to the possible orthologs with Drosophila melanogaster. As a result, we could found 265 genes related to wing development and 19 genes related to metamorphosis. The comparison of transcript expression abundance with different developmental stages revealed developmental stage-specific transcripts especially working at the stage of wing development and metamorphosis of P. b. seulensis. This transcriptome quantification along the developmental stages may provide some meaningful clues to elucidate the genetic modulation mechanism of wing development and metamorphosis obtained during the insect evolution.Keywords: white-spotted flower chafers, transcriptomics, RNA-seq, network biology, wing development, metamorphosis
Procedia PDF Downloads 2345475 Efficiency of Wood Vinegar Mixed with Some Plants Extract against the Housefly (Musca domestica L.)
Authors: U. Pangnakorn, S. Kanlaya
Abstract:
The efficiency of wood vinegar mixed with each individual of three plants extract such as: citronella grass (Cymbopogon nardus), neem seed (Azadirachta indica A. Juss), and yam bean seed (Pachyrhizus erosus Urb.) were tested against the second instar larvae of housefly (Musca domestica L.). Steam distillation was used for extraction of the citronella grass while neem and yam bean were simple extracted by fermentation with ethyl alcohol. Toxicity test was evaluated in laboratory based on two methods of larvicidal bioassay: topical application method (contact poison) and feeding method (stomach poison). Larval mortality was observed daily and larval survivability was recorded until the survived larvae developed to pupae and adults. The study resulted that treatment of wood vinegar mixed with citronella grass showed the highest larval mortality by topical application method (50.0%) and by feeding method (80.0%). However, treatment of mixed wood vinegar and neem seed showed the longest pupal duration to 25 day and 32 days for topical application method and feeding method respectively. Additional, larval duration on treated M. domestica larvae was extended to 13 days for topical application method and 11 days for feeding method. Thus, the feeding method gave higher efficiency compared with the topical application method.Keywords: housefly (Musca domestica L.), neem seed (Azadirachta indica), citronella grass (Cymbopogon nardus), yam bean seed (Pachyrhizus erosus), mortality
Procedia PDF Downloads 3435474 Neck Thinning Dynamics of Janus Droplets under Multiphase Interface Coupling in Cross Junction Microchannels
Authors: Jiahe Ru, Yan Pang, Zhaomiao Liu
Abstract:
Necking processes of the Janus droplet generation in the cross-junction microchannels are experimentally and theoretically investigated. The two dispersed phases that are simultaneously shear by continuous phases are liquid paraffin wax and 100cs silicone oil, in which 80% glycerin aqueous solution is used as continuous phases. According to the variation of minimum neck width and thinning rate, the necking process is divided into two stages, including the two-dimensional extrusion and the three-dimensional extrusion. In the two-dimensional extrusion stage, the evolutions of the tip extension length for the two discrete phases begin with the same trend, and then the length of liquid paraffin is larger than silicone oil. The upper and lower neck interface profiles in Janus necking process are asymmetrical when the tip extension velocity of paraffin oil is greater than that of silicone oil. In the three-dimensional extrusion stage, the neck of the liquid paraffin lags behind that of the silicone oil because of the higher surface tension, and finally, the necking fracture position gradually synchronizes. When the Janus droplets pinch off, the interfacial tension becomes positive to drive the neck thinning. The interface coupling of the three phases can cause asymmetric necking of the neck interface, which affects the necking time and, ultimately, the droplet volume. This paper mainly investigates the thinning dynamics of the liquid-liquid interface in confined microchannels. The revealed results could help to enhance the physical understanding of the droplet generation phenomenon.Keywords: neck interface, interface coupling, janus droplets, multiphase flow
Procedia PDF Downloads 1355473 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions
Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou
Abstract:
Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces. Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.Keywords: graphene, chemical vapor deposition, carbon source, low temperature growth
Procedia PDF Downloads 1715472 Synergistic Studies of Multi-Flame Retarders Using Silica Nanoparticles, and Nitrogen and Phosphorus-Based Compounds for Polystyrene Using Response Surface Methodology
Authors: Florencio D. De Los Reyes, Magdaleno R. Vasquez Jr., Mark Daniel G. De Luna, Peerasak Paoprasert
Abstract:
The effect of adding silica nanoparticles (SiNPs) obtained from rice husk, and phosphorus and nitrogen based compounds namely 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) and melamine, respectively, on the flammability of polystyrene (PS) was studied using response surface methodology (RSM). The flammability of PS was reduced as the limiting oxygen index (LOI) values increased when the flame retardant additives were added. DOPO exhibited the best retarding property increasing the LOI value of PS by 42.4%. A quadratic model for LOI was obtained from the RSM results, with percent loading of SiNPs, DOPO, and melamine, as independent variables. The observed increase in the LOI value as the percent loading of the flame retardant additives is increased, was attributed both to the main effects and synergistic effects of the parameters, as the LOI response of SiNPs is greatly enhanced by the addition of DOPO and melamine, as shown by the response surface plots. This indicates the potential of producing a cheaper, effective, and non-toxic multi-flame retardant system for the polymeric system via different flame retarding mechanisms.Keywords: flame retardancy, polystyrene, response surface methodology, rice husk, silica nanoparticle
Procedia PDF Downloads 2915471 Administrators' Information Management Capacity and Decision-Making Effectiveness on Staff Promotion in the Teaching Service Commissions in South – West, Nigeria
Authors: Olatunji Sabitu Alimi
Abstract:
This study investigated the extent to which administrators’ information storage, retrieval and processing capacities influence decisions on staff promotion in the Teaching Service Commissions (TESCOMs) in The South-West, Nigeria. One research question and two research hypotheses were formulated and tested respectively at 0.05 level of significance. The study used the descriptive research of the survey type. One hundred (100) staff on salary grade level 09 constituted the sample. Multi- stage, stratified and simple random sampling techniques were used to select 100 staff from the TESCOMs in The South-West, Nigeria. Two questionnaires titled Administrators’ Information Storage, Retrieval and Processing Capacities (AISRPC), and Staff Promotion Effectiveness (SPE) were used for data collection. The inventory was validated and subjected to test-re-test and reliability coefficient of r = 0.79 was obtained. The data were collected and analyzed using Pearson Product Moment Correlation coefficient and simple percentage. The study found that Administrators at TESCOM stored their information in files, hard copies, soft copies, open registry and departmentally in varying degrees while they also processed information manually and through electronics for decision making. In addition, there is a significant relationship between administrators’ information storage and retrieval capacities in the TESCOMs in South – West, Nigeria, (r cal = 0.598 > r table = 0.195). Furthermore, administrators’ information processing capacity and staff promotion effectiveness were found to be significantly related (r cal = 0.209 > r table = 0.195 at 0.05 level of significance). The study recommended that training, seminars, workshops should be organized for administrators on information management, while educational organizations should provide Information Management Technology (ICT) equipment for the administrators in the TESCOMs. The staff of TESCOM should be promoted having satisfied the promotion criteria such as spending required number of years on a grade level, a clean record of service and vacancy.Keywords: information processing capacity, staff promotion effectiveness, teaching service commission, Nigeria
Procedia PDF Downloads 5355470 Design Forms Urban Space
Authors: Amir Shouri, Fereshteh Tabe
Abstract:
Thoughtful and sequential design strategies will shape the future of human being’s lifestyle. Design, as a product, either being for small furniture on sidewalk or a multi-story structure in urban scale, will be important in creating the sense of quality for citizens of a city. Technology besides economy has played a major role in improving design process and increasing awareness of clients about the character of their required design product. Architects along with other design professionals benefited from improvements in aesthetics and technology in building industry. Accordingly, the expectation platforms of people about the quality of habitable space have risen. However, the question is if the quality of architectural design product has increased with the same speed as technology and client’s expectations. Is it behind or a head of technological and economical improvements? This study will work on developing a model of planning for New York City, from the past to present to future. The role of thoughtful thinking at design stage regardless of where or when it is for; may result in a positive or negative aspect. However, considering design objectives based on the need of human being may help in developing a successful design plan. Technology, economy, culture and people’s support may be other parameters in designing a good product. ‘Design Forms Urban Space’ is going to be done in an analytical, qualitative and quantitative work frame, where it will study cases from all over the world and their achievements compared to New York City’s development. Technology, Organic Design, Materiality, Urban forms, city politics and sustainability will be discussed in different cases in international scale. From design professional’s interest in doing a high quality work for a particular answer to importance of being a follower, the ‘Zero-Carbon City’ in Persian Gulf to ‘Polluted City’ in China, from ‘Urban Scale Furniture’ in cities to ‘Seasonal installations’ of a Megacity, will all be studied with references and detailed look to analysis of each case in order to propose the most resourceful, practical and realistic solutions to questions on ‘A Good Design in a City’, ‘New City Planning and social activities’ and ‘New Strategic Architecture for better Cities’.Keywords: design quality, urban scale, active city, city installations, architecture for better cities
Procedia PDF Downloads 3485469 Investigation of Carbapenem-Resistant Genes in Acinetobacter spp. Isolated from Patients at Tertiary Health Care Center, Northeastern Thailand
Authors: S. J. Sirima, C. Thirawan, R.Puntharikorn, K. Ungsumalin, J. Kaemwich
Abstract:
Acinetobacter spp. is a gram negative bacterium causing the high incidence of multi-drug resistance in patients admitted to an intensive care unit. A hundred isolates of Imipenem-resistant Acinetobacter spp. isolated from patients admitted at tertiary health care center, Northeastern region, Ubon Ratchathani, Thailand, were subjected to modified Hodge test and combined disc test in order to evaluate the production of carbapenemases. The results revealed that about 35% of isolates were found to be carbapenemases producers. In addition, multiplex polymerase chain reactions were performed to detect blaOXA-like genes. It showed that 92% of isolates possess blaOXA-51-like and blaOXA-23-like genes. However, blaOXA-58-like gene was detected in only 8 isolates. No detection of blaOXA-24-like gene was observed in all isolates. In conclusion, an ability to produce carbepenemases would be an important mechanism of multi-drug resistance among clinical isolates of Acinetobacter spp. at tertiary health care center, Northeastern region, Ubon Ratchathani, Thailand. Furthermore, it was likely that the class D carbapenemases genes, blaOXA-51-like and blaOXA-23-like, might contribute to imipenem-resistance exhibiting among isolates.Keywords: Acinetobacter spp., blaOXA-like genes, carbapenemases, tertiary health care center
Procedia PDF Downloads 384