Search results for: battery energy storage systems
15513 Forest Soil Greenhouse Gas Real-Time Analysis Using Quadrupole Mass Spectrometry
Authors: Timothy L. Porter, T. Randy Dillingham
Abstract:
Vegetation growth and decomposition, along with soil microbial activity play a complex role in the production of greenhouse gases originating in forest soils. The absorption or emission (respiration) of these gases is a function of many factors relating to the soils themselves, the plants, and the environment in which the plants are growing. For this study, we have constructed a battery-powered, portable field mass spectrometer for use in analyzing gases in the soils surrounding trees, plants, and other areas. We have used the instrument to sample in real-time the greenhouse gases carbon dioxide and methane in soils where plant life may be contributing to the production of gases such as methane. Gases such as isoprene, which may help correlate gas respiration to microbial activity have also been measured. The instrument is composed of a quadrupole mass spectrometer with part per billion or better sensitivity, coupled to battery-powered turbo and diaphragm pumps. A unique ambient air pressure differentially pumped intake apparatus allows for the real-time sampling of gases in the soils from the surface to several inches below the surface. Results show that this instrument is capable of instant, part-per-billion sensitivity measurement of carbon dioxide and methane in the near surface region of various forest soils. We have measured differences in soil respiration resulting from forest thinning, forest burning, and forest logging as compared to pristine, untouched forests. Further studies will include measurements of greenhouse gas respiration as a function of temperature, microbial activity as measured by isoprene production, and forest restoration after fire.Keywords: forest, soil, greenhouse, quadrupole
Procedia PDF Downloads 11615512 Human Tracking across Heterogeneous Systems Based on Mobile Agent Technologies
Authors: Tappei Yotsumoto, Atsushi Nomura, Kozo Tanigawa, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara
Abstract:
In a human tracking system, expanding a monitoring range of one system is complicating the management of devices and increasing its cost. Therefore, we propose a method to realize a wide-range human tracking by connecting small systems. In this paper, we examined an agent deploy method and information contents across the heterogeneous human tracking systems. By implementing the proposed method, we can construct a human tracking system across heterogeneous systems, and the system can track a target continuously between systems.Keywords: human tracking system, mobile agent, monitoring, heterogeneous systems
Procedia PDF Downloads 53615511 The Energy Consumption by the Sector of Transport and His Impact on the Atmospheric Pollution
Authors: Mme Hamani Née Guessas Ghaniya
Abstract:
The transport is the base of the development of the exchanges and the business, being both a recognized determiner of the economic and social development. The development of the transport is in the center of the big challenges of development of countries, but it is also at the heart of big contradictions, since we integrate the environmental issues which are bound to him, in particular through the questions of energy. Indeed, the energy consumption by the sector of transport is one of bigger concerns, because it is increasing and it has a big impact on our environment. The main consequences are, the atmospheric pollution causing an increase of the greenhouse effect which causes a global warming. These global warming risks to engender a partial cast iron of polar caps so raising the level of seas, flooding the low coastal zones, certain islands and the deltas. Thus, the purpose of this communication is to present the impact of the energy consumption by the sector of transport on the air quality, showing its effect on the health and on the global warming.Keywords: energy consumption, sector of transport, air quality, atmospheric pollution
Procedia PDF Downloads 33115510 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant
Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi
Abstract:
A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.Keywords: energy saving, methanol, gas turbine, power generation
Procedia PDF Downloads 46915509 Impact of Global Climate Change on Economy of Pakistan: How to Ensure Sustainable Food and Energy Production
Authors: Sabahat Zahra
Abstract:
The purpose of this research is to present the changing global environment and its potential impacts on sustainable food and energy production at global level, particularly in Pakistan. The food and energy related-economic sector has been subjected to negative consequences due to recent extreme changes in weather conditions, particularly in developing countries. Besides continuous modifications in weather, population is also increasing by time, therefore it is necessary to take special steps and start effective initiatives to cope with the challenges of food and energy security to fight hunger and for economic stability of country. Severe increase in temperature and heat waves has also negative impacts on food production as well as energy sustainability. Energy (in terms of electricity) consumption has grown up than the production potential of the country as a consequence of increasing warm weather. Ultimately prices gone up when there is more consumption than production. Therefore, all these aspects of climate change are interrelated with socio-economic issues. There is a need to develop long-term policies on regional and national levels for maintainable economic growth. This research presents a framework-plan and recommendations for implementation needed to mitigate the potential threats due to global climate change sustainable food and energy production under climate change in the country.Keywords: climate changes, energy security, food security, global climate change
Procedia PDF Downloads 35015508 Ecological Art in the Nuclear Anthropocene
Authors: Eve-Andree Laramee
Abstract:
The aesthetics and ethics of the Nuclear Anthropocene are explored through artists responses to the impact of radioactive materials on ecological systems, global issues, energy policies and ourselves. This presentation tracks and reveals the invisible traces of the nuclear weapons complex and the nuclear energy industry, in relation to environmental justice. Radioactive pollution transgresses international borders, boundaries between land and water, contaminating ecological systems. Radioactive waste is never disposed of; it is dispositioned, placed out of sight and out of mind. These materials leave behind an invisible toxic legacy lasting millions of years. As we are learning post-Fukushima, when climate change occurs and vulnerability spectrums shift, nuclear sites and the life forms surrounding them are at increased risk. By visualizing this contamination through art installations, videos, and social-sculpture interventions, information is shared with the public, raising awareness, and activating community participation in remediation and nonproliferation efforts. The emerging Ecological Art genre proposes paradigms sustainable with the life forms and resources of our planet. It is comprised of artists, scientists, philosophers and activists devoted to these. EcoArt is distinguished by a focus on systems and interrelationships within our environment: the ecological, geographic, political, biological and cultural. This presentation will cover artworks addressing the recent Fukushima meltdowns, weapons proliferation, climate change, radioactive waste disposal and environmental justice. Possibilities for art-and-science collaborations will be discussed as projects that sharpen our ethics and politics in our behaviors and social interactions. The presentation will consist of a PowerPoint talk (paper presentation) accompanied by images and video clips.Keywords: art, ecology, environment, anthropocene, nuclear
Procedia PDF Downloads 22915507 Research of the Activation Energy of Conductivity in P-I-N SiC Structures Fabricated by Doping with Aluminum Using the Low-Temperature Diffusion Method
Authors: Ilkham Gafurovich Atabaev, Khimmatali Nomozovich Juraev
Abstract:
The activation energy of conductivity in p-i-n SiC structures fabricated by doping with Aluminum using the new low-temperature diffusion method is investigated. In this method, diffusion is stimulated by the flux of carbon and silicon vacancies created by surface oxidation. The activation energy of conductivity in the p - layer is 0.25 eV and it is close to the ionization energy of Aluminum in 4H-SiC from 0.21 to 0.27 eV for the hexagonal and cubic positions of aluminum in the silicon sublattice for weakly doped crystals. The conductivity of the i-layer (measured in the reverse biased diode) shows 2 activation energies: 0.02 eV and 0.62 eV. Apparently, the 0.62 eV level is a deep trap level and it is a complex of Aluminum with a vacancy. According to the published data, an analogous level system (with activation energies of 0.05, 0.07, 0.09 and 0.67 eV) was observed in the ion Aluminum doped 4H-SiC samples.Keywords: activation energy, aluminum, low temperature diffusion, SiC
Procedia PDF Downloads 27915506 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications
Authors: Yasith Mindula Saipath Wickramasinghe
Abstract:
Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating
Procedia PDF Downloads 11815505 Exploring the Viability of Biogas Energy Potential in South Africa
Authors: Solomon Eghosa Uhunamure, Karabo Shale
Abstract:
Biogas technology has emerged as a promising solution for sustainable development, enhancing energy security while mitigating environmental hazards. Interest in biogas for household energy is growing due to its potential to address both energy and waste management challenges. To ensure biogas production contributes meaningfully to South Africa's future energy landscape, understanding public perceptions is essential for shaping effective policy measures. A household survey revealed that lower awareness of biogas correlates with reduced social and cultural acceptance, however, after providing basic information—such as a definition, a diagram, or one of two simple messages—support for biogas increased by 10% to 15% compared to the baseline. These findings highlight the critical role of awareness in building support for biogas as a key component of South Africa's decarbonization strategy.Keywords: awareness, barriers, biogas, environmental benefits, South Africa
Procedia PDF Downloads 3215504 Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory
Authors: Sean Michael Kinney
Abstract:
In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures.Keywords: dynamic gravity, gravity, dark matter, dark energy
Procedia PDF Downloads 7815503 Development of Energy Management System Based on Internet of Things Technique
Authors: Wen-Jye Shyr, Chia-Ming Lin, Hung-Yun Feng
Abstract:
The purpose of this study was to develop an energy management system for university campuses based on the Internet of Things (IoT) technique. The proposed IoT technique based on WebAccess is used via network browser Internet Explore and applies TCP/IP protocol. The case study of IoT for lighting energy usage management system was proposed. Structure of proposed IoT technique included perception layer, equipment layer, control layer, application layer and network layer.Keywords: energy management, IoT technique, sensor, WebAccess
Procedia PDF Downloads 33515502 Antioxidant Efficacy of Lovi (Flacourtia inermis) Peel Extract in Edible Oils during Storage
Authors: Sasini U. G. Nanayakkara, Nishala E. Wedamulla, W. A. J. P. Wijesinghe
Abstract:
Lovi (Flacourtia inermis) is an underutilized fruit crop grown in Sri Lanka with promising antioxidant properties; thus, exhibits the great potential to use as a natural antioxidant. With the concern of synthetic antioxidants, there is a growing trend towards the addition of a natural antioxidant to retard the rancidity of edible oils. Hence, in this backdrop, extract obtained from the peel of F. inermis fruit was used to retard the rancidity of selected edible oils. Free fatty acid (FFA) content and peroxide value (PV) of sunflower oil (SO) and virgin coconut oil (VCO) were measured at 3-day intervals for 21 days at 65 ± 5°C after addition of extract at 500, 1000, 2000 ppm levels and α-tocopherol at 500 ppm level was used as positive control. SO and VCO without added extract was used as the control. The extract was prepared with 70% ethanol using ultrasound-assisted extraction, and antioxidant efficacy and total phenolic content (TPC) of the extract were measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and Folin-Ciocalteu method respectively. Antioxidant activity (IC50) and TPC of the extract were 227.14 ± 4.12 µgmL⁻¹ and 4.87 ± 0.01 mg GAE per gram, respectively. During the storage period, FFA content and PV of both oils were increased with time. However, SO showed comparatively high PV than that of VCO and thereby indicate the progression of lipid oxidation as PV is a good indicator of the extent of primary oxidative products formed in oils. The most effective extract concentration was 2000 ppm. After 21 days of storage, VCO (control) sample exhibited significantly (p < 0.05) high FFA (0.36%) and PV (1.93 meq kg⁻¹) than that of VCO with 1000 ppm (FFA: 0.35%; PV: 1.72 meq kg⁻¹) and 2000 ppm (FFA: 0.28%; PV: 1.19 meq kg-1) levels of extract. Thus, demonstrates the efficacy of lovi peel extract in retardation of lipid oxidation of edible oils during storage at higher concentrations of the extract addition. Moreover, FFA and PV of SO (FFA: 0.10%; PV: 12.38 meq kg⁻¹) and VCO (FFA: 0.28%; PV: 1.19 meq kg⁻¹) at 2000 ppm level of extract were significantly (p < 0.05) lower than that of positive control: SO with α-tocopherol (FFA: 0.22%, PV: 17.94 meq kg⁻¹) and VCO with α-tocopherol (FFA: 0.29%, PV: 1.39 meq kg⁻¹) after 21 days. Accordingly, lovi peel extract at 2000 ppm level was more effective than α-tocopherol in retardation of lipid oxidation of edible oils. In conclusion, lovi peel extract has strong antioxidant properties and can be used as a natural antioxidant to inhibit deteriorative oxidation of edible oils.Keywords: antioxidant, Flacourtia inermis, peroxide value, virgin coconut oil
Procedia PDF Downloads 12715501 Intelligent Drug Delivery Systems
Authors: Shideh Mohseni Movahed, Mansoureh Safari
Abstract:
Intelligent drug delivery systems (IDDS) are innovative technological innovations and clinical way to advance current treatments. These systems differ in technique of therapeutic administration, intricacy, materials and patient compliance to address numerous clinical conditions that require different pharmacological therapies. IDDS capable of releasing an active molecule at the proper site and at a amount that adjusts in response to the progression of the disease or to certain functions/biorhythms of the organism is particularly appealing. In this paper, we describe the most recent advances in the development of intelligent drug delivery systems.Keywords: drug delivery systems, IDDS, medicine, health
Procedia PDF Downloads 22415500 A Study on Green Building Certification Systems within the Context of Anticipatory Systems
Authors: Taner Izzet Acarer, Ece Ceylan Baba
Abstract:
This paper examines green building certification systems and their current processes in comparison with anticipatory systems. Rapid growth of human population and depletion of natural resources are causing irreparable damage to urban and natural environment. In this context, the concept of ‘sustainable architecture’ has emerged in the 20th century so as to establish and maintain standards for livable urban spaces, to improve quality of urban life, and to preserve natural resources for future generations. The construction industry is responsible for a large part of the resource consumption and it is believed that the ‘green building’ designs that emerge in construction industry can reduce environmental problems and contribute to sustainable development around the world. A building must meet a specific set of criteria, set forth through various certification systems, in order to be eligible for designation as a green building. It is disputable whether methods used by green building certification systems today truly serve the purposes of creating a sustainable world. Accordingly, this study will investigate the sets of rating systems used by the most popular green building certification programs, including LEED (Leadership in Energy and Environmental Design), BREEAM (Building Research Establishment's Environmental Assessment Methods), DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen System), in terms of ‘Anticipatory Systems’ in accordance with the certification processes and their goals, while discussing their contribution to architecture. The basic methodology of the study is as follows. Firstly analyzes of brief historical and literature review of green buildings and certificate systems will be stated. Secondly, processes of green building certificate systems will be disputed by the help of anticipatory systems. Anticipatory Systems is a set of systems designed to generate action-oriented projections and to forecast potential side effects using the most current data. Anticipatory Systems pull the future into the present and take action based on future predictions. Although they do not have a claim to see into the future, they can provide foresight data. When shaping the foresight data, Anticipatory Systems use feedforward instead of feedback, enabling them to forecast the system’s behavior and potential side effects by establishing a correlation between the system’s present/past behavior and projected results. This study indicates the goals and current status of LEED, BREEAM and DGNB rating systems that created by using the feedback technique will be examined and presented in a chart. In addition, by examining these rating systems with the anticipatory system that using the feedforward method, the negative influences of the potential side effects on the purpose and current status of the rating systems will be shown in another chart. By comparing the two obtained data, the findings will be shown that rating systems are used for different goals than the purposes they are aiming for. In conclusion, the side effects of green building certification systems will be stated by using anticipatory system models.Keywords: anticipatory systems, BREEAM, certificate systems, DGNB, green buildings, LEED
Procedia PDF Downloads 22015499 Study on Shelf Life and Textural Properties of Minimal Processed Mixed Fruits
Authors: Kaavya Rathnakumar
Abstract:
Minimally processed fruits have the attributes of convenience and fresh like quality. In minimally processed products, the cells of the tissue are alive, and the essential nutrients and flavours are retained. Some of the procedures include washing, trimming, sorting, cutting, slicing and shredding. Fruits such as pineapple and guava were taken for the study of textural properties for a period of five days. After the performance of various unit operations 50g cubes of pineapple and guava has been weighed. For determining the textural properties, samples were taken in which set of 12 samples were treated by using 1% citric acid solution and dried for 5 minutes the remaining set of 12 samples were untreated. In set of treated samples 6 were vacuum packed and stored in the refrigerator, and the other sample was normally stored. For untreated samples was done in a similar way. In texture profile analysis the force required for 1cm penetration of 2mm cylindrical needle inside the fruits were recorded for all packages. It was observed that guava the fresh sample had a force of penetration of 3250mm and as the days increased the force decreased to 357.4 mm for vacuum packed refrigerated storage. In the case of pineapple, the force of penetration of the fresh sample was 2325mm which was decreased to 26.3mm on the fourth day and very low at the fifth day for vacuum packed refrigerated storage. But in case of untreated samples, the fruits were spoiled may be because of no pre-treatment and packaging. Comparatively, it was found that vacuum packed refrigerated samples had higher shelf life than normal packed samples in ambient conditions.Keywords: 1% citric acid solution, normal packed, refrigerated storage, vacuum packed
Procedia PDF Downloads 19315498 Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia
Authors: A. Felimban, A. Prieto, U. Knaack, T. Klein
Abstract:
This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios.Keywords: energy efficiency, energy retrofitting, hot arid, Saudi Arabia
Procedia PDF Downloads 12215497 A Sustainable Energy Portfolio for Greater Kampala Metropolitan Area by the Mid-Century
Authors: Ismail Kimuli
Abstract:
With a steadfast economic development, the Greater Kampala metropolitan area (GKMA) faces increasing pressures to increasetheshare of low-carbon electricity in the energy balance, abate CO2 emissions and also restructure the transportation sector for a sustainable 2050. GKMA, is Uganda’s commercial, political, social, and industrial hub with a population of 4.1 million, contributing 60% tothe nation’s GDP and accounts for 80% of Uganda’s industrial sector.However, with the rampant anthropogenic interference that causes climate change, CO2 emissions in the metropolitan are contributing to global warming. Many economies across the globe are addressing this challengethrough development and analysis of sustainable energy portfolios.A sustainable energy portfolio is a low-carbon scenario. The study reviews the literature to establish the current energy management situation of GKMA and finds it wanting in addressing the immediate challenges associated with energy management of the metropolitan. Then, the study develops and examines a sustainable energy portfolio for GKMA using TIMES-VEDA and then presents it as an investigative low-carbon energy scenario that could propel the metropolitan sustainably towards 2050.Sustainability is plausible by optimizing the total primary energy supply, generating low-carbon electricity from hydropower and PV-solar renewables, improving heating technologies for residential & commercial sectors, and switching 90% of land passengers from road to a Kampala metro for a sustainable mid-century.Keywords: GKMA, sustainability, TIMES-VEDA, low-carbon scenario
Procedia PDF Downloads 10815496 A Phenomenological Expression for Self-Attractive Energy of Singlelayer Graphene Sheets
Authors: Bingjie Wu, C. Q. Ru
Abstract:
The present work studies several reasonably expected candidate integral forms for self-attractive potential energy of a free monolayer graphene sheet. The admissibility of a specific integral form for ripple formation is verified, while all others most of the candidate integral forms are rejected based on the non-existence of stable periodic ripples. Based on the selected integral form of self-attractive potential energy, some mechanical behavior, including ripple formation and buckling, of a free monolayer grapheme sheet are discussed in detailsKeywords: graphene, monolayer, ripples, van der Waals energy
Procedia PDF Downloads 39215495 Kinetic Evaluation of Sterically Hindered Amines under Partial Oxy-Combustion Conditions
Authors: Sara Camino, Fernando Vega, Mercedes Cano, Benito Navarrete, José A. Camino
Abstract:
Carbon capture and storage (CCS) technologies should play a relevant role towards low-carbon systems in the European Union by 2030. Partial oxy-combustion emerges as a promising CCS approach to mitigate anthropogenic CO₂ emissions. Its advantages respect to other CCS technologies rely on the production of a higher CO₂ concentrated flue gas than these provided by conventional air-firing processes. The presence of more CO₂ in the flue gas increases the driving force in the separation process and hence it might lead to further reductions of the energy requirements of the overall CO₂ capture process. A higher CO₂ concentrated flue gas should enhance the CO₂ capture by chemical absorption in solvent kinetic and CO₂ cyclic capacity. They have impact on the performance of the overall CO₂ absorption process by reducing the solvent flow-rate required for a specific CO₂ removal efficiency. Lower solvent flow-rates decreases the reboiler duty during the regeneration stage and also reduces the equipment size and pumping costs. Moreover, R&D activities in this field are focused on novel solvents and blends that provide lower CO₂ absorption enthalpies and therefore lower energy penalties associated to the solvent regeneration. In this respect, sterically hindered amines are considered potential solvents for CO₂ capture. They provide a low energy requirement during the regeneration process due to its molecular structure. However, its absorption kinetics are slow and they must be promoted by blending with faster solvents such as monoethanolamine (MEA) and piperazine (PZ). In this work, the kinetic behavior of two sterically hindered amines were studied under partial oxy-combustion conditions and compared with MEA. A lab-scale semi-batch reactor was used. The CO₂ composition of the synthetic flue gas varied from 15%v/v – conventional coal combustion – to 60%v/v – maximum CO₂ concentration allowable for an optimal partial oxy-combustion operation. Firstly, 2-amino-2-methyl-1-propanol (AMP) showed a hybrid behavior with fast kinetics and a low enthalpy of CO₂ absorption. The second solvent was Isophrondiamine (IF), which has a steric hindrance in one of the amino groups. Its free amino group increases its cyclic capacity. In general, the presence of higher CO₂ concentration in the flue gas accelerated the CO₂ absorption phenomena, producing higher CO₂ absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO₂ concentrated flue gas. The steric hindrance causes a hybrid behavior in this solvent, between both fast and slow kinetic solvents. The kinetics rates observed in all the experiments carried out using AMP were higher than MEA, but lower than the IF. The kinetic enhancement experienced by AMP at a high CO2 concentration is slightly over 60%, instead of 70% – 80% for IF. AMP also improved its CO₂ absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost double the improvements achieved by MEA. In IF experiments, the CO₂ loading increased around 10% from 15%v/v to 60%v/v CO₂ and it changed from 1.10 to 1.34 mole CO₂ per mole solvent, more than 20% of increase. This hybrid kinetic behavior makes AMP and IF promising solvents for partial oxy–combustion applications.Keywords: absorption, carbon capture, partial oxy-combustion, solvent
Procedia PDF Downloads 19015494 Co-Alignment of Comfort and Energy Saving Objectives for U.S. Office Buildings and Restaurants
Authors: Lourdes Gutierrez, Eric Williams
Abstract:
Post-occupancy research shows that only 11% of commercial buildings met the ASHRAE thermal comfort standard. Many buildings are too warm in winter and/or too cool in summer, wasting energy and not providing comfort. In this paper, potential energy savings in U.S. offices and restaurants if thermostat settings are calculated according the updated ASHRAE 55-2013 comfort model that accounts for outdoor temperature and clothing choice for different climate zones. eQUEST building models are calibrated to reproduce aggregate energy consumption as reported in the U.S. Commercial Building Energy Consumption Survey. Changes in energy consumption due to the new settings are analyzed for 14 cities in different climate zones and then the results are extrapolated to estimate potential national savings. It is found that, depending on the climate zone, each degree increase in the summer saves 0.6 to 1.0% of total building electricity consumption. Each degree the winter setting is lowered saves 1.2% to 8.7% of total building natural gas consumption. With new thermostat settings, national savings are 2.5% of the total consumed in all office buildings and restaurants, summing up to national savings of 69.6 million GJ annually, comparable to all 2015 total solar PV generation in US. The goals of improved comfort and energy/economic savings are thus co-aligned, raising the importance of thermostat management as an energy efficiency strategy.Keywords: energy savings quantifications, commercial building stocks, dynamic clothing insulation model, operation-focused interventions, energy management, thermal comfort, thermostat settings
Procedia PDF Downloads 30215493 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides
Authors: R. B. Ogunrinde, C. C. Jibunoh
Abstract:
In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.Keywords: spectral decomposition, linear RHS, homogeneous linear systems, eigenvalues of the Jacobian
Procedia PDF Downloads 33015492 Bio-Remediation of Lead-Contaminated Water Using Adsorbent Derived from Papaya Peel
Authors: Sahar Abbaszadeh, Sharifah Rafidah Wan Alwi, Colin Webb, Nahid Ghasemi, Ida Idayu Muhamad
Abstract:
Toxic heavy metal discharges into environment due to rapid industrialization is a serious pollution problem that has drawn global attention towards their adverse impacts on both the structure of ecological systems as well as human health. Lead as toxic and bio-accumulating elements through the food chain, is regularly entering to water bodies from discharges of industries such as plating, mining activities, battery manufacture, paint manufacture, etc. The application of conventional methods to degrease and remove Pb(II) ion from wastewater is often restricted due to technical and economic constrains. Therefore, the use of various agro-wastes as low-cost bioadsorbent is found to be attractive since they are abundantly available and cheap. In this study, activated carbon of papaya peel (AC-PP) (as locally available agricultural waste) was employed to evaluate its Pb(II) uptake capacity from single-solute solutions in sets of batch mode experiments. To assess the surface characteristics of the adsorbents, the scanning electron microscope (SEM) coupled with energy disperse X-ray (EDX), and Fourier transform infrared spectroscopy (FT-IR) analysis were utilized. The removal amount of Pb(II) was determined by atomic adsorption spectrometry (AAS). The effects of pH, contact time, the initial concentration of Pb(II) and adsorbent dosage were investigated. The pH value = 5 was observed as optimum solution pH. The optimum initial concentration of Pb(II) in the solution for AC-PP was found to be 200 mg/l where the amount of Pb(II) removed was 36.42 mg/g. At the agitating time of 2 h, the adsorption processes using 100 mg dosage of AC-PP reached equilibrium. The experimental results exhibit high capability and metal affinity of modified papaya peel waste with removal efficiency of 93.22 %. The evaluation results show that the equilibrium adsorption of Pb(II) was best expressed by Freundlich isotherm model (R2 > 0.93). The experimental results confirmed that AC-PP potentially can be employed as an alternative adsorbent for Pb(II) uptake from industrial wastewater for the design of an environmentally friendly yet economical wastewater treatment process.Keywords: activated carbon, bioadsorption, lead removal, papaya peel, wastewater treatment
Procedia PDF Downloads 28615491 Distribution Network Optimization by Optimal Placement of Photovoltaic-Based Distributed Generation: A Case Study of the Nigerian Power System
Authors: Edafe Lucky Okotie, Emmanuel Osawaru Omosigho
Abstract:
This paper examines the impacts of the introduction of distributed energy generation (DEG) technology into the Nigerian power system as an alternative means of energy generation at distribution ends using Otovwodo 15 MVA, 33/11kV injection substation as a case study. The overall idea is to increase the generated energy in the system, improve the voltage profile and reduce system losses. A photovoltaic-based distributed energy generator (PV-DEG) was considered and was optimally placed in the network using Genetic Algorithm (GA) in Mat. Lab/Simulink environment. The results of simulation obtained shows that the dynamic performance of the network was optimized with DEG-grid integration.Keywords: distributed energy generation (DEG), genetic algorithm (GA), power quality, total load demand, voltage profile
Procedia PDF Downloads 8415490 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance
Authors: Yasser Aldali
Abstract:
The scope of this paper is to evaluate and compare the potential of LS-PV (Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148 GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system. The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55 km2 for a stationary PV field constituted by HIT PV arrays and approx. 91 MW/km2. In case of a tracker PV field, the required ground area amounts approx. 2.4k m2 and approx. 20.5 MW/km2.Keywords: large scale photovoltaic power plant, two-axis tracking system, stationary system, landscape impact
Procedia PDF Downloads 45115489 Design of the Ice Rink of the Future
Authors: Carine Muster, Prina Howald Erika
Abstract:
Today's ice rinks are important energy consumers for the production and maintenance of ice. At the same time, users demand that the other rooms should be tempered or heated. The building complex must equally provide cooled and heated zones, which does not translate as carbon-zero ice rinks. The study provides an analysis of how the civil engineering sector can significantly impact minimizing greenhouse gas emissions and optimizing synergies across an entire ice rink complex. The analysis focused on three distinct aspects: the layout, including the volumetric layout of the premises present in an ice rink; the materials chosen that can potentially use the most ecological structural approach; and the construction methods based on innovative solutions to reduce carbon footprint. The first aspect shows that the organization of the interior volumes and defining the shape of the rink play a significant role. Its layout makes the use and operation of the premises as efficient as possible, thanks to the differentiation between heated and cooled volumes while optimising heat loss between the different rooms. The sprayed concrete method, which is still little known, proves that it is possible to achieve the strength of traditional concrete for the structural aspect of the load-bearing and non-load-bearing walls of the ice rink by using materials excavated from the construction site and providing a more ecological and sustainable solution. The installation of an empty sanitary space underneath the ice floor, making it independent of the rest of the structure, provides a natural insulating layer, preventing the transfer of cold to the rest of the structure and reducing energy losses. The addition of active pipes as part of the foundation of the ice floor, coupled with a suitable system, gives warmth in the winter and storage in the summer; this is all possible thanks to the natural heat in the ground. In conclusion, this study provides construction recommendations for future ice rinks with a significantly reduced energy demand, using some simple preliminary design concepts. By optimizing the layout, materials, and construction methods of ice rinks, the civil engineering sector can play a key role in reducing greenhouse gas emissions and promoting sustainability.Keywords: climate change, energy optimization, green building, sustainability
Procedia PDF Downloads 6715488 Eco-Friendly Approach in the Management of Stored Sorghum Insect Pests in Small-Scale Farmers’ Storage Structures of Northern Nigeria
Authors: Mohammed Suleiman, Ibrahim Sani, Samaila Abubakar, Kabir Abdullahi Bindawa
Abstract:
Farmers’ storage structures in Pauwa village of Katsina State, Northern Nigeria, were simulated and incorporated with the application of leaf powders of Euphorbia balsamifera Aiton, Lawsonia inermis L., Mitracarpus hirtus (L.) DC. and Senna obtusifolia L. to search for more eco-friendly methods of managing insect pests of stored sorghum. The four most commonly grown sorghum varieties in the study area, namely “Farar Kaura” (FK), “Jar Kaura” (JK), “Yar Gidan Daudu” (YGD), and ICSV400 in threshed forms were used for the study. The four varieties (2.50 kg each) were packed in small polypropylene bags, mixed with the leaf powders at the concentration of 5% (w/w) of the plants, and kept in small stores of the aforementioned village for 12 weeks. Insect pests recovered after 12 weeks were Sitophilus zeamais, Rhyzopertha dominica, Tribolium castaneum, Cryptolestes ferrugineus, and Oryzaephilus surinamensis. There were significantly fewer insect pests in treated sorghum than in untreated types (p < 0.05). More weight losses were recorded in untreated grains than in those treated with the botanical powders. In terms of varieties, grain weight losses were in the order FK > JK > YGD > ICSV400. The botanicals also showed significant (p < 0.05) protectant ability against the weevils with their performance as E. balsamifera > L. inermis > M. hirtus > S. obtusifolia.Keywords: botanical powders, infestations, insect pests, management, sorghum varieties, storage structures, weight losses
Procedia PDF Downloads 10115487 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking
Authors: Sachin Sharma
Abstract:
A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.Keywords: energy efficient, quality of service, wireless sensor networks, MAC
Procedia PDF Downloads 34815486 The Photovoltaic Panel at End of Life: Experimental Study of Metals Release
Authors: M. Tammaro, S. Manzo, J. Rimauro, A. Salluzzo, S. Schiavo
Abstract:
The solar photovoltaic (PV) modules are considered to have a negligible environmental impact compared to the fossil energy. Therefore also the waste management and the corresponding potential environmental hazard needs to be considered. The case of the photovoltaic panel is unique because the time lag from the manufacturing to the decommissioning as waste usually takes 25-30 years. Then the environmental hazard associated with end life of PV panels has been largely related to their metal contents. The principal concern regards the presence of heavy metals as Cd in thin film (TF) modules or Pb and Cr in crystalline silicon (c-Si) panels. At the end of life of PV panels, these dangerous substances could be released in the environment, if special requirements for their disposal are not adopted. Nevertheless, in literature, only a few experimental study about metal emissions from silicon crystalline/thin film panels and the corresponding environmental effect are present. As part of a study funded by the Italian national consortium for the waste collection and recycling (COBAT), the present work was aimed to analyze experimentally the potential release into the environment of hazardous elements, particularly metals, from PV waste. In this paper, for the first time, eighteen releasable metals a large number of photovoltaic panels, by c-Si and TF, manufactured in the last 30 years, together with the environmental effects by a battery of ecotoxicological tests, were investigated. Leaching tests are conducted on the crushed samples of PV module. The test is conducted according to Italian and European Standard procedure for hazard assessment of the granular waste and of the sludge. The sample material is shaken for 24 hours in HDPE bottles with an overhead mixer Rotax 6.8 VELP at indoor temperature and using pure water (18 MΩ resistivity) as leaching solution. The liquid-to-solid ratio was 10 (L/S=10, i.e. 10 liters of water per kg of solid). The ecotoxicological tests were performed in the subsequent 24 hours. A battery of toxicity test with bacteria (Vibrio fisheri), algae (Pseudochirneriella subcapitata) and crustacea (Daphnia magna) was carried out on PV panel leachates obtained as previously described and immediately stored in dark and at 4°C until testing (in the next 24 hours). For understand the actual pollution load, a comparison with the current European and Italian benchmark limits was performed. The trend of leachable metal amount from panels in relation to manufacturing years was then highlighted in order to assess the environmental sustainability of PV technology over time. The experimental results were very heterogeneous and show that the photovoltaic panels could represent an environmental hazard. The experimental results showed that the amounts of some hazardous metals (Pb, Cr, Cd, Ni), for c-Si and TF, exceed the law limits and they are a clear indication of the potential environmental risk of photovoltaic panels "as a waste" without a proper management.Keywords: photovoltaic panel, environment, ecotoxicity, metals emission
Procedia PDF Downloads 26015485 A Comparison of Dietary Quality and Nutritional Adequacy of Meal Plans of a Diet Prescription Generator Web App against the Australian Guidelines to Healthy Eating
Authors: Ananda Perera
Abstract:
Diet therapy has a positive impact on many diseases in General Practice. If a meal plan can be generated as easily as writing a drug prescription for dyspepsia, then the evidence and practice gap in nutrition therapy can be narrowed. Meal plans of 50 diet prescriptions were compared with the criteria for a healthy diet given by Australian authorities. The energy value of each meal plan was compared with the recommended daily energy requirements of the authorities for Diet Prescription Generator (DPG) accuracy. Meal plans generated were within the criteria laid down by the Australian authorities for a healthy diet.Keywords: dieting, obesity, diabetes, weight loss, computerized decision support systems, dieting software, CDSS, meal plans
Procedia PDF Downloads 14215484 Energy Harvesting with Zinc Oxide Based Nanogenerator: Design and Simulation Using Comsol-4.3 Software
Authors: Akanksha Rohit, Ujjwala Godavarthi, Anshua Mukherjee
Abstract:
Nanotechnology is one of the promising sustainable solutions in the era of miniaturization due to its multidisciplinary nature. The most interesting aspect about nanotechnology is its wide ranging applications from electronics to military and biomedical. It tries to connect individuals more closely to the environment. In this paper, concept of parasitic energy harvesting is used in designing nanogenerators using COMSOL 4.3 software. The output of the nanogenerator is optimized using following constraints: ease of availability of the material, fabrication process and cost of the material. The nanogenerator is optimized using ZnO based nanowires, PMMA as insulator and aluminum and silicon as metal electrodes. The energy harvested from the model can be used to power nanobots, several other biomedical sensors and eventually to replace batteries. Thus, advancements in this field can be very challenging but it is the future of the nano era.Keywords: zinc oxide, piezoelectric, PMMA, parasitic energy harvesting, renewable energy engineering
Procedia PDF Downloads 364