Search results for: innovation network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6367

Search results for: innovation network

4387 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation

Authors: Bubai Maji, Monorama Swain

Abstract:

Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.

Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition

Procedia PDF Downloads 113
4386 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling

Procedia PDF Downloads 13
4385 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension

Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe

Abstract:

The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.

Keywords: neural network, hypertension, data set, training set, supervised learning

Procedia PDF Downloads 391
4384 Mitigating Denial of Service Attacks in Information Centric Networking

Authors: Bander Alzahrani

Abstract:

Information-centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) is one of the promising candidates for a future Internet, has recently been under the spotlight by the research community to investigate the possibility of redesigning the current Internet architecture to solve many issues such as routing scalability, security, and quality of services issues.. The Bloom filter-based forwarding is a source-routing approach that is used in the PSIRP architecture. This mechanism is vulnerable to brute force attacks which may lead to denial-of-service (DoS) attacks. In this work, we present a new forwarding approach that keeps the advantages of Bloom filter-based forwarding while mitigates attacks on the forwarding mechanism. In practice, we introduce a special type of forwarding nodes called Edge-FW to be placed at the edge of the network. The role of these node is to add an extra security layer by validating and inspecting packets at the edge of the network against brute-force attacks and check whether the packet contains a legitimate forwarding identifier (FId) or not. We leverage Certificateless Aggregate Signature (CLAS) scheme with a small size of 64-bit which is used to sign the FId. Hence, this signature becomes bound to a specific FId. Therefore, malicious nodes that inject packets with random FIds will be easily detected and dropped at the Edge-FW node when the signature verification fails. Our preliminary security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DoS with very high probability.

Keywords: bloom filter, certificateless aggregate signature, denial-of-service, information centric network

Procedia PDF Downloads 198
4383 A Simple Fluid Dynamic Model for Slippery Pulse Pattern in Traditional Chinese Pulse Diagnosis

Authors: Yifang Gong

Abstract:

Pulse diagnosis is one of the most important diagnosis methods in traditional Chinese medicine. It is also the trickiest method to learn. It is known as that it can only to be sensed not explained. This becomes a serious threat to the survival of this diagnostic method. However, there are a large amount of experiences accumulated during the several thousand years of practice of Chinese doctors. A pulse pattern called 'Slippery pulse' is one of the indications of pregnancy. A simple fluid dynamic model is proposed to simulate the effects of the existence of a placenta. The placenta is modeled as an extra plenum in an extremely simplified fluid network model. It is found that because of the existence of the extra plenum, indeed the pulse pattern shows a secondary peak in one pulse period. As for the author’s knowledge, this work is the first time to show the link between Pulse diagnoses and basic physical principle. Key parameters which might affect the pattern are also investigated.

Keywords: Chinese medicine, flow network, pregnancy, pulse

Procedia PDF Downloads 383
4382 Analysis of Road Network Vulnerability Due to Merapi Volcano Eruption

Authors: Imam Muthohar, Budi Hartono, Sigit Priyanto, Hardiansyah Hardiansyah

Abstract:

The eruption of Merapi Volcano in Yogyakarta, Indonesia in 2010 caused many casualties due to minimum preparedness in facing disaster. Increasing population capacity and evacuating to safe places become very important to minimize casualties. Regional government through the Regional Disaster Management Agency has divided disaster-prone areas into three parts, namely ring 1 at a distance of 10 km, ring 2 at a distance of 15 km and ring 3 at a distance of 20 km from the center of Mount Merapi. The success of the evacuation is fully supported by road network infrastructure as a way to rescue in an emergency. This research attempts to model evacuation process based on the rise of refugees in ring 1, expanded to ring 2 and finally expanded to ring 3. The model was developed using SATURN (Simulation and Assignment of Traffic to Urban Road Networks) program version 11.3. 12W, involving 140 centroid, 449 buffer nodes, and 851 links across Yogyakarta Special Region, which was aimed at making a preliminary identification of road networks considered vulnerable to disaster. An assumption made to identify vulnerability was the improvement of road network performance in the form of flow and travel times on the coverage of ring 1, ring 2, ring 3, Sleman outside the ring, Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul. The research results indicated that the performance increase in the road networks existing in the area of ring 2, ring 3, and Sleman outside the ring. The road network in ring 1 started to increase when the evacuation was expanded to ring 2 and ring 3. Meanwhile, the performance of road networks in Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul during the evacuation period simultaneously decreased in when the evacuation areas were expanded. The results of preliminary identification of the vulnerability have determined that the road networks existing in ring 1, ring 2, ring 3 and Sleman outside the ring were considered vulnerable to the evacuation of Mount Merapi eruption. Therefore, it is necessary to pay a great deal of attention in order to face the disasters that potentially occur at anytime.

Keywords: model, evacuation, SATURN, vulnerability

Procedia PDF Downloads 170
4381 Moderating and Mediating Effects of Business Model Innovation Barriers during Crises: A Structural Equation Model Tested on German Chemical Start-Ups

Authors: Sarah Mueller-Saegebrecht, André Brendler

Abstract:

Business model innovation (BMI) as an intentional change of an existing business model (BM) or the design of a new BM is essential to a firm's development in dynamic markets. The relevance of BMI is also evident in the ongoing COVID-19 pandemic, in which start-ups, in particular, are affected by limited access to resources. However, first studies also show that they react faster to the pandemic than established firms. A strategy to successfully handle such threatening dynamic changes represents BMI. Entrepreneurship literature shows how and when firms should utilize BMI in times of crisis and which barriers one can expect during the BMI process. Nevertheless, research merging BMI barriers and crises is still underexplored. Specifically, further knowledge about antecedents and the effect of moderators on the BMI process is necessary for advancing BMI research. The addressed research gap of this study is two-folded: First, foundations to the subject on how different crises impact BM change intention exist, yet their analysis lacks the inclusion of barriers. Especially, entrepreneurship literature lacks knowledge about the individual perception of BMI barriers, which is essential to predict managerial reactions. Moreover, internal BMI barriers have been the focal point of current research, while external BMI barriers remain virtually understudied. Second, to date, BMI research is based on qualitative methodologies. Thus, a lack of quantitative work can specify and confirm these qualitative findings. By focusing on the crisis context, this study contributes to BMI literature by offering a first quantitative attempt to embed BMI barriers into a structural equation model. It measures managers' perception of BMI development and implementation barriers in the BMI process, asking the following research question: How does a manager's perception of BMI barriers influence BMI development and implementation in times of crisis? Two distinct research streams in economic literature explain how individuals react when perceiving a threat. "Prospect Theory" claims that managers demonstrate risk-seeking tendencies when facing a potential loss, and opposing "Threat-Rigidity Theory" suggests that managers demonstrate risk-averse behavior when facing a potential loss. This study quantitively tests which theory can best predict managers' BM reaction to a perceived crisis. Out of three in-depth interviews in the German chemical industry, 60 past BMIs were identified. The participating start-up managers gave insights into their start-up's strategic and operational functioning. After, each interviewee described crises that had already affected their BM. The participants explained how they conducted BMI to overcome these crises, which development and implementation barriers they faced, and how severe they perceived them, assessed on a 5-point Likert scale. In contrast to current research, results reveal that a higher perceived threat level of a crisis harms BM experimentation. Managers seem to conduct less BMI in times of crisis, whereby BMI development barriers dampen this relation. The structural equation model unveils a mediating role of BMI implementation barriers on the link between the intention to change a BM and the concrete BMI implementation. In conclusion, this study confirms the threat-rigidity theory.

Keywords: barrier perception, business model innovation, business model innovation barriers, crises, prospect theory, start-ups, structural equation model, threat-rigidity theory

Procedia PDF Downloads 94
4380 Transmission Network Expansion Planning in Deregulated Power Systems to Facilitate Competition under Uncertainties

Authors: Hooshang Mohammad Alikhani, Javad Nikoukar

Abstract:

Restructuring and deregulation of power industry have changed the objectives of transmission expansion planning and increased the uncertainties. Due to these changes, new approaches and criteria are needed for transmission planning in deregulated power systems. The objective of this research work is to present a new approach for transmission expansion planning with considering new objectives and uncertainties in deregulated power systems. The approach must take into account the desires of all stakeholders in transmission expansion planning. Market based criteria must be defined to achieve the new objectives. Combination of market based criteria, technical criteria and economical criteria must be used for measuring the goodness of expansion plans to achieve market requirements, technical requirements, and economical requirements altogether.

Keywords: deregulated power systems, transmission network, stakeholder, energy systems

Procedia PDF Downloads 654
4379 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
4378 Efficiency and Scale Elasticity in Network Data Envelopment Analysis: An Application to International Tourist Hotels in Taiwan

Authors: Li-Hsueh Chen

Abstract:

Efficient operation is more and more important for managers of hotels. Unlike the manufacturing industry, hotels cannot store their products. In addition, many hotels provide room service, and food and beverage service simultaneously. When efficiencies of hotels are evaluated, the internal structure should be considered. Hence, based on the operational characteristics of hotels, this study proposes a DEA model to simultaneously assess the efficiencies among the room production division, food and beverage production division, room service division and food and beverage service division. However, not only the enhancement of efficiency but also the adjustment of scale can improve the performance. In terms of the adjustment of scale, scale elasticity or returns to scale can help to managers to make decisions concerning expansion or contraction. In order to construct a reasonable approach to measure the efficiencies and scale elasticities of hotels, this study builds an alternative variable-returns-to-scale-based two-stage network DEA model with the combination of parallel and series structures to explore the scale elasticities of the whole system, room production division, food and beverage production division, room service division and food and beverage service division based on the data of international tourist hotel industry in Taiwan. The results may provide valuable information on operational performance and scale for managers and decision makers.

Keywords: efficiency, scale elasticity, network data envelopment analysis, international tourist hotel

Procedia PDF Downloads 225
4377 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric

Procedia PDF Downloads 419
4376 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization

Procedia PDF Downloads 169
4375 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 86
4374 The Role of Entrepreneurial Orientation in Strengthening Goat Farm Competitiveness in Banjarnegara District, Indonesia

Authors: Mochamad Sugiarto, Yusmi Nw

Abstract:

Goat farming became an important alternative in eradicating poverty in Banjarnegara District. The success of goat farming in delivering products through efficient business management will improve business competitiveness. Entrepreneurship based farming has been able to survive in an ever-changing and increasingly complex global economy. Entrepreneurial farmers characterized by the ability to provide products of goats by applying the principles of efficient business. To achieve, this requires an understanding and a positive outlook related to entrepreneurship involving the values of courage to take risks, creativity and innovation as well as management's ability to find and read the opportunities. Entrepreneurial orientation owned by farmers is an important spirit of farmers to make decision for developing the goat farming. Entrepreneurial orientation is the view of farmers against the values of confidence, result-oriented, future-oriented, and creativity/innovation in goat farming. This study aims to (1) identify the entrepreneurial orientation of goat farmers in Banjarnegara District (2) analyze business competitiveness (cost efficiency) of goat farming in the Banjarnegara District and (3) analyze the relationship between the entrepreneurial perception and cost efficiency of goat farming in the Banjarnegara District. 178 respondents (goat farmers) were taken using stratified random sampling based on altitude. Banjarnegara district with heterogeneous topography grouped into areas of high ( > 1500m), moderate (500m-1000m) and low ( < 500m). The goat farmers in Banjarnegara District has a moderate entrepreneurial orientation. The manage their goat farming efficiently by having R/C = 2.58. Strengthening the entrepreneurial orientation will significantly increase the cost efficiency, which has an impact on strengthening the competitiveness of goat farming in Banjarnegara District.

Keywords: entrepreneurial orientation, cost efficiency, farm competitiveness, goat farming

Procedia PDF Downloads 308
4373 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 298
4372 Innovations for Freight Transport Systems

Authors: M. Lu

Abstract:

The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.

Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)

Procedia PDF Downloads 316
4371 Interculturalizing Ethiopian Universities: Between Initiation and Institutionalization

Authors: Desta Kebede Ayana, Lies Sercu, Demelash Mengistu

Abstract:

The study is set in Ethiopia, a sub-Saharan multilingual, multiethnic African country, which has seen a significant increase in the number of universities in recent years. The aim of this growth is to provide access to education for all cultural and linguistic groups across the country. However, there are challenges in promoting intercultural competence among students in this diverse context. The aim of the study is to investigate the interculturalization of Ethiopian Higher Education Institutions as perceived by university lecturers and administrators. In particular, the study aims to determine the level of support for this educational innovation and gather suggestions for its implementation and institutionalization. The researchers employed semi-structured interviews with administrators and lecturers from two large Ethiopian universities to gather data. Thematic analysis was utilized for coding and analyzing the interview data, with the assistance of the NVIVO software. The findings obtained from the grounded analysis of the interview data reveal that while there are opportunities for interculturalization in the curriculum and campus life, support for educational innovation remains low. Administrators and lecturers also emphasize the government's responsibility to prioritize interculturalization over other educational innovation goals. The study contributes to the existing literature by examining an under-researched population in an under-researched context. Additionally, the study explores whether Western perspectives of intercultural competence align with the African context, adding to the theoretical understanding of intercultural education. The data for this study was collected through semi-structured interviews conducted with administrators and lecturers from two large Ethiopian universities. The interviews allowed for an in-depth exploration of the participants' views on interculturalization in higher education. Thematic analysis was applied to the interview data, allowing for the identification and organization of recurring themes and patterns. The analysis was conducted using the NVIVO software, which aided in coding and analyzing the data. The study addresses the extent to which administrators and lecturers support the interculturalization of Ethiopian Higher Education Institutions. It also explores their suggestions for implementing and institutionalizing intercultural education, as well as their perspectives on the current level of institutionalization. The study highlights the challenges in interculturalizing Ethiopian universities and emphasizes the need for greater support and prioritization of intercultural education. It also underscores the importance of considering the African context when conceptualizing intercultural competence. This research contributes to the understanding of intercultural education in diverse contexts and provides valuable insights for policymakers and educational institutions aiming to promote intercultural competence in higher education settings.

Keywords: administrators, educational change, Ethiopia, intercultural competence, lecturers

Procedia PDF Downloads 98
4370 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: adaptive cruise control, centralized server, networked model predictive control, string stability

Procedia PDF Downloads 515
4369 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 153
4368 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 68
4367 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique

Authors: Dibakar Chakrabarty, Mebada Suiting

Abstract:

Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.

Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM

Procedia PDF Downloads 248
4366 Supply Chain Optimisation through Geographical Network Modeling

Authors: Cyrillus Prabandana

Abstract:

Supply chain optimisation requires multiple factors as consideration or constraints. These factors are including but not limited to demand forecasting, raw material fulfilment, production capacity, inventory level, facilities locations, transportation means, and manpower availability. By knowing all manageable factors involved and assuming the uncertainty with pre-defined percentage factors, an integrated supply chain model could be developed to manage various business scenarios. This paper analyse the utilisation of geographical point of view to develop an integrated supply chain network model to optimise the distribution of finished product appropriately according to forecasted demand and available supply. The supply chain optimisation model shows that small change in one supply chain constraint is possible to largely impact other constraints, and the new information from the model should be able to support the decision making process. The model was focused on three areas, i.e. raw material fulfilment, production capacity and finished products transportation. To validate the model suitability, it was implemented in a project aimed to optimise the concrete supply chain in a mining location. The high level of operations complexity and involvement of multiple stakeholders in the concrete supply chain is believed to be sufficient to give the illustration of the larger scope. The implementation of this geographical supply chain network modeling resulted an optimised concrete supply chain from raw material fulfilment until finished products distribution to each customer, which indicated by lower percentage of missed concrete order fulfilment to customer.

Keywords: decision making, geographical supply chain modeling, supply chain optimisation, supply chain

Procedia PDF Downloads 346
4365 An Empirical Investigation on the Dynamics of Knowledge and IT Industries in Korea

Authors: Sang Ho Lee, Tae Heon Moon, Youn Taik Leem, Kwang Woo Nam

Abstract:

Knowledge and IT inputs to other industrial production have become more important as a key factor for the competitiveness of national and regional economies, such as knowledge economies in smart cities. Knowledge and IT industries lead the industrial innovation and technical (r)evolution through low cost, high efficiency in production, and by creating a new value chain and new production path chains, which is referred as knowledge and IT dynamics. This study aims to investigate the knowledge and IT dynamics in Korea, which are analyzed through the input-output model and structural path analysis. Twenty-eight industries were reclassified into seven categories; Agriculture and Mining, IT manufacture, Non-IT manufacture, Construction, IT-service, Knowledge service, Non-knowledge service to take close look at the knowledge and IT dynamics. Knowledge and IT dynamics were analyzed through the change of input output coefficient and multiplier indices in terms of technical innovation, as well as the changes of the structural paths of the knowledge and IT to other industries in terms of new production value creation from 1985 and 2010. The structural paths of knowledge and IT explain not only that IT foster the generation, circulation and use of knowledge through IT industries and IT-based service, but also that knowledge encourages IT use through creating, sharing and managing knowledge. As a result, this paper found the empirical investigation on the knowledge and IT dynamics of the Korean economy. Knowledge and IT has played an important role regarding the inter-industrial transactional input for production, as well as new industrial creation. The birth of the input-output production path has mostly originated from the knowledge and IT industries, while the death of the input-output production path took place in the traditional industries from 1985 and 2010. The Korean economy has been in transition to a knowledge economy in the Smart City.

Keywords: knowledge and IT industries, input-output model, structural path analysis, dynamics of knowledge and it, knowledge economy, knowledge city and smart city

Procedia PDF Downloads 333
4364 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.

Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony

Procedia PDF Downloads 379
4363 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 145
4362 Opinion Mining and Sentiment Analysis on DEFT

Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala

Abstract:

Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.

Keywords: opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet

Procedia PDF Downloads 138
4361 A Study of Human Communication in an Internet Community

Authors: Andrew Laghos

Abstract:

The Internet is a big part of our everyday lives. People can now access the internet from a variety of places including home, college, and work. Many airports, hotels, restaurants and cafeterias, provide free wireless internet to their visitors. Using technologies like computers, tablets, and mobile phones, we spend a lot of our time online getting entertained, getting informed, and communicating with each other. This study deals with the latter part, namely, human communication through the Internet. People can communicate with each other using social media, social network sites (SNS), e-mail, messengers, chatrooms, and so on. By connecting with each other they form virtual communities. Regarding SNS, types of connections that can be studied include friendships and cliques. Analyzing these connections is important to help us understand online user behavior. The method of Social Network Analysis (SNA) was used on a case study, and results revealed the existence of some useful patterns of interactivity between the participants. The study ends with implications of the results and ideas for future research.

Keywords: human communication, internet communities, online user behavior, psychology

Procedia PDF Downloads 497
4360 Intellectual Property and SMEs in the Baltic Sea Region: A Comparative Study on the Use of the Utility Model Protection

Authors: Christina Wainikka, Besrat Tesfaye

Abstract:

Several of the countries in the Baltic Sea region are ranked high in international innovations rankings, such as the Global Innovation Index and European Innovation Scoreboard. There are however some concerns in the performance of different countries. For example, there is a widely spread notion about “The Swedish Paradox”. Sweden is ranked high due to investments in R&D and patent activity, but the outcome is not as high as could be expected. SMEs in Sweden are also below EU average when it comes to registering intellectual property rights such as patents and trademarks. This study is concentrating on the protection of utility model. This intellectual property right does not exist in Sweden, but in for example Finland and Germany. The utility model protection is sometimes referred to as a “patent light” since it is easier to obtain than the patent protection but at the same time does cover technical solutions. In examining statistics on patent activities and activities in registering utility models it is clear that utility model protection is scarcely used in the countries that have the protection. In Germany 10 577 applications were made in 2021. In Finland there were 259 applications made in 2021. This can be compared with patent applications that were 58 568 in Germany in 2021 and 1 662 in Finland in 2021. In Sweden there has never been a protection for utility models. The only protection for technical solutions is patents and business secrets. The threshold for obtaining a patent is high, due to the legal requirements and the costs. The patent protection is there for often not chosen by SMEs in Sweden. This study examines whether the protection of utility models in other countries in the Baltic region provide SMEs in these countries with better options to protect their innovations. The legal methodology is comparative law. In order to study the effects of the legal differences statistics are examined and interviews done with SMEs from different industries.

Keywords: baltic sea region, comparative law, SME, utility model

Procedia PDF Downloads 114
4359 Creating Systems Change: Implementing Cross-Sector Initiatives within the Justice System to Support Ontarians with Mental Health and Addictions Needs

Authors: Tania Breton, Dorina Simeonov, Shauna MacEachern

Abstract:

Ontario’s 10 Year Mental Health and Addictions Strategy has included the establishment of 18 Service Collaborative across the province; cross-sector tables in a specific region coming together to explore mental health and addiction system needs and adopting an intervention to address that need. The process is community led and supported by implementation teams from the Centre for Addiction and Mental Health (CAMH), using the framework of implementation science (IS) to enable evidence-based and sustained change. These justice initiatives are focused on the intersection of the justice system and the mental health and addiction systems. In this presentation, we will share the learnings, achievements and challenges of implementing innovative practices to the mental health and addictions needs of Ontarians within the justice system. Specifically, we will focus on the key points across the justice system - from early intervention and trauma-informed, culturally appropriate services to post-sentence support and community reintegration. Our approach to this work involves external implementation support from the CAMH team including coaching, knowledge exchange, evaluation, Aboriginal engagement and health equity expertise. Agencies supported the implementation of tools and processes which changed practice at the local level. These practices are being scaled up across Ontario and community agencies have come together in an unprecedented collaboration and there is a shared vision of the issues overlapping between the mental health, addictions and justice systems. Working with ministry partners has allowed space for innovation and created an environment where better approaches can be nurtured and spread.

Keywords: implementation, innovation, early identification, mental health and addictions, prevention, systems

Procedia PDF Downloads 362
4358 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks

Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba

Abstract:

The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.

Keywords: authentication, long term evolution, security, vehicle-to-everything

Procedia PDF Downloads 167