Search results for: sustainable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12084

Search results for: sustainable energy

10134 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 99
10133 MEMS based Vibration Energy Harvesting: An overview

Authors: Gaurav Prabhudesai, Shaurya Kaushal, Pulkit Dubey, B. D. Pant

Abstract:

The current race of miniaturization of circuits, systems, modules and networks has resulted in portable and mobile wireless systems having tremendous capabilities with small volume and weight. The power drivers or the power pack, electrically driving these modules have also reduced in proportion. Normally, the power packs in these mobile or fixed systems are batteries, rechargeable or non-rechargeable, which need regular replacement or recharging. Another approach to power these modules is to utilize the ambient energy available for electrical driving to make the system self-sustained. The current paper presents an overview of the different MEMS (Micro-Electro-Mechanical Systems) based techniques used for the harvesting of vibration energy to electrically drive a WSN (wireless sensor network) or a mobile module. This kind of system would have enormous applications, the most significant one, may be in cell phones.

Keywords: energy harvesting, WSN, MEMS, piezoelectrics

Procedia PDF Downloads 506
10132 Mass Polarization in Three-Body System with Two Identical Particles

Authors: Igor Filikhin, Vladimir M. Suslov, Roman Ya. Kezerashvili, Branislav Vlahivic

Abstract:

The mass-polarization term of the three-body kinetic energy operator is evaluated for different systems which include two identical particles: A+A+B. The term has to be taken into account for the analysis of AB- and AA-interactions based on experimental data for two- and three-body ground state energies. In this study, we present three-body calculations within the framework of a potential model for the kaonic clusters K−K−p and ppK−, nucleus 3H and hypernucleus 6 ΛΛHe. The systems are well clustering as A+ (A+B) with a ground state energy E2 for the pair A+B. The calculations are performed using the method of the Faddeev equations in configuration space. The phenomenological pair potentials were used. We show a correlation between the mass ratio mA/mB and the value δB of the mass-polarization term. For bosonic-like systems, this value is defined as δB = 2E2 − E3, where E3 is three-body energy when VAA = 0. For the systems including three particles with spin(isospin), the models with average AB-potentials are used. In this case, the Faddeev equations become a scalar one like for the bosonic-like system αΛΛ. We show that the additional energy conected with the mass-polarization term can be decomposite to a sum of the two parts: exchenge related and reduced mass related. The state of the system can be described as the following: the particle A1 is bound within the A + B pair with the energy E2, and the second particle A2 is bound with the pair with the energy E3 − E2. Due to the identity of A particles, the particles A1 and A2 are interchangeable in the pair A + B. We shown that the mass polarization δB correlates with a type of AB potential using the system αΛΛ as an example.

Keywords: three-body systems, mass polarization, Faddeev equations, nuclear interactions

Procedia PDF Downloads 378
10131 Energy Related Carbon Dioxide Emissions in Pakistan: A Decomposition Analysis Using LMDI

Authors: Arsalan Khan, Faisal Jamil

Abstract:

The unprecedented increase in anthropogenic gases in recent decades has led to climatic changes worldwide. CO2 emissions are the most important factors responsible for greenhouse gases concentrations. This study decomposes the changes in overall CO2 emissions in Pakistan for the period 1990-2012 using Log Mean Divisia Index (LMDI). LMDI enables to decompose the changes in CO2 emissions into five factors namely; activity effect, structural effect, intensity effect, fuel-mix effect, and emissions factor effect. This paper confirms an upward trend of overall emissions level of the country during the period. The study finds that activity effect, structural effect and intensity effect are the three major factors responsible for the changes in overall CO2 emissions in Pakistan with activity effect as the largest contributor to overall changes in the emissions level. The structural effect is also adding to CO2 emissions, which indicates that the economic activity is shifting towards more energy-intensive sectors. However, intensity effect has negative sign representing energy efficiency gains, which indicate a good relationship between the economy and environment. The findings suggest that policy makers should encourage the diversification of the output level towards more energy efficient sub-sectors of the economy.

Keywords: energy consumption, CO2 emissions, decomposition analysis, LMDI, intensity effect

Procedia PDF Downloads 403
10130 Assessing Water Bottle Consumption on College Campus in Abu Dhabi: Towards a Sustainable Future

Authors: Ludmilla Wikkeling-Scott, Amira Karim

Abstract:

Background: In a rapidly developing environment, concerns for pollution and depletion of natural resources are challenges facing global communities. A major source of waste on university campuses is the use of plastic bottles, while cost of production and processing is high. Consumer demand stimulates popularity of plastic bottle production, but researchers agree this is not a sustainable solution. This pilot study assesses plastic water bottle used and attitude towards alternatives among Emirati college students. Methods: This study was conducted in December 2016, using an anonymous self-administered survey of 17 questions. The survey included personal characteristics, plastic water bottle used, attitude towards alternative replacement and sustainability. For statistical analysis, STATA 14C was used to determine significance of association. Results: A total of 500 Emirati students (94.6% female) completed the survey. Of the students, 82.6% preferred bottled water over tap water, and 44.6% reported disposable bottled water use in their household, 42.6% purchased disposable bottled water more than twice a week, and 44.2% purchased bottled water at least once, while on campus. Students were willing to consider switching to alternative water bottle use if it was more convenient (22.54%), cost less (55.13%) or improved the taste (22.54%), while only 7.85% students would not consider any alternatives. There was a significant difference in attitude towards alternatives to water bottle use by area of study (p < 0.005). Conclusion: The UAE strives to be at the forefront of sustainable development and protecting biodiversity. However, a major challenge is the increasing amount of waste, exacerbated by the increasing consumer demand for convenience as seen in this billion-dollar industry. Plastic bottles, for all purposes, pose a serious threat to the environment and sustainable campus initiatives can help reduce the ecological footprint, improve awareness of safe alternatives and benefits to the environment.

Keywords: ecological foot print, emirati students, plastic bottle consumption, sustainable campus

Procedia PDF Downloads 162
10129 Energy Efficiency Measures in Canada’s Iron and Steel Industry

Authors: A. Talaei, M. Ahiduzzaman, A. Kumar

Abstract:

In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.

Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation

Procedia PDF Downloads 401
10128 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 371
10127 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus

Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen

Abstract:

The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.

Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay

Procedia PDF Downloads 282
10126 Technologies in Municipal Solid Waste Management in Indian Towns

Authors: Gargi Ghosh

Abstract:

Municipal solid waste management (MSWM) is an obligatory function of the local self-government as per the Indian constitution, and this paper gives a glimpse of the system in Indian towns focusing on its present state and use of technology in the system. The paper analyses the MSWM characteristics in 35 towns in the southern state of Karnataka. The lifestyle in these towns was found to be very sustainable with minimal disposal and considerable reuse. Average per capita waste generated in the towns ranged from 300 gm/person to 500 gm/person. The waste collection efficiency varied from 60% to 80%. The waste shows equal share of organic and non-organic waste composition with a low calorific value. Lack of capacity of the municipal body in terms of manpower, assets & knowledge and social consciousness were found to be two major issues in the system. Technical solutions in use in India at present are composting, organic re-reprocessing, bio-methanation, waste to energy etc. The tonnage of waste generated ranged from 8 TPD to 80 TPD. The feasibility of technology has been analysed in the context of the above characteristics. It was found that low calorific value and mixed nature of waste made waste to energy and bio methanation processes unsuitable. Composting – windrow and closed door was found best to treat the bulk of the waste. Organic–re-processors was planned for phase 2 of MSWM program in the towns with effective implementation of segregation at source. GPS and RFID technology was recommended for monitoring the collection process and increasing accountability of the citizens for effective implementation.

Keywords: solid waste management, Indian towns, waste management technology, waste charateristics

Procedia PDF Downloads 323
10125 The Role of Waqf Forestry for Sustainable Economic Development: A Panel Logit Analysis

Authors: Patria Yunita

Abstract:

Kuznets’ environmental curve analysis suggests sacrificing economic development to reduce environmental problems. However, we hope to achieve sustainable economic development. In this case, Islamic social finance, especially that of waqf in Indonesia, can be used as a solution to bridge the problem of environmental damage to the sustainability of economic development. The Panel Logit Regression method was used to analyze the probability of increasing economic growth and the role of waqf in the environmental impact of CO₂ emissions. This study uses panel data from 33 Indonesian provinces. The data used were the National Waqf Index, Forest Area, Waqf Land Area, Growth Rate of Regional Gross Domestic Product (YoY), and CO₂ Emissions for 2018-2022. Data were obtained from the Indonesian Waqf Board, Climate World Data, the Ministry of the Environment, and the Bank of Indonesia. The results prove that CO₂ emissions have a negative effect on regional economic growth and that waqf governance in the waqf index has a positive effect on regional economic growth in 33 provinces.

Keywords: waqf, CO₂ emissions, panel logit analysis, sustainable economic development

Procedia PDF Downloads 50
10124 Bamboo as the Frontier for Economically Sustainable Solution to Flood Control and Human Wildlife Conflict

Authors: Nirman Kumar Ojha

Abstract:

Bamboo plantation can be integrated for natural embankment against flood and live fencing against wild animals, at the same time provide economic opportunity for the poor farmers as a sustainable solution and adaptation alternative. 2010 flood in the Rui River completely inundated fields of four VDCs in Madi, Chitwan National Park with extensive bank erosion. The main aim of this action research was to identify an economically sustainable natural embankment against flood and also providing wildlife friendly fencing to reduce human-wildlife conflict. Community people especially poor farmers were trained for soil testing, land identification, plantation, and the harvesting regime, nursery set up and intercropping along with bamboo plantation on the edge of the river bank in order to reduce or minimize soil erosion. Results show that farmers are able to establish cost efficient and economically sustainable river embankment with bamboo plantation also creating a fence for wildlife which has also promoted bamboo cultivation and conservation. This action research has amalgamated flood control and wildlife control with the livelihood of the farmers which otherwise would cost huge resource. Another major impact of the bamboo plantation is its role in climate change and its adaptation process reducing degradation and improving vegetation cover contributing to landscape management. Based on this study, we conclude that bamboo plantation in Madi, Chitwan promoted the livelihood of the poor farmers providing a sustainable economic solution to reduce bank erosion, human-wildlife conflict and contributes to landscape management.

Keywords: climate change and conservation, economic opportunity, flood control, national park

Procedia PDF Downloads 282
10123 Developing Sustainable Tourism Practices in Communities Adjacent to Mines: An Exploratory Study in South Africa

Authors: Felicite Ann Fairer-Wessels

Abstract:

There has always been a disparity between mining and tourism mainly due to the socio-economic and environmental impacts of mines on both the adjacent resident communities and the areas taken up by the mining operation. Although heritage mining tourism has been actively and successfully pursued and developed in the UK, largely Wales, and Scandinavian countries, the debate whether active mining and tourism can have a mutually beneficial relationship remains imminent. This pilot study explores the relationship between the ‘to be developed’ future Nokeng Mine and its adjacent community, the rural community of Moloto, will be investigated in terms of whether sustainable tourism and livelihood activities can potentially be developed with the support of the mine. Concepts such as social entrepreneur, corporate social responsibility, sustainable development and triple bottom line are discussed. Within the South African context as a mineral rich developing country, the government has a statutory obligation to empower disenfranchised communities through social and labour plans and policies. All South African mines must preside over a Social and Labour Plan according to the Mineral and Petroleum Resources Development Act, No 28 of 2002. The ‘social’ component refers to the ‘social upliftment’ of communities within or adjacent to any mine; whereas the ‘labour’ component refers to the mine workers sourced from the specific community. A qualitative methodology is followed using the case study as research instrument for the Nokeng Mine and Moloto community with interviews and focus group discussions. The target population comprised of the Moloto Tribal Council members (8 in-depth interviews), the Moloto community members (17: focus groups); and the Nokeng Mine representatives (4 in-depth interviews). In this pilot study two disparate ‘worlds’ are potentially linked: on the one hand, the mine as social entrepreneur that is searching for feasible and sustainable ideas; and on the other hand, the community adjacent to the mine, with potentially sustainable tourism entrepreneurs that can tap into the resources of the mine should their ideas be feasible to build their businesses. Being an exploratory study the findings are limited but indicate that the possible success of tourism and sustainable livelihood activities lies in the fact that both the Mine and Community are keen to work together – the mine in terms of obtaining labour and profit; and the community in terms of improved and sustainable social and economic conditions; with both parties realizing the importance to mitigate negative environmental impacts. In conclusion, a relationship of trust is imperative between a mine and a community before a long term liaison is possible. However whether tourism is a viable solution for the community to engage in is debatable. The community could initially rather pursue the sustainable livelihoods approach and focus on life-supporting activities such as building, gardening, etc. that once established could feed into possible sustainable tourism activities.

Keywords: community development, mining tourism, sustainability, South Africa

Procedia PDF Downloads 305
10122 Concept for Planning Sustainable Factories

Authors: T. Mersmann, P. Nyhuis

Abstract:

In the current economic climate, for many businesses it is generally no longer sufficient to pursue exclusively economic interests. Instead, integrating ecological and social goals into the corporate targets is becoming ever more important. However, the holistic integration of these new goals is missing from current factory planning approaches. This article describes the conceptual framework for a planning methodology for sustainable factories. To this end, the description of the key areas for action is followed by a description of the principal components for the systematization of sustainability for factories and their stakeholders. Finally, a conceptual framework is presented which integrates the components formulated into an established factory planning procedure.

Keywords: factory planning, stakeholder, systematization, sustainability

Procedia PDF Downloads 457
10121 Investigate the Competencies Required for Sustainable Entrepreneurship Development in Agricultural Higher Education

Authors: Ehsan Moradi, Parisa Paikhaste, Amir Alam Beigi, Seyedeh Somayeh Bathaei

Abstract:

The need for entrepreneurial sustainability is as important as the entrepreneurship category itself. By transferring competencies in a sustainable entrepreneurship framework, entrepreneurship education can make a significant contribution to the effectiveness of businesses, especially for start-up entrepreneurs. This study analyzes the essential competencies of students in the development of sustainable entrepreneurship. It is an applied causal study in terms of nature and field in terms of data collection. The main purpose of this research project is to study and explain the dimensions of sustainability entrepreneurship competencies among agricultural students. The statistical population consists of 730 junior and senior undergraduate students of the Campus of Agriculture and Natural Resources, University of Tehran. The sample size was determined to be 120 using the Cochran's formula, and the convenience sampling method was used. Face validity, structure validity, and diagnostic methods were used to evaluate the validity of the research tool and Cronbach's alpha and composite reliability to evaluate its reliability. Structural equation modeling (SEM) was used by the confirmatory factor analysis (CFA) method to prepare a measurement model for data processing. The results showed that seven key dimensions play a role in shaping sustainable entrepreneurial development competencies: systems thinking competence (STC), embracing diversity and interdisciplinary (EDI), foresighted thinking (FTC), normative competence (NC), action competence (AC), interpersonal competence (IC), and strategic management competence (SMC). It was found that acquiring skills in SMC by creating the ability to plan to achieve sustainable entrepreneurship in students through the relevant mechanisms can improve entrepreneurship in students by adopting a sustainability attitude. While increasing students' analytical ability in the field of social and environmental needs and challenges and emphasizing curriculum updates, AC should pay more attention to the relationship between the curriculum and its content in the form of entrepreneurship culture promotion programs. In the field of EDI, it was found that the success of entrepreneurs in terms of sustainability and business sustainability of start-up entrepreneurs depends on their interdisciplinary thinking. It was also found that STC plays an important role in explaining the relationship between sustainability and entrepreneurship. Therefore, focusing on these competencies in agricultural education to train start-up entrepreneurs can lead to sustainable entrepreneurship in the agricultural higher education system.

Keywords: sustainable entrepreneurship, entrepreneurship education, competency, agricultural higher education

Procedia PDF Downloads 148
10120 Uncertainty Assessment in Building Energy Performance

Authors: Fally Titikpina, Abderafi Charki, Antoine Caucheteux, David Bigaud

Abstract:

The building sector is one of the largest energy consumer with about 40% of the final energy consumption in the European Union. Ensuring building energy performance is of scientific, technological and sociological matter. To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared with the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of dynamic and static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the \textit{Guide to the Expression of Measurement Uncertainty (GUM)} as well as by Bayesian Statistical Theory (BST). Another choice is the use of numerical methods like Monte Carlo Simulation (MCS). In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST) is given. Therefore, an office building has been monitored and multiple sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 $m^2$. Temperature data, electrical and heating consumption, windows opening and occupancy rate are the features for our research work.

Keywords: building energy performance, uncertainty evaluation, GUM, bayesian approach, monte carlo method

Procedia PDF Downloads 464
10119 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia

Authors: Dawit Abay Tesfamariam

Abstract:

Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.

Keywords: renewable energy, power, storage, wind, energy plan

Procedia PDF Downloads 83
10118 Characteristics of Different Volumes of Waste Cellular Concrete Powder-Cement Paste for Sustainable Construction

Authors: Mohammed Abed, Rita Nemes

Abstract:

Cellular concrete powder (CCP) is not used widely as supplementary cementitious material, but in the literature, its efficiency is proved when it used as a replacement of cement in concrete mixtures. In this study, different amounts of raw CCP (CCP as a waste material without any industrial modification) will be used to investigate the characteristics of cement pastes and the effects of CCP on the properties of the cement pastes. It is an attempt to produce green binder paste, which is useful for sustainable construction applications. The fresh and hardened properties of a number of CCP blended cement paste will be tested in different life periods, and the optimized CCP volume will be reported with more significant investigations on durability properties. Different replacing of mass percentage (low and high) of the cement mass will be conducted (0%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The consistency, flexural strength, and compressive strength will be the base indicator for the further properties' investigations. The CCP replacement until 50% have been tested until 7 days, and the initial results showed a linear relationship between strength and the percentage of the replacement; that is an optimistic indicator for further replacement percentages of waste CCP.

Keywords: cellular concrete powder, supplementary cementitious material, sustainable construction, green concrete

Procedia PDF Downloads 328
10117 An Inquiry into Bioregionalism as a Holistic Development Paradigm in Developing Small Towns

Authors: K. C. Surekha

Abstract:

The natural habitat forms the setting for every urban development. The tangible and intangible characteristics of the site contributed to the sustenance of various urban dimensions of early civilizations. However, as the towns were continuously evolving and developing, the attitude towards the natural habitat changed. The after effects of this self-centered attitude resulted in various natural and manmade catastrophes. At the same time the social habitat, cities and new towns were increasingly over-populated; and will become even more numerous and crowded in the future. The coexistence of natural and urban components is necessary for a sustainable future and preserving the region’s unique features. Therefore, there is an urgent need to rethink actively on alternative development paradigms to achieve sustenance of all living forms on the planet in a more sustainable way. The main aim of this paper is to understand bioregionalism as an alternative development paradigm, its theory, concepts as well as the key aspects of bioregional planning. The paper will try to understand the concept of bioregionalism theoretically and take case studies. The critical interpretation of theory and analysis of case studies will be used to form a set of design parameters which can be physically implemented from an urban design and planning standpoint.

Keywords: bioregion, bioregionalism, holistic, sustainable

Procedia PDF Downloads 421
10116 Production of Hydrogen and Carbon Monoxide Fuel Gas From Pine Needles

Authors: Despina Vamvuka, Despina Pentari

Abstract:

Forestry wastes are readily available in large quantities around the world. Based on European Green Deal for the deployment of renewable and decarbonized energy by 2050, as well as global energy crisis, energy recovery from such wastes reducing greenhouse gas emissions is very attractive. Gasification has superior environmental performance to combustion, producing a clean fuel gas utilized in internal combustion engines, gas turbines, solid oxide fuel cells, or for synthesis of liquid bio-fuels and value-added chemicals. In this work, pine needles, which are abundantly found in Mediterranean countries, were gasified by either steam or carbon dioxide via a two-step process to improve reactivity and eliminate tar, employing a fixed bed unit and a thermal analysis system. Solid, liquid and gaseous products from the whole process were characterized and their energy potential was determined. Thermal behaviour, reactivity, conversion and energy recovery were examined. The gasification process took place above 650°C. At 950°C conversion and energy recovery were 77% dry and 2 under a flow of steam and 85% dry and 2.9 under a flow of carbon dioxide, respectively. Organic matter was almost completely converted to syngas, the yield of which varied between 89% and 99%. The higher heating values of biochar, bio-oil and pyrolysis gas were 27.8 MJ/kg, 33.5 MJ/kg and 13.6 MJ/m3. Upon steam or carbon dioxide gasification, the higher heating value of syngas produced was 11.5 MJ/m3 and 12.7 MJ/m3, respectively.

Keywords: gasification, biomass, steam, carbon dioxide

Procedia PDF Downloads 102
10115 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission

Procedia PDF Downloads 613
10114 Advanced Study on Hydrogen Evolution Reaction based on Nickel sulfide Catalyst

Authors: Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Assim Alajali, Godlaveeti Sreenivasa Kumar, Aboubakr M. Abdullah, Bijandra Kumar, Mithra Geetha

Abstract:

A potential pathway for efficient hydrogen production from water splitting electrolysis involves catalysis or electrocatalysis, which plays a crucial role in energy conversion and storage. Hydrogen generated by electrocatalytic water splitting requires active, stable, and low-cost catalysts or electrocatalysts to be developed for practical applications. In this study, we evaluated combination of 2D materials of NiS nanoparticle catalysts for hydrogen evolution reactions. The photocatalytic H₂ production rate of this nanoparticle is high and exceeds that obtained on components alone. Nanoparticles serve as electron collectors and transporters, which explains this improvement. Moreover, a current density was recorded at reduced working potential by 0.393 mA. Calculations based on density functional theory indicate that the nanoparticle's hydrogen evolution reaction catalytic activity is caused by strong interaction between its components at the interface. The samples were analyzed by XPS and morphologically by FESEM for the best outcome, depending on their structural shapes. Use XPS and morphologically by FESEM for the best results. This nanocomposite demonstrated higher electro-catalytic activity, and a low tafel slope of 60 mV/dec. Additionally, despite 1000 cycles into a durability test, the electrocatalyst still displays excellent stability with minimal current loss. The produced catalyst has shown considerable potential for use in the evolution of hydrogen due to its robust synthesis. According to these findings, the combination of 2D materials of nickel sulfide sample functions as good electocatalyst for H₂ evolution. Additionally, the research being done in this fascinating field will surely push nickel sulfide-based technology closer to becoming an industrial reality and revolutionize existing energy issues in a sustainable and clean manner.

Keywords: electrochemical hydrogenation, nickel sulfide, electrocatalysts, energy conversion, catalyst

Procedia PDF Downloads 131
10113 Assessment of Green Infrastructure for Sustainable Urban Water Management

Authors: Suraj Sharma

Abstract:

Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.

Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation

Procedia PDF Downloads 148
10112 Recycled Use of Solid Wastes in Building Material: A Review

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: recycling, solid wastes, construction, building materials

Procedia PDF Downloads 390
10111 Evaluation of Corrosion Behaviour of Austenitic Steel 08Cr18Ni10Ti Exposed to Supercritical Water

Authors: Monika Šípová, Daniela Marušáková, Claudia Aparicio

Abstract:

New sources and ways of producing energy are still seeking, and one of the sustainable ways is Generation IV nuclear reactors. The supercritical water-cooled reactor is one of the six nuclear reactors of Generation IV, and as a consequence of the development of light water, reactors seem to be the most perspective. Thus, materials usually used in light water reactors are also tested under the expected operating conditions of the supercritical water-cooled reactor. Austenitic stainless steel 08Cr18Ni10Ti is widely used in the eastern types of light water nuclear power plants. Therefore, specimens of 08Cr18Ni10Ti were exposed to conditions close to the pseudo-critical point of water and high-temperature supercritical water. The description and evaluation of the corrosion behaviour of austenitic stainless steel have been done based on the results of X-ray diffraction in combination with energy dispersive spectroscopy and electron backscatter diffraction. Thus, significant differences have been found in the structure and composition of oxides formed depending on the temperature of exposure. The high temperature of supercritical water resulted in localised form of corrosion in contrast to the thin oxide layer of 1 µm present on the surface of specimens exposed close to the pseudo-critical point of water. The obtained results are important for further research as the supercritical water can be successfully used as a coolant for small modular reactors, which are currently of interest.

Keywords: localised corrosion, supercritical water, stainless steel, electron backscatter diffraction

Procedia PDF Downloads 82
10110 Urban Ecotourism Development in Borderlands: An Exploratory Study of Xishuangbanna Dai Autonomous Prefecture, China

Authors: Min Liu, Thanapauge Chamaratana

Abstract:

Integrating ecotourism into urban borderlands holds significant potential for promoting sustainable development, enhancing cross-border cooperation, and preserving cultural and natural heritage. This study aims to evaluate the current status and strategic measures for sustainable ecotourism development in the border urban areas of Xishuangbanna, leveraging the unique opportunities and challenges presented by its policy and geographical location. Employing a qualitative research approach, the exploratory study utilizes documentary research, observation, and in-depth interviews with 20 key stakeholders, including local government officials, tourism operators, community members, and tourists. Content analysis is conducted to interpret the collected data. The findings reveal that Xishuangbanna holds significant potential for ecotourism due to its rich biodiversity, cultural heritage, and strategic location along the Belt and Road Initiative route. The integration of ecotourism can drive economic growth, create employment opportunities, and foster a deeper appreciation for conservation efforts. By promoting ecotourism practices, the region can attract environmentally conscious travelers, thereby contributing to global sustainability goals. However, challenges such as inadequate infrastructure, limited community involvement, and environmental concerns are also identified. The study recommends enhancing ecotourism development in urban borderlands through integrated planning, stakeholder collaboration, and sustainable practices. These measures are essential to ensure long-term benefits for both the local community and the environment. Moreover, the study underscores the importance of a holistic approach to ecotourism development, which balances economic, social, and environmental priorities to achieve sustainable outcomes for urban borderlands.

Keywords: ecotourism, sustainable tourism, urban, borderland

Procedia PDF Downloads 34
10109 Holistic Approach to Assess the Potential of Using Traditional and Advance Insulation Materials for Energy Retrofit of Office Buildings

Authors: Marco Picco, Mahmood Alam

Abstract:

Improving the energy performance of existing buildings can be challenging, particularly when facades cannot be modified, and the only available option is internal insulation. In such cases, the choice of the most suitable material becomes increasingly complex, as in addition to thermal transmittance and capital cost, the designer needs to account for the impact of the intervention on the internal spaces, and in particular the loss of usable space due to the additional layers of materials installed. This paper explores this issue by analysing a case study of an average office building needing to go through a refurbishment in order to reach the limits imposed by current regulations to achieve energy efficiency in buildings. The building is simulated through dynamic performance simulation under three different climate conditions in order to evaluate its energy needs. The use of Vacuum Insulated Panels as an option for energy refurbishment is compared to traditional insulation materials (XPS, Mineral Wool). For each scenario, energy consumptions are calculated and, in combination with their expected capital costs, used to perform a financial feasibility analysis. A holistic approach is proposed, taking into account the impact of the intervention on internal space by quantifying the value of the lost usable space and used in the financial feasibility analysis. The proposed approach highlights how taking into account different drivers will lead to the choice of different insulation materials, showing how accounting for the economic value of space can make VIPs an attractive solution for energy retrofitting under various climate conditions.

Keywords: vacuum insulated panels, building performance simulation, payback period, building energy retrofit

Procedia PDF Downloads 157
10108 The Masterplan for the Urban Regeneration of the Heritage District of Msheireb Downtown Doha, State of Qatar

Authors: Raffaello Furlan

Abstract:

In the 21st century, the sustainable urban development of GCC-cities is challenged by inhabitants’ over-dependency on private-use vehicles. In turn, this habit has generated problems of urban inefficiency, contributing to traffic congestion, pollution, urban sprawling, fragmentation of the urban fabric, and various environmental and social challenges. In the context of Doha, the capital city of the State of Qatar, the over-dependency on private-use vehicles is justified by the lack of alternative public modes of transportation that support the need to connect fragmented urban districts and provide an effective solution to urban sprawl. Therefore, the current construction of the Qatar Metro Rail is offering the potential for investigating and defining a strategy for the sustainable urban development and/or urban regeneration of transit villages (TODs) in Qatar. Namely, the aim of this research study is (i) to investigate the development of transit villages (TODs) in the cultural-heritage district of Msheireb, Downtown Doha, (ii) to explore how the introduction of the new public transport system of Doha Metro can be effectively utilized as means of urban regeneration of the cultural core of the city, (iii) to propose a masterplan for TOD suitable for the district, suiting and responding to regional cultural and societal values. The findings reveal that the strategies for the sustainable urban regeneration of Msheireb are based on (i) the integration of land-use and multimodal transportation systems, (ii) the implementation of the public realm, and (iii) conservation of culture and urban identity.

Keywords: sustainable urbanism, smart growth, TODs, cultural district, Msheireb Downtown Doha

Procedia PDF Downloads 252
10107 Development of LSM/YSZ Composite Anode Materials for Solid Oxide Electrolysis Cells

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

Solid oxide electrolysis cell (SOEC) is a promising technology for hydrogen production that will contribute to the sustainable energy of the future. An important component of this SOEC is the anode material and one of the promising anode material for such application is the Sr-doped LaMnO3 (LSM) and Yttrium-stabilized ZrO2 (YSZ) composite material. In this study, LSM/YSZ with different weight percent compositions of LSM and YSZ were synthesized using solid-state reaction method. The obtained samples, 60LSM/40YSZ, 50LSM/50YSZ, and 40LSM/60YSZ, were fully characterized for its microstructure using X-ray diffraction, FTIR, and SEM/EDS. EDS analysis confirmed the elemental composition and distribution of the synthesized samples. Surface morphology of the sample using SEM exhibited a well sintered and densified samples and revealed a beveled cube-like LSM morphology while the YSZ phase appeared to have a sphere-like microstructure. Density measurements using Archimedes principle showed relative densities greater than 90%. In addition, AC impedance measurement of the synthesized samples have been investigated at intermediate temperature range (400-700 °C) in an inert and oxygen gas flow environment. At pure states, LSM exhibited a high electronic conductivity while YSZ demonstrated an ionic conductivity of 3.25 x 10-4 S/cm at 700 °C under Oxygen gas environment with calculated activation energy of 0.85eV. The composite samples were also studied and revealed that as the YSZ content of the composite electrode increases, the total conductivity decreases.

Keywords: ceramic composites, fuel cells, strontium lanthanum manganite, yttria partially-stabilized zirconia

Procedia PDF Downloads 317
10106 Credit Cooperatives: A Factor for Improving the Sustainable Management of Private Forests

Authors: Todor Nickolov Stoyanov

Abstract:

Cooperatives are present in all countries and in almost all sectors, including agriculture, forestry, food, finance, health, marketing, insurance and credit. Strong cooperatives are able to overcome many of the difficulties faced by private owners. Cooperatives use seven principles, including the 'Community Concern" principle, which enables cooperatives to work for the sustainable development of the community. The members of cooperatives may use different systems for generating year-round employment and for receiving sustainable income through performing different forestry activities. Various methods are used during the preparation of the report. These include literature reviews, statistics, secondary data and expert interviews. The members of the cooperatives are benefits exclusively from increasing the efficiency of the various products and from the overall yield of the harvest, and ultimately from achieving better profit through cooperative efforts. Cooperatives also use other types of activities that are an additional opportunity for cooperative income. There are many heterogeneous activities in the production and service sectors of the forest cooperatives under consideration. Some cooperatives serve dairies, distilleries, woodworking enterprises, tourist homes, hotels and motels, shops, ski slopes, sheep breeding, etc. Through the revenue generated by the activity, cooperatives have the opportunity to carry out various environmental and protective activities - recreation, water protection, protection of endangered and endemic species, etc., which in the case of small-scale forests cannot be achieved and the management is not sustainable. The conclusions indicate the results received in the analysis. Cooperative management of forests and forest lands gives higher incomes to individual owners. The management of forests and forest lands through cooperatives helps to carry out different environmental and protective activities. Cooperative forest management provides additional means of subsistence to the owners of poor forest lands. Cooperative management of forests and forest lands support owners to implement the forest management plans and to apply sustainable management of these territories.

Keywords: cooperative, forestry, forest owners, principles of cooperation

Procedia PDF Downloads 247
10105 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings

Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang

Abstract:

Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, and non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA), and xylitol (X). The differential scanning calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52°C, 20.37°C, and 22.18°C, respectively. The latent heat of phase change of the ternary eutectic PCMs was all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.

Keywords: thermal energy storage, buildings, phase change materials, alcohols

Procedia PDF Downloads 102