Search results for: air data system
35458 Comparative Assessment of Bus Rapid Transit System in India
Authors: Namrata Ghosh, Sapan Tiwari
Abstract:
Public transport service plays an important role in people's transportation needs in urban areas. Bus Rapid Transit System (BRTS) is a transport service that provides passengers with a quick and efficient mode of transport. It is developed by changing the existing infrastructure, vehicles, route, or by developing a new dedicated corridor for the bus route. This dedicated lanes transport passengers to their destination quickly and efficiently and flexible in meeting demand. However, with rapid urbanization and increasing population density in Indian cities, traffic congestion has become a significant issue. In a few Indian cities, the BRTS concept is implemented to address the issue of traffic congestion that eventually resulted in less road congestion. The research aims to provide a literature review on the overall outlook of the BRTS system and its practical implementation in mass urban transit. First, it reflects a literature review on the concept of the BRTS system in both developed and developing countries. Afterward, comparative analysis of BRTS, hindrances associated with the permanent integrated system, and the need for establishing the Bus Rapid Transit System in Indian cities is demonstrated. The research concludes with some recommendations that could help in improving the loopholes in the existing system.Keywords: bus rapid transit system(BRTS), dedicated corridor, public transport, traffic congestion
Procedia PDF Downloads 28635457 Trend Analysis of Annual Total Precipitation Data in Konya
Authors: Naci Büyükkaracığan
Abstract:
Hydroclimatic observation values are used in the planning of the project of water resources. Climate variables are the first of the values used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.Keywords: trend analysis, precipitation, hydroclimatology, Konya
Procedia PDF Downloads 21935456 Human Capital and the Innovation System: A Case Study of the Mpumalanga Province, South Africa
Authors: Maria E. Eggink
Abstract:
Human capital is one of the essential factors in an innovation system and innovation is the driving force of economic growth and development. Schumpeter focused on the entrepreneur as innovator, but the evolutionary economists shifted the focus to all participants in the innovation system. Education and training institutions are important participants in an innovation system, but there is a gap in literature on competence building as part of the analysis of innovation systems. In this paper the education and training institutions’ competence building role in the innovation system is examined. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.Keywords: education institutions, human capital, innovation systems, Mpumalanga Province
Procedia PDF Downloads 38035455 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing
Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi
Abstract:
This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management
Procedia PDF Downloads 24135454 Contaminated Sites Prioritization Process Promoting and Redevelopment Planning
Authors: Che-An Lin, Wan-Ying Tsai, Ying-Shin Chen, Yu-Jen Chung
Abstract:
With the number and area of contaminated sites continued to increase in Taiwan, the Government have to make a priority list of screening contaminated sites under the limited funds and information. This study investigated the announcement of Taiwan EPA land 261 contaminated sites (except the agricultural lands), after preliminary screening 211 valid data to propose a screening system, removed contaminated sites were used to check the accuracy. This system including two dimensions which can create the sequence and use the XY axis to construct four quadrants. One dimension included environmental and social priority and the other related economic. All of the evaluated items included population density, land values, traffic hub, pollutant compound, pollutant concentrations, pollutant transport pathways, land usage sites, site areas, and water conductivity. The classification results of this screening are 1. Prioritization promoting sites (10%). 2. Environmental and social priority of the sites (17%), 3. Economic priority of the sites (30%), 4. Non-priority sites (43 %). Finally, this study used three of the removed contaminated sites to check screening system verification. As the surmise each of them are in line with the priority site and Economic priority of the site.Keywords: contaminated sites, redevelopment, environmental, economics
Procedia PDF Downloads 48335453 Trajectory Planning Algorithms for Autonomous Agricultural Vehicles
Authors: Caner Koc, Dilara Gerdan Koc, Mustafa Vatandas
Abstract:
The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques.Keywords: agriculture 5.0, computational intelligence, motion planning, trajectory planning
Procedia PDF Downloads 7835452 Feasibility Study on a Conductive-Type Cooling System for an Axial Flux Permanent Magnet Generator
Authors: Yang-Gyun Kim, Eun-Taek Woo, Myeong-Gon Lee, Yun-Hyun Cho, Seung-Ho Han
Abstract:
For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind turbines such as an axial flux permanent magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5 MW. In this paper, we proposed a newly developed conductive-type cooling system using a heat pipe wound to the stator of a 2.5 MW AFPM generator installed on an offshore wind turbine. The numerical results showed that the temperatures on the stator surface using convective-type cooling system and the proposed conductive-type cooling system at thermal saturation were 60 and 76°C, respectively, which met the requirements for power production. The temperatures of the permanent magnet cased by the radiant heating from the stator surface were 53°C and 66°C, respectively, in each case. As a result, the permanent magnet did not reach the malfunction temperature. Although the cooling temperatures in the case of the conductive-type cooling system were higher than that of the convective-type cooling system, the relatively small size of the water pump and radiators make a light-weight design of the AFPM generator possible.Keywords: wind turbine, axial flux permanent magnet (AFPM) generator, conductive-type cooling system
Procedia PDF Downloads 32735451 Performance Improvement of Photovoltaic Module at Different Tilt Angle in Kuwait
Authors: Hussain Bunyan, Wesam Ali
Abstract:
In this paper we will study the performance of a Silicon Photovoltaic (PV) system with different tilt angle arrangement in Kuwait (latitude 30˚ N). In this study the PV system is installed facing south, collecting maximum solar radiation at noon, and their angles are from 00 to 900 respectively, during full year at the Solstice and Equinox periods and aiming for a higher angle than 300 with competitive output power. The results show that the performance and the output power of the PV system with 50˚ tilt angle, is equivalent to the latitude tilt angle (30˚) during a full year.Keywords: photovoltaic model, tilt angle, solar collector, PV system performance, State of Kuwait
Procedia PDF Downloads 51435450 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging
Authors: Chang Liu, John Nash, Stephen D. Prior
Abstract:
This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, the aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infrared video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.Keywords: unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video
Procedia PDF Downloads 32735449 Blockchain Platform Configuration for MyData Operator in Digital and Connected Health
Authors: Minna Pikkarainen, Yueqiang Xu
Abstract:
The integration of digital technology with existing healthcare processes has been painfully slow, a huge gap exists between the fields of strictly regulated official medical care and the quickly moving field of health and wellness technology. We claim that the promises of preventive healthcare can only be fulfilled when this gap is closed – health care and self-care becomes seamless continuum “correct information, in the correct hands, at the correct time allowing individuals and professionals to make better decisions” what we call connected health approach. Currently, the issues related to security, privacy, consumer consent and data sharing are hindering the implementation of this new paradigm of healthcare. This could be solved by following MyData principles stating that: Individuals should have the right and practical means to manage their data and privacy. MyData infrastructure enables decentralized management of personal data, improves interoperability, makes it easier for companies to comply with tightening data protection regulations, and allows individuals to change service providers without proprietary data lock-ins. This paper tackles today’s unprecedented challenges of enabling and stimulating multiple healthcare data providers and stakeholders to have more active participation in the digital health ecosystem. First, the paper systematically proposes the MyData approach for healthcare and preventive health data ecosystem. In this research, the work is targeted for health and wellness ecosystems. Each ecosystem consists of key actors, such as 1) individual (citizen or professional controlling/using the services) i.e. data subject, 2) services providing personal data (e.g. startups providing data collection apps or data collection devices), 3) health and wellness services utilizing aforementioned data and 4) services authorizing the access to this data under individual’s provided explicit consent. Second, the research extends the existing four archetypes of orchestrator-driven healthcare data business models for the healthcare industry and proposes the fifth type of healthcare data model, the MyData Blockchain Platform. This new architecture is developed by the Action Design Research approach, which is a prominent research methodology in the information system domain. The key novelty of the paper is to expand the health data value chain architecture and design from centralization and pseudo-decentralization to full decentralization, enabled by blockchain, thus the MyData blockchain platform. The study not only broadens the healthcare informatics literature but also contributes to the theoretical development of digital healthcare and blockchain research domains with a systemic approach.Keywords: blockchain, health data, platform, action design
Procedia PDF Downloads 10035448 Mathematical Modeling to Reach Stability Condition within Rosetta River Mouth, Egypt
Authors: Ali Masria , Abdelazim Negm, Moheb Iskander, Oliver C. Saavedra
Abstract:
Estuaries play an important role in exchanging water and providing a navigational pathway for ships. These zones are very sensitive and vulnerable to any interventions in coastal dynamics. Almost major of these inlets experience coastal problems such as severe erosion, and accretion. Rosetta promontory, Egypt is an example of this environment. It suffers from many coastal problems as erosion problem along the coastline and siltation problem inside the inlet. It is due to lack of water and sediment resources as a side effect of constructing the Aswan High dam. The shoaling of the inlet leads to hindering the navigation process of fishing boats, negative impacts to estuarine and salt marsh habitat and decrease the efficiency of the cross section to transfer the flow during emergencies to the sea. This paper aims to reach a new condition of stability of Rosetta Promontory by using coastal measures to control the sediment entering, and causes shoaling inside the inlet. These coastal measures include modifying the inlet cross section by using centered jetties, eliminate the coastal dynamic in the entrance using boundary jetties. This target is achieved by using a hydrodynamic model Coastal Modeling System (CMS). Extensive field data collection (hydrographic surveys, wave data, tide data, and bed morphology) is used to build and calibrate the model. About 20 scenarios were tested to reach a suitable solution that mitigate the coastal problems at the inlet. The results show that 360 m jetty in the eastern bank with system of sand bypass from the leeside of the jetty can stabilize the estuary.Keywords: Rosetta promontory, erosion, sedimentation, inlet stability
Procedia PDF Downloads 58735447 Performance of Photovoltaic Module at Different Tilt Angles
Authors: Hussain Bunyan, Wesam Ali
Abstract:
In this paper we will study the performance of a Silicon Photovoltaic (PV) system with different tilt angle arrangement in Kuwait (latitude 30˚ N). In the study the PV system is installed facing South, collecting maximum solar radiation at noon, and their angles are from 00 to 900 respectively, during full year at the Solstice and Equinox periods, aiming for a higher angle than 300 with competitive output power. The results show that the performance and the output power of the PV system with 50˚ tilt angle, is equivalent to the latitude tilt angle (30˚) during a full year.Keywords: photovoltaic model, tilt angle, solar collector, PV system performance, State of Kuwait
Procedia PDF Downloads 49235446 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.Keywords: catalytic combustion, methane, BOP, MCFC power generation system, inlet temperature, excess air ratio, space velocity
Procedia PDF Downloads 27435445 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering
Procedia PDF Downloads 12835444 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 15035443 Maxwell’s Economic Demon Hypothesis and the Impossibility of Economic Convergence of Developing Economies
Authors: Firano Zakaria, Filali Adib Fatine
Abstract:
The issue f convergence in theoretical models (classical or Keynesian) has been widely discussed. The results of the work affirm that most countries are seeking to get as close as possible to a steady state in order to catch up with developed countries. In this paper, we have retested this question whether it is absolute or conditional. The results affirm that the degree of convergence of countries like Morocco is very low and income is still far from its equilibrium state. Moreover, the analysis of financial convergence, of the countries in our panel, states that the pace in this sector is more intense: countries are converging more rapidly in financial terms. The question arises as to why, with a fairly convergent financial system, growth does not respond, yet the financial system should facilitate this economic convergence. Our results confirm that the degree of information exchange between the financial system and the economic system did not change significantly between 1985 and 2017. This leads to the hypothesis that the financial system is failing to serve its role as a creator of information in developing countries despite all the reforms undertaken, thus making the existence of an economic demon in the Maxwell prevail.Keywords: economic convergence, financial convergence, financial system, entropy
Procedia PDF Downloads 9135442 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13535441 Information Technology Pattern for Traceability to Increase the Exporting Efficiency of Thailand’s Orchid
Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom, Manop Tirastittam
Abstract:
Traceability system is one of the tools which can ensure the product’s confident of the consumer as it can trace the product back to its origin and can reduce the operation cost of recall. Nowadays, there are so many technologies which can be applied to the traceability system and also able to increase the efficiency of the system such as QR Code, barcode, GS1 and GTIN. As the result, this research is aimed to study and design the information technology pattern that suits for the traceability of Thailand’s orchid because Thailand’s orchid is the popular export product for Japan, USA, China, Netherlands and Italy. This study will enhance the value of Thailand’s orchid and able to prevent the unexpected event of the defects or damaged product. The traceability pattern was received IOC test from 12 experts from 4 fields of study which are traceability field, information technology field, information communication technology field and orchid export field. The result of the in-depth interview and questionnaire showed that the technology which most compatibility with the traceability system is the QR code. The mean of the score was 4.25 and the standard deviation was 0.5 as the QR code is the new technology and user-friendly. The traceability system should start from the farm to the consumer in the consuming country as the traceability system will enhance the quality level of the product and increase the value of its as well. The other outcome from this research is the supply chain model of Thailand’s Orchid along with the system architecture and working system diagram.Keywords: exporting, information technology pattern, orchid, traceability
Procedia PDF Downloads 22535440 The Outsourcing System and Competitiveness Enhancement in the Thai Electricity and Electronic Industries
Authors: Sudawan Somjai
Abstract:
This paper aims to find out level of influences of factors that affected core competency and competitiveness of Thai electricity and electronics, and to indentify factors that affected core competency and competitiveness of Thai electricity and electronics. Using systematic random sampling technique, the samples of this study were 400 employees in the selected 10 medium enterprises in the electricity and electronic industries of Thailand that applied an outsourcing system. All selected companies were located in Bangkok and the eastern part of Thailand. Interviews were also utilized with managing directors. Qualitative and quantitative approaches were both applied. Questionnaires were employed in data collection, whereas in-depth interviews and focus groups were used with key informants in management. The findings unveiled a high level of influence of the outsourcing system on labor flexibility, manpower management efficiency, capability of business processes, cost reduction, business risk elimination and core competency. These factors were found to have a relationship with business core competency for competitiveness in the Thai electricity and electronic industry. Suggestions of this paper were also presented.Keywords: competitiveness, core competency, outsourcing, Thai electricity and electronic industry
Procedia PDF Downloads 41035439 A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery
Authors: Moiz Masood Syed, Seong-Jun Hong, Geun-Hie Rim, Kyung-Ae Cho, Hyoung-Suk Kim
Abstract:
In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system.Keywords: energy storage system, photovoltaic, DC/DC converter, DC/AC inverter
Procedia PDF Downloads 64135438 Reduction of Impulsive Noise in OFDM System using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, impulsive noise, SSRLS, BER
Procedia PDF Downloads 45835437 Relationship among Teams' Information Processing Capacity and Performance in Information System Projects: The Effects of Uncertainty and Equivocality
Authors: Ouafa Sakka, Henri Barki, Louise Cote
Abstract:
Uncertainty and equivocality are defined in the information processing literature as two task characteristics that require different information processing responses from managers. As uncertainty often stems from a lack of information, addressing it is thought to require the collection of additional data. On the other hand, as equivocality stems from ambiguity and a lack of understanding of the task at hand, addressing it is thought to require rich communication between those involved. Past research has provided weak to moderate empirical support to these hypotheses. The present study contributes to this literature by defining uncertainty and equivocality at the project level and investigating their moderating effects on the association between several project information processing constructs and project performance. The information processing constructs considered are the amount of information collected by the project team, and the richness and frequency of formal communications among the team members to discuss the project’s follow-up reports. Data on 93 information system development (ISD) project managers was collected in a questionnaire survey and analyzed it via the Fisher Test for correlation differences. The results indicate that the highest project performance levels were observed in projects characterized by high uncertainty and low equivocality in which project managers were provided with detailed and updated information on project costs and schedules. In addition, our findings show that information about user needs and technical aspects of the project is less useful to managing projects where uncertainty and equivocality are high. Further, while the strongest positive effect of interactive use of follow-up reports on performance occurred in projects where both uncertainty and equivocality levels were high, its weakest effect occurred when both of these were low.Keywords: uncertainty, equivocality, information processing model, management control systems, project control, interactive use, diagnostic use, information system development
Procedia PDF Downloads 29435436 Tax Administration Constraints: The Case of Small and Medium Size Enterprises in Addis Ababa, Ethiopia
Authors: Zeleke Ayalew Alemu
Abstract:
This study aims to investigate tax administration constraints in Addis Ababa with a focus on small and medium-sized enterprises by identifying issues and constraints in tax administration and assessment. The study identifies problems associated with taxpayers and tax-collecting authorities in the city. The research used qualitative and quantitative research designs and employed questionnaires, focus group discussion and key informant interviews for primary data collection and also used secondary data from different sources. The study identified many constraints that taxpayers are facing. Among others, tax administration offices’ inefficiency, reluctance to respond to taxpayers’ questions, limited tax assessment and administration knowledge and skills, and corruption and unethical practices are the major ones. Besides, the tax laws and regulations are complex and not enforced equally and fully on all taxpayers, causing a prevalence of business entities not paying taxes. This apparently results in an uneven playing field. Consequently, the tax system at present is neither fair nor transparent and increases compliance costs. In case of dispute, the appeal process is excessively long and the tax authority’s decision is irreversible. The Value Added Tax (VAT) administration and compliance system is not well designed, and VAT has created economic distortion among VAT-registered and non-registered taxpayers. Cash registration machine administration and the reporting system are big headaches for taxpayers. With regard to taxpayers, there is a lack of awareness of tax laws and documentation. Based on the above and other findings, the study forwarded recommendations, such as, ensuring fairness and transparency in tax collection and administration, enhancing the efficiency of tax authorities by use of modern technologies and upgrading human resources, conducting extensive awareness creation programs, and enforcing tax laws in a fair and equitable manner. The objective of this study is to assess problems, weaknesses and limitations of small and medium-sized enterprise taxpayers, tax authority administrations, and laws as sources of inefficiency and dissatisfaction to forward recommendations that bring about efficient, fair and transparent tax administration. The entire study has been conducted in a participatory and process-oriented manner by involving all partners and stakeholders at all levels. Accordingly, the researcher used participatory assessment methods in generating both secondary and primary data as well as both qualitative and quantitative data on the field. The research team held FGDs with 21 people from Addis Ababa City Administration tax offices and selected medium and small taxpayers. The study team also interviewed 10 KIIs selected from the various segments of stakeholders. The lead, along with research assistants, handled the KIIs using a predesigned semi-structured questionnaire.Keywords: taxation, tax system, tax administration, small and medium enterprises
Procedia PDF Downloads 7335435 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 69235434 Mooring Analysis of Duct-Type Tidal Current Power System in Shallow Water
Authors: Chul H. Jo, Do Y. Kim, Bong K. Cho, Myeong J. Kim
Abstract:
The exhaustion of oil and the environmental pollution from the use of fossil fuel are increasing. Tidal current power (TCP) has been proposed as an alternative energy source because of its predictability and reliability. By applying a duct and single point mooring (SPM) system, a TCP device can amplify the generating power and keep its position properly. Because the generating power is proportional to cube of the current stream velocity, amplifying the current speed by applying a duct to a TCP system is an effective way to improve the efficiency of the power device. An SPM system can be applied at any water depth and is highly cost effective. Simple installation and maintenance procedures are also merits of an SPM system. In this study, we designed an SPM system for a duct-type TCP device for use in shallow water. Motions of the duct are investigated to obtain the response amplitude operator (RAO) as the magnitude of the transfer function. Parameters affecting the stability of the SPM system such as the fairlead departure angle, current velocity, and the number of clamp weights are analyzed and/or optimized. Wadam and OrcaFlex commercial software is used to design the mooring line.Keywords: mooring design, parametric analysis, RAO (Response Amplitude Operator), SPM (Single Point Mooring)
Procedia PDF Downloads 28935433 Data Structure Learning Platform to Aid in Higher Education IT Courses (DSLEP)
Authors: Estevan B. Costa, Armando M. Toda, Marcell A. A. Mesquita, Jacques D. Brancher
Abstract:
The advances in technology in the last five years allowed an improvement in the educational area, as the increasing in the development of educational software. One of the techniques that emerged in this lapse is called Gamification, which is the utilization of video game mechanics outside its bounds. Recent studies involving this technique provided positive results in the application of these concepts in many areas as marketing, health and education. In the last area there are studies that cover from elementary to higher education, with many variations to adequate to the educators methodologies. Among higher education, focusing on IT courses, data structures are an important subject taught in many of these courses, as they are base for many systems. Based on the exposed this paper exposes the development of an interactive web learning environment, called DSLEP (Data Structure Learning Platform), to aid students in higher education IT courses. The system includes basic concepts seen on this subject such as stacks, queues, lists, arrays, trees and was implemented to ease the insertion of new structures. It was also implemented with gamification concepts, such as points, levels, and leader boards, to engage students in the search for knowledge and stimulate self-learning.Keywords: gamification, Interactive learning environment, data structures, e-learning
Procedia PDF Downloads 49535432 Road Traffic Noise Mapping for Riyadh City Using GIS and Lima
Authors: Khalid A. Alsaif, Mosaad A. Foda
Abstract:
The primary objective of this study is to develop the first round of road traffic noise maps for Riyadh City using Geographical Information Systems (GIS) and software LimA 7810 predictor. The road traffic data were measured or estimated as accurate as possible in order to obtain reliable noise maps. Meanwhile, the attributes of the roads and buildings are automatically exported from GIS. The simulation results at some chosen locations are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The results show that the average error between the predicted and measured noise levels is below 3.0 dB.Keywords: noise pollution, road traffic noise, LimA predictor, GIS
Procedia PDF Downloads 40635431 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 36035430 A Cooperative, Autonomous, and Continuously Operating Drone System Offered to Railway and Bridge Industry: The Business Model Behind
Authors: Paolo Guzzini, Emad Samuel M. Ebeid
Abstract:
Bridges and Railways are critical infrastructures. Ensuring safety for transports using such assets is a primary goal as it directly impacts the lives of people. By the way, improving safety could require increased investments in O&M, and therefore optimizing resource usage for asset maintenance becomes crucial. Drones4Safety (D4S), a European project funded under the H2020 Research and Innovation Action (RIA) program, aims to increase the safety of the European civil transport by building a system that relies on 3 main pillars: • Drones operating autonomously in swarm mode; • Drones able to recharge themselves using inductive phenomena produced by transmission lines in the nearby of bridges and railways assets to be inspected; • Data acquired that are analyzed with AI-empowered algorithms for defect detection This paper describes the business model behind this disruptive project. The Business Model is structured in 2 parts: • The first part is focused on the design of the business model Canvas, to explain the value provided by the Drone4safety project; • The second part aims at defining a detailed financial analysis, with the target of calculating the IRR (Internal Return rate) and the NPV (Net Present Value) of the investment in a 7 years plan (2 years to run the project + 5 years post-implementation). As to the financial analysis 2 different points of view are assumed: • Point of view of the Drones4safety company in charge of designing, producing, and selling the new system; • Point of view of the Utility company that will adopt the new system in its O&M practices; Assuming the point of view of the Drones4safety company 3 scenarios were considered: • Selling the drones > revenues will be produced by the drones’ sales; • Renting the drones > revenues will be produced by the rental of the drones (with a time-based model); • Selling the data acquisition service > revenues will be produced by the sales of pictures acquired by drones; Assuming the point of view of a utility adopting the D4S system, a 4th scenario was analyzed taking into account the decremental costs related to the change of operation and maintenance practices. The paper will show, for both companies, what are the key parameters affecting most of the business model and which are the sustainable scenarios.Keywords: a swarm of drones, AI, bridges, railways, drones4safety company, utility companies
Procedia PDF Downloads 14135429 A Decision Support System for Flight Disruptions Management
Authors: Burak Erkayman, Emin Gundogar, Hayrettin Evirgen, Murat Sarı
Abstract:
With the increasing competition in recent years, airline companies tend to manage their operations aiming fewer losses in a robust manner. Airline operations are complex operations and have the necessity of being performed just in time and more knock-on relevant elements in the event of a disruption. In this study a knowledge based decision support system is suggested and software is developed. The developed software includes knowledge bases which are based on expert experience and government regulations, model bases and data bases. The results of the suggested approach are presented and improvable aspects of the approach are discussed.Keywords: knowledge based systems, irregular operations, decision support systems, flight disruptions management
Procedia PDF Downloads 315