Search results for: artificial neural networks; crop water stress index; canopy temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24729

Search results for: artificial neural networks; crop water stress index; canopy temperature

22749 Classification of Multiple Cancer Types with Deep Convolutional Neural Network

Authors: Nan Deng, Zhenqiu Liu

Abstract:

Thousands of patients with metastatic tumors were diagnosed with cancers of unknown primary sites each year. The inability to identify the primary cancer site may lead to inappropriate treatment and unexpected prognosis. Nowadays, a large amount of genomics and transcriptomics cancer data has been generated by next-generation sequencing (NGS) technologies, and The Cancer Genome Atlas (TCGA) database has accrued thousands of human cancer tumors and healthy controls, which provides an abundance of resource to differentiate cancer types. Meanwhile, deep convolutional neural networks (CNNs) have shown high accuracy on classification among a large number of image object categories. Here, we utilize 25 cancer primary tumors and 3 normal tissues from TCGA and convert their RNA-Seq gene expression profiling to color images; train, validate and test a CNN classifier directly from these images. The performance result shows that our CNN classifier can archive >80% test accuracy on most of the tumors and normal tissues. Since the gene expression pattern of distant metastases is similar to their primary tumors, the CNN classifier may provide a potential computational strategy on identifying the unknown primary origin of metastatic cancer in order to plan appropriate treatment for patients.

Keywords: bioinformatics, cancer, convolutional neural network, deep leaning, gene expression pattern

Procedia PDF Downloads 299
22748 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy

Authors: Hyunki Kang, Hi Won Jeong

Abstract:

The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.

Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair

Procedia PDF Downloads 41
22747 Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration

Authors: Jia-Yu Wu, Chih-Han Chang, Shu-Fen Chuang, Rong-Yang Lai

Abstract:

Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities.

Keywords: class v restoration, finite element analysis, loading situation, stress

Procedia PDF Downloads 243
22746 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network

Procedia PDF Downloads 209
22745 Orange Peel Extracts (OPE) as Eco-Friendly Corrosion Inhibitor for Carbon Steel in Produced Oilfield Water

Authors: Olfat E. El-Azabawy, Enas M. Attia, Nadia Shawky, Amira M. Hypa

Abstract:

In this work, an attempt is made to study the effects of orange peel extract (OPE) as an environment-friendly corrosion inhibitor for carbon steel (CS) within a formation water solution (FW). The study was performed in different concentrations (0.5-2.5% (v/v)) of peel extracts at ambient temperatures (25oC) and (2.5% (v/v)) at temperature range (25- 55 oC) by weight loss measurements, open circuit potential, potentiodynamic polarization and electrochemical impedance. The inhibition efficiency was calculated from all measurements and confirmed by energy-dispersive X-ray spectroscopy (EDS). Inhibition was found to increase with increasing inhibitors concentration and decrease with increasing temperature. It was seen that IE% is about 92.84% in the presence of 2.5% (v/v) of orange peel inhibitor by using weight loss method. The adsorption process was of physical type and obey Langmuir adsorption isotherm. Also, adsorption, as well as the inhibition process, followed first-order kinetics at all concentrations.

Keywords: eco-friendly corrosion inhibitor, OPE, oilfield water, electrochemical impedance

Procedia PDF Downloads 150
22744 EMI Radiation Prediction and Final Measurement Process Optimization by Neural Network

Authors: Hussam Elias, Ninovic Perez, Holger Hirsch

Abstract:

The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we introduce a novel method to perform the final phase of Electromagnetic compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the conventional neural network(CNN). The neural network was trained using real EMC measurements, which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen, Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meets the maximum radiation value.

Keywords: conventional neural network, electromagnetic compatibility measurement, mean absolute error, position error

Procedia PDF Downloads 200
22743 Evaluation of Pollution in Underground Water from ODO-NLA and OGIJO Metropolis Industrial Areas in Ikorodu

Authors: Zaccheaus Olasupo Apotiola

Abstract:

This study evaluates the level of pollution in underground water from Ogijo and Odo-nla areas in lkorodu, Lagos State. Water sample were collected around various industries and transported in ice packs to the laboratory. Temperature and pH was determined on site, physicochemical parameters and total plate were determined using standard methods, while heavy metal concentration was determined using Atomic Absorption spectrophotometry method. The temperature was observed at a range of 20-28 oC, the pH was observed at a range of 5.64 to 6.91 mol/l and were significantly different (P < 0.05) from one another. The chloride content was observed at a range 70.92 to 163.10 mg/l there was no significant difference (P > 0.05) between sample 40 GAJ and ISUP, but there was significant difference (P < 0.05) between other samples. The acidity value varied from 11.0 – 34.5 (mg/l), the samples had no alkalinity. The Total plate count was found at 20-125 cfu/ml. Asernic, Lead, Cadmium, and Mercury concentration ranged between 0.03 - 0.09, 0.04 - 0.11, 0.00 -0.00, and 0.00 – 0.00(mg/l) respectively. However there was significant difference (p < 0.05) between all samples except for sample 4OGA, 5OGAJ, and 3SUTN that were not significantly different (P > 0.05). The results revealed all samples are not safe for human consumption as the levels of Asernic and Lead are above the maximum value of (0.01 mg/l) recommended by NIS 554 and WHO.

Keywords: arsenic, cadmium, lead mercury, WHO

Procedia PDF Downloads 519
22742 An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers

Authors: Ahmet Y. Arabul, Ibrahim Senol, Fatma Keskin Arabul, Mustafa G. Aydeniz, Yasemin Oner, Gokhan Kalkan

Abstract:

In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which are on agreed statements tables. During the tests, it came out that hot-spot temperature calculation method is just making a simple calculation and not uses significant all other variables that could affect the hot-spot temperature.

Keywords: Hot-spot temperature, monitoring system, power transformer, smart grid

Procedia PDF Downloads 573
22741 Stress Concentration Trend for Combined Loading Conditions

Authors: Aderet M. Pantierer, Shmuel Pantierer, Raphael Cordina, Yougashwar Budhoo

Abstract:

Stress concentration occurs when there is an abrupt change in geometry, a mechanical part under loading. These changes in geometry can include holes, notches, or cracks within the component. The modifications create larger stress within the part. This maximum stress is difficult to determine, as it is directly at the point of the minimum area. Strain gauges have yet to be developed to analyze stresses at such minute areas. Therefore, a stress concentration factor must be utilized. The stress concentration factor is a dimensionless parameter calculated solely on the geometry of a part. The factor is multiplied by the nominal, or average, stress of the component, which can be found analytically or experimentally. Stress concentration graphs exist for common loading conditions and geometrical configurations to aid in the determination of the maximum stress a part can withstand. These graphs were developed from historical data yielded from experimentation. This project seeks to verify a stress concentration graph for combined loading conditions. The aforementioned graph was developed using CATIA Finite Element Analysis software. The results of this analysis will be validated through further testing. The 3D modeled parts will be subjected to further finite element analysis using Patran-Nastran software. The finite element models will then be verified by testing physical specimen using a tensile testing machine. Once the data is validated, the unique stress concentration graph will be submitted for publication so it can aid engineers in future projects.

Keywords: stress concentration, finite element analysis, finite element models, combined loading

Procedia PDF Downloads 444
22740 Effect of Brewing on the Bioactive Compounds of Coffee

Authors: Ceyda Dadali, Yeşim Elmaci

Abstract:

Coffee was introduced as an economic crop during the fifteenth century; nowadays it is the most important food commodity ranking second after crude oil. Desirable sensory properties make coffee one of the most often consumed and most popular beverages in the world. The coffee preparation method has a significant effect on flavor and composition of coffee brews. Three different extraction methodologies namely decoction, infusion and pressure methods have been used for coffee brew preparation. Each of these methods is related to specific granulation (coffee grind) of coffee powder, water-coffee ratio temperature and brewing time. Coffee is a mixture of 1500 chemical compounds. Chemical composition of coffee highly depends on brewing methods, coffee bean species and roasting time-temperature. Coffee contains a wide number of very important bioactive compounds, such as diterpenes: cafestol and kahweol, alkaloids: caffeine, theobromine and trigonelline, melanoidins, phenolic compounds. The phenolic compounds of coffee include chlorogenic acids (quinyl esters of hidroxycinnamic acids), caffeic, ferulic, p-coumaric acid. In coffee caffeoylquinic acids, feruloylquinic acids and di-caffeoylquinic acids are three main groups of chlorogenic acids constitues 6% -10% of dry weight of coffee. The bioavailability of chlorogenic acids in coffee depends on the absorption and metabolization to biomarkers in individuals. Also, the interaction of coffee polyphenols with other compounds such as dietary proteins affects the biomarkers. Since bioactive composition of coffee depends on brewing methods effect of coffee brewing method on bioactive compounds of coffee will be discussed in this study.

Keywords: bioactive compounds of coffee, biomarkers, coffee brew, effect of brewing

Procedia PDF Downloads 196
22739 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands

Authors: Ilham S. M. Elsayed

Abstract:

The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.

Keywords: Alahsa Governorate, population density, Urban Heat Island, weather station

Procedia PDF Downloads 250
22738 Feasibility of Deployable Encasing for a CVDR (Cockpit Voice and Data Recorder) in Commercial Aircraft

Authors: Vishnu Nair, Rohan Kapoor

Abstract:

Recent commercial aircraft crashes demand a paradigm shift in how the CVDRs are located and recovered, particularly if the aircraft crashes in the sea. CVDR (Cockpit Voice and Data Recorder) is most vital component out of the entire wreckage that can be obtained in order to investigate the sequence of events leading to the crash. It has been a taxing and exorbitantly expensive process locating and retrieving the same in the massive water bodies as it was seen in the air crashes in the recent past, taking the unfortunate Malaysia airlines MH-370 crash into account. The study aims to provide an aid to the persisting problem by improving the buoyant as-well-as the aerodynamic properties of the proposed CVDR encasing. Alongside this the placement of the deployable CVDR on the surface of the aircraft and floatability in case of water submersion are key factors which are taken into consideration for a better resolution to the problem. All of which results into the Deployable-CVDR emerging to the surface of the water-body. Also the whole system is designed such that it can be seamlessly integrated with the current crop of commercial aircraft. The work is supported by carrying out a computational study with the help Ansys-Fluent combination.

Keywords: encasing, buoyancy, deployable CVDR, floatability, water submersion

Procedia PDF Downloads 299
22737 Cumulus Cells of Mature Local Goat Oocytes Vitrified with Insulin Transferrin Selenium and Heat Shock Protein 70

Authors: Izzatul Ulfana, Angga Pratomo Cahyadi, Rimayanti, Widjiati

Abstract:

Freezing oocyte could cause temperature stress. Temperature stress triggers cell damage. Insulin Transferrin Selenium (ITS) and Heat Shock Protein 70 (HSP70) had been used to prevent damage to the oocyte after freezing. ITS and HSP70 could cause the difference protective effect. The aim of this research was to obtain an effective cryoprotectant for freezing local goat oocyte in cumulus cells change. The research began by collecting the ovary from a local slaughterhouse in Indonesia, aspiration follicle, in vitro maturation and the freezing had been used vitrification method. Examination of the morphology cells by native staining method. Data on the calculation morphology oocyte analyzed by Kruskall-Wallis Test. After the Kruskall-Wallis Test which indicated significance, followed by Mann-Whitney Test to compare between treatment groups. As a result, cryoprotectant ITS has the best culumus cells after warming

Keywords: Insulin Transferrin Selenium, Heat Shock Protein 70, cryoprotectant, vitrification

Procedia PDF Downloads 239
22736 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network

Authors: Donya Ashtiani Haghighi, Amirali Baniasadi

Abstract:

Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.

Keywords: capsule network, dropout, hyperparameter tuning, classification

Procedia PDF Downloads 78
22735 Applied of LAWA Classification for Assessment of the Water by Nutrients Elements: Case Oran Sebkha Basin

Authors: Boualla Nabila

Abstract:

The increasing demand on water, either for the drinkable water supply, or for the agricultural and industrial custom, requires a very thorough hydrochemical study to protect better and manage this resource. Oran is relatively a city with the worst quality of the water. Recently, the growing populations may put stress on natural waters by impairing the quality of the water. Campaign of water sampling of 55 points capturing different levels of the aquifer system was done for chemical analyzes of nutriments elements. The results allowed us to approach the problem of contamination based on the largely uniform nationwide approach LAWA (LänderarbeitsgruppeWasser), based on the EU CIS guidance, has been applied for the identification of pressures and impacts, allowing for easy comparison. Groundwater samples were analyzed, also, for physico-chemical parameters such as pH, sodium, potassium, calcium, magnesium, chloride, sulphate, carbonate and bicarbonate. The analytical results obtained in this hydrochemistry study were interpreted using Durov diagram. Based on these representations, the anomaly of high groundwater salinity observed in Oran Sebkha basin was explained by the high chloride concentration and to the presence of inverse cation exchange reaction. Durov diagram plot revealed that the groundwater has been evolved from Ca-HCO3 recharge water through mixing with the pre-existing groundwater to give mixed water of Mg-SO4 and Mg-Cl types that eventually reached a final stage of evolution represented by a Na-Cl water type.

Keywords: contamination, water quality, nutrients elements, approach LAWA, durov diagram

Procedia PDF Downloads 276
22734 Estimation of Physico-Mechanical Properties of Tuffs (Turkey) from Indirect Methods

Authors: Mustafa Gok, Sair Kahraman, Mustafa Fener

Abstract:

In rock engineering applications, determining uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and basic index properties such as density, porosity, and water absorption is crucial for the design of both underground and surface structures. However, obtaining reliable samples for direct testing, especially from rocks that weather quickly and have low strength, is often challenging. In such cases, indirect methods provide a practical alternative to estimate the physical and mechanical properties of these rocks. In this study, tuff samples collected from the Cappadocia region (Nevşehir) in Turkey were subjected to indirect testing methods. Over 100 tests were conducted, using needle penetrometer index (NPI), point load strength index (PLI), and disc shear index (BPI) to estimate the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), density, and water absorption index of the tuffs. The relationships between the results of these indirect tests and the target physical properties were evaluated using simple and multiple regression analyses. The findings of this research reveal strong correlations between the indirect methods and the mechanical properties of the tuffs. Both uniaxial compressive strength and Brazilian tensile strength could be accurately predicted using NPI, PLI, and BPI values. The regression models developed in this study allow for rapid, cost-effective assessments of tuff strength in cases where direct testing is impractical. These results are particularly valuable for geological engineering applications, where time and resource constraints exist. This study highlights the significance of using indirect methods as reliable predictors of the mechanical behavior of weak rocks like tuffs. Further research is recommended to explore the application of these methods to other rock types with similar characteristics. Further research is required to compare the results with those of established direct test methods.

Keywords: brazilian tensile strength, disc shear strength, indirect methods, tuffs, uniaxial compressive strength

Procedia PDF Downloads 16
22733 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges

Authors: Mohamad Mahdi Namdari

Abstract:

In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.

Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing

Procedia PDF Downloads 42
22732 Experimental Study on the Molecular Spring Isolator

Authors: Muchun Yu, Xue Gao, Qian Chen

Abstract:

As a novel passive vibration isolation technology, molecular spring isolator (MSI) is investigated in this paper. An MSI consists of water and hydrophobic zeolites as working medium. Under periodic excitation, water molecules intrude into hydrophobic pores of zeolites when the pressure rises and water molecules extrude from hydrophobic pores when pressure drops. At the same time, energy is stored, released and dissipated. An MSI of piston-cylinder structure was designed in this work. Experiments were conducted to investigate the stiffness properties of MSI. The results show that MSI exhibits high-static-low dynamic (HSLD) stiffness. Furthermore, factors such as the quantity of zeolites, temperature, and ions in water are proved to have an influence on the stiffness properties of MSI.

Keywords: hydrophobic zeolites, molecular spring, stiffness, vibration isolation

Procedia PDF Downloads 476
22731 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 100
22730 Analyses of Reference Evapotranspiration in West of Iran under Climate Change

Authors: Saeed Jahanbakhsh Asl, Yaghob Dinpazhoh, Masoumeh Foroughi

Abstract:

Reference evapotranspiration (ET₀) is an important element in the water cycle that integrates atmospheric demands and surface conditions, and analysis of changes in ET₀ is of great significance for understanding climate change and its impacts on hydrology. As ET₀ is an integrated effect of climate variables, increases in air temperature should lead to increases in ET₀. ET₀ estimated by using the globally accepted Food and Agriculture Organization (FAO) Penman-Monteith (FAO-56 PM) method in 18 meteorological stations located in the West of Iran. The trends of ET₀ detected by using the Mann-Kendall (MK) test. The slopes of the trend lines were computed by using the Sen’s slope estimator. The results showed significant increasing as well as decreasing trends in the annual and monthly ET₀. However, ET₀ trends were increasing. In the monthly scale, the number of the increasing trends was more than the number of decreasing trends, in the majority of warm months of the year.

Keywords: climate change, Mann–Kendall, Penman-Monteith method (FAO-56 PM), reference crop evapotranspiration

Procedia PDF Downloads 289
22729 Nanoparticles Made from PNIPAM-G-PEO Double Hydrophilic Copolymers for Temperature-Controlled Drug Delivery

Authors: Victoria I. Michailova, Denitsa B. Momekova, Hristiana A. Velichkova, Evgeni H. Ivanov

Abstract:

The aim of this work is to design and develop thermo-responsive nanosized drug delivery systems based on poly(N-isopropylacrylamide)-g-poly(ethylene oxide) (PNIPAM-g-PEO) double hydrophilic graft copolymers. The PNIPAM-g-PEO copolymers are able to self-assemble in water into nanoparticles above the LCST of the thermo-responsive PNIPAM backbone and to disassemble and rapidly release the entrapped drugs upon cooling. However, their drug delivery applications are often hindered by their low loading capacity as the drugs to be encapsulated do not dissolve in water. In order to overcome this limitation, here we applied a low-temperature procedure with ethanol as an alternative route to the formation and loading a model hydrophobic drug, Indomethacin (IMC), into PNIPAM-g-PEO nanoparticles. The rationale for this approach was that ethanol dissolves both IMC and the copolymer and its mixing with water may induce micellization of PNIPAM-g-PEO at temperatures lower than the LCST. The influence of the volume fraction of ethanol and the temperature on the aggregation characteristics of PNIPAM-g-PEO copolymers (2.7 mol% PEO) was investigated by means of DLS, TEM and rheological dynamic oscillatory tests. The studies showed rich phase behavior at T < LCST, incl. the formation of highly solvated 500-1000 nm complex structures, 30-70 nm micelles and polymersomes as well as giant polymersomes, as the fraction of added ethanol increased. We believe that the PNIPAM-g-PEO self-assembly is favored due to the different solvation of its constituting blocks in ethanol-water mixtures. The incorporation of IMC led to alteration of the physicochemical and morphological characteristics of the blank nanoparticles. In this case, only monodisperse polymersomes and micelles were observed in the solutions with an average diameter less than 65 nm and substantial drug loading (DLC ~117 – 146 wt%). Indomethacin release from the nanoparticles was responsive to temperature changes, being much faster at a temperature of 42oC compared to that of 37oC under otherwise the same conditions. The results obtained suggest that these PNIPAM-g-PEO nanoparticles could be potential in mild hyper-thermic delivery of nonsteroidal anti-inflammatory drugs.

Keywords: drug delivery, nanoparticles, poly(N-isopropylacryl amide)-g-poly(ethylene oxide), thermo-responsive

Procedia PDF Downloads 288
22728 Interbank Networks and the Benefits of Using Multilayer Structures

Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti

Abstract:

Complexity science seeks the understanding of systems adopting diverse theories from various areas. Network analysis has been gaining space and credibility, namely with the biological, social and economic systems. Significant part of the literature focuses only monolayer representations of connections among agents considering one level of their relationships, and excludes other levels of interactions, leading to simplistic results in network analysis. Therefore, this work aims to demonstrate the advantages of the use of multilayer networks for the representation and analysis of networks. For this, we analyzed an interbank network, composed of 42 banks, comparing the centrality measures of the agents (degree and PageRank) resulting from each method (monolayer x multilayer). This proved to be the most reliable and efficient the multilayer analysis for the study of the current networks and highlighted JP Morgan and Deutsche Bank as the most important banks of the analyzed network.

Keywords: complexity, interbank networks, multilayer networks, network analysis

Procedia PDF Downloads 282
22727 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
22726 Yield and Physiological Evaluation of Coffee (Coffea arabica L.) in Response to Biochar Applications

Authors: Alefsi D. Sanchez-Reinoso, Leonardo Lombardini, Hermann Restrepo

Abstract:

Colombian coffee is recognized worldwide for its mild flavor and aroma. Its cultivation generates a large amount of waste, such as fresh pulp, which leads to environmental, health, and economic problems. Obtaining biochar (BC) by pyrolysis of coffee pulp and its incorporation to the soil can be a complement to the crop mineral nutrition. The objective was to evaluate the effect of the application of BC obtained from coffee pulp on the physiology and agronomic performance of the Castillo variety coffee crop (Coffea arabica L.). The research was developed in field condition experiment, using a three-year-old commercial coffee crop, carried out in Tolima. Four doses of BC (0, 4, 8 and 16 t ha-1) and four levels of chemical fertilization (CF) (0%, 33%, 66% and 100% of the nutritional requirements) were evaluated. Three groups of variables were recorded during the experiment: i) physiological parameters such as Gas exchange, the maximum quantum yield of PSII (Fv/Fm), biomass, and water status were measured; ii) physical and chemical characteristics of the soil in a commercial coffee crop, and iii) physiochemical and sensorial parameters of roasted beans and coffee beverages. The results indicated that a positive effect was found in plants with 8 t ha-1 BC and fertilization levels of 66 and 100%. Also, a positive effect was observed in coffee trees treated with 8 t ha-1 BC and 100%. In addition, the application of 16 t ha-1 BC increased the soil pHand microbial respiration; reduced the apparent density and state of aggregation of the soil compared to 0 t ha-1 BC. Applications of 8 and 16 t ha-1 BC and 66%-100% chemical fertilization registered greater sensitivity to the aromatic compounds of roasted coffee beans in the electronic nose. Amendments of BC between 8 and 16 t ha-1 and CF between 66% and 100% increased the content of total soluble solids (TSS), reduced the pH, and increased the titratable acidity in beverages of roasted coffee beans. In conclusion, 8 t ha-1 BC of the coffee pulp can be an alternative to supplement the nutrition of coffee seedlings and trees. Applications between 8 and 16 t ha-1 BC support coffee soil management strategies and help the use of solid waste. BC as a complement to chemical fertilization showed a positive effect on the aromatic profile obtained for roasted coffee beans and cup quality attributes.

Keywords: crop yield, cup quality, mineral nutrition, pyrolysis, soil amendment

Procedia PDF Downloads 111
22725 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
22724 Effects of Artificial Sweeteners on the Quality Parameters of Yogurt during Storage

Authors: Hafiz Arbab Sakandar, Sabahat Yaqub, Ayesha Sameen, Muhammad Imran, Sarfraz Ahmad

Abstract:

Yoghurt is one of the famous nutritious fermented milk products which have myriad of positive health effects on human beings and curable against different intestinal diseases. This research was conducted to observe effects of different artificial sweeteners on the quality parameters of yoghurt with relation to storage. Some people are allergic to natural sweeteners so artificial sweetener will be helpful for them. Physical-chemical, Microbiology and various sensory evaluation tests were carried out with the interval of 7, 14, 21, and 28 days. It was outcome from this study that addition of artificial sweeteners in yoghurt has shown much harmful effects on the yoghurt microorganisms and other physicochemical parameters from quality point of view. Best results for acceptance were obtained when aspartame was added in yoghurt at level of 0.022 percent. In addition, growth of beneficial microorganisms in yoghurt was also improved as well as other sensory attributes were enhanced by the addition of aspartame.

Keywords: yoghurt, artificial sweetener, storage, quality parameters

Procedia PDF Downloads 476
22723 The Effect of Global Warming on Water Resources

Authors: Ehsan Soltanzadeh, Hassan Zare

Abstract:

This paper introduces examples of the influences of global warming on water resources and means of adaptation. The contributing causes of shortage in water resources are sophisticated and have interactions with each other. The world-scale phenomena like global warming have led to an increase in air and ocean’s mean temperature, and this has already caused adverse effects on water resources. Other factors that exacerbated this situation such as population increase, changes in farming habits, rise in city dwellers, unbalanced request for energy and aquatic resources, improved living standards, new eating habits, increasing economic growth and consequently flourishing industrial activities, and different types of pollution such as air, water, etc., are compelling more pressure on our limited water resources. The report will briefly discuss climate change and its detrimental impacts on the water resources and finally will introduce two effective solutions to mitigate the consequences or even reverse them in the near to mid-term future: utilization of molten salt technology for storing huge amounts of generated electricity in solar power plants to accommodate power grid demands, and implementing fuel cell CHPs to reduce carbon emission, and consequently, mitigate the global warming phenomenon as the major root cause of threatening water resources.

Keywords: climate change, global warming, water resources, GHG emissions, fuel cell-CHP, solar power plant, molten salt storage

Procedia PDF Downloads 112
22722 An Approach for Multilayered Ecological Networks

Authors: N. F. F. Ebecken, G. C. Pereira

Abstract:

Although networks provide a powerful approach to the study of a wide variety of ecological systems, their formulation usually does not include various types of interactions, interactions that vary in space and time, and interconnected systems such as networks. The emerging field of 'multilayer networks' provides a natural framework for extending ecological systems analysis to include these multiple layers of complexity as it specifically allows for differentiation and modeling of intralayer and interlayer connectivity. The structure provides a set of concepts and tools that can be adapted and applied to the ecology, facilitating research in high dimensionality, heterogeneous systems in nature. Here, ecological multilayer networks are formally defined based on a review of prior and related approaches, illustrates their application and potential with existing data analyzes, and discusses limitations, challenges, and future applications. The integration of multilayer network theory into ecology offers a largely untapped potential to further address ecological complexity, to finally provide new theoretical and empirical insights into the architecture and dynamics of ecological systems.

Keywords: ecological networks, multilayered networks, sea ecology, Brazilian Coastal Area

Procedia PDF Downloads 155
22721 Effect of Roasting Temperature on the Proximate, Mineral and Antinutrient Content of Pigeon Pea (Cajanus cajan) Ready-to-Eat Snack

Authors: Olaide Ruth Aderibigbe, Oluwatoyin Oluwole

Abstract:

Pigeon pea is one of the minor leguminous plants; though underutilised, it is used traditionally by farmers to alleviate hunger and malnutrition. Pigeon pea is cultivated in Nigeria by subsistence farmers. It is rich in protein and minerals, however, its utilisation as food is only common among the poor and rural populace who cannot afford expensive sources of protein. One of the factors contributing to its limited use is the high antinutrient content which makes it indigestible, especially when eaten by children. The development of value-added products that can reduce the antinutrient content and make the nutrients more bioavailable will increase the utilisation of the crop and contribute to reduction of malnutrition. This research, therefore, determined the effects of different roasting temperatures (130 0C, 140 0C, and 150 0C) on the proximate, mineral and antinutrient component of a pigeon pea snack. The brown variety of pigeon pea seeds were purchased from a local market- Otto in Lagos, Nigeria. The seeds were cleaned, washed, and soaked in 50 ml of water containing sugar and salt (4:1) for 15 minutes, and thereafter the seeds were roasted at 130 0C, 140 0C, and 150 0C in an electric oven for 10 minutes. Proximate, minerals, phytate, tannin and alkaloid content analyses were carried out in triplicates following standard procedures. The results of the three replicates were polled and expressed as mean±standard deviation; a one-way analysis of variance (ANOVA) and the Least Significance Difference (LSD) were carried out. The roasting temperatures significantly (P<0.05) affected the protein, ash, fibre and carbohydrate content of the snack. Ready-to-eat snack prepared by roasting at 150 0C significantly had the highest protein (23.42±0.47%) compared the ones roasted at 130 0C and 140 0C (18.38±1.25% and 20.63±0.45%, respectively). The same trend was observed for the ash content (3.91±0.11 for 150 0C, 2.36±0.15 for 140 0C and 2.26±0.25 for 130 0C), while the fibre and carbohydrate contents were highest at roasting temperature of 130 0C. Iron, zinc, and calcium were not significantly (P<0.5) affected by the different roasting temperatures. Antinutrients decreased with increasing temperature. Phytate levels recorded were 0.02±0.00, 0.06±0.00, and 0.07±0.00 mg/g; tannin levels were 0.50±0.00, 0.57±0.00, and 0.68±0.00 mg/g, while alkaloids levels were 0.51±0.01, 0.78±0.01, and 0.82±0.01 mg/g for 150 0C, 140 0C, and 130 0C, respectively. These results show that roasting at high temperature (150 0C) can be utilised as a processing technique for increasing protein and decreasing antinutrient content of pigeon pea.

Keywords: antinutrients, pigeon pea, protein, roasting, underutilised species

Procedia PDF Downloads 143
22720 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations

Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang

Abstract:

Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments.

Keywords: temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments

Procedia PDF Downloads 171