Search results for: residual bagging height
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2170

Search results for: residual bagging height

220 Effects of Cuminum cyminum L. Essential Oil Supplementation on Components of Metabolic Syndrome: A Clinical Trial

Authors: Ashti Morovati, Hushyar Azari, Bahram Pourghassem Gargari

Abstract:

Objectives and goals: The prevalence of metabolic syndrome (MetS), as a major health burden for societies, is increasing. This clinical trial was conducted to evaluate the effects of CuEO supplementation on anthropometric indices, systolic and diastolic blood pressure, blood glucose level, insulin resistance and serum lipid level in patients suffering from MetS. Methods: This was a randomized, triple‐blind, placebo‐controlled clinical trial in which 56 patients with MetS aged 18–60 years who fulfilled the eligibility criteria were randomly allocated to an intervention or a control group. Inclusion criteria for the study were comprised of diagnosis of MetS according to the new International Federation of Diabetes. The exclusion criteria were defined as: taking herbal supplements, use of drugs having evident interaction with cumin such as anti‐depressant drugs, vitamin D, omega 3, selenium, zinc, smoking, pregnancy, or breastfeeding, suffering from cancer, having any history of gastrointestinal and hepatic, cardiovascular, thyroid and kidney disorders, and menopause. 75 mg CuEO or placebo soft gels were administered three times daily to the participants for eight weeks. The soft gel consumption was checked by asking the participants to bring the medication containers in the follow‐up visits at the 4th and the 8th weeks of the study. Data pertaining to blood pressure, height, weight, waist circumference, hip circumference and BMI, as well as food consumption were collected at the beginning and end of the study. Fasting blood samples ( glucose, triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) were obtained and biochemical measurements were assessed at the beginning and end of the study. Results: At eight weeks, a total of 44 patients completed this study. Except for diastolic blood pressure (DBP), the other assessed variables were not significantly different between the two groups. In intra group analysis, placebo and CuEO groups both had insignificant decrements in DBP (mean difference [MD] with 95% CI: −3.31 [−7.11, 0.47] and −1.77 [−5.95, 2.40] mmHg, respectively). However, DBP was significantly lower in CuEO compared with the placebo group at the end of study (81.41 ± 5.88 vs. 84.09 ± 5.54 mmHg, MD with 95% CI: −3.98 [−7.60, −0.35] mmHg, p < .05). Conclusions: The results of this study indicated that CuEO does not have any effect on MetS components, except for DBP in patients with MetS.

Keywords: blood pressure, fasting blood glucose, lipid profile, waist circumference

Procedia PDF Downloads 136
219 Genetic Advance versus Environmental Impact toward Sustainable Protein, Wet Gluten and Zeleny Sedimentation in Bread and Durum Wheat

Authors: Gordana Branković, Dejan Dodig, Vesna Pajić, Vesna Kandić, Desimir Knežević, Nenad Đurić

Abstract:

The wheat grain quality properties are influenced by genotype, environmental conditions and genotype × environment interaction (GEI). The increasing request of more nutritious wheat products will direct future breeding programmes. Therefore, the aim of investigation was to determine: i) variability of the protein content (PC), wet gluten content (WG) and Zeleny sedimentation volume (ZS); ii) components of variance, heritability in a broad sense (hb2), and expected genetic advance as percent of mean (GAM) for PC, WG, and ZS; iii) correlations between PC, WG, ZS, and most important agronomic traits; in order to assess expected breeding success versus environmental impact for these quality traits. The plant material consisted of 30 genotypes of bread wheat (Triticum aestivum L. ssp. aestivum) and durum wheat (Triticum durum Desf.). The trials were sown at the three test locations in Serbia: Rimski Šančevi, Zemun Polje and Padinska Skela during 2010-2011 and 2011-2012. The experiments were set as randomized complete block design with four replications. The plot consisted of five rows of 1 m2 (5 × 0.2 m × 1 m). PC, WG and ZS were determined by the use of Near infrared spectrometry (NIRS) with the Infraneo analyser (Chopin Technologies, France). PC, WG and ZS, in bread wheat, were in the range 13.4-16.4%, 22.8-30.3%, and 39.4-67.1 mL, respectively, and in durum wheat, in the range 15.3-18.1%, 28.9-36.3%, 37.4-48.3 mL, respectively. The dominant component of variance for PC, WG, and ZS, in bread wheat, was genotype with the genetic variance/GEI variance (VG/VG × E) relation of 3.2, 2.9 and 1.0, respectively, and in durum wheat was GEI with the VG/VG × E relation of 0.70, 0.69 and 0.49, respectively. hb2 and GAM values for PC, WG and ZS, in bread wheat, were 94.9% and 12.6%, 93.7% and 18.4%, and 86.2% and 28.1%, respectively, and in durum wheat, 80.7% and 7.6%, 79.7% and 10.2%, and 74% and 11.2%, respectively. The most consistent through six environments, statistically significant correlations, for bread wheat, were between PC and spike length (-0.312 to -0.637); PC, WG, ZS and grain number per spike (-0.320 to -0.620; -0.369 to -0.567; -0.301 to -0.378, respectively); PC and grain thickness (0.338 to 0.566), and for durum wheat, were between PC, WG, ZS and yield (-0.290 to -0.690; -0.433 to -0.753; -0.297 to -0.660, respectively); PC and plant height (-0.314 to -0.521); PC, WG and spike length (-0.298 to -0.597; -0.293 to -0.627, respectively); PC, WG and grain thickness (0.260 to 0.575; 0.269 to 0.498, respectively); PC, WG and grain vitreousness (0.278 to 0.665; 0.357 to 0.690, respectively). Breeding success can be anticipated for ZS in bread wheat due to coupled high values for hb2 and GAM, suggesting existence of additive genetic effects, and also for WG in bread wheat, due to very high hb2 and medium high GAM. The small, and medium, negative correlations between PC, WG, ZS, and yield or yield components, indicate difficulties to select simultaneously for high quality and yield, depending on linkage for particular genetic arrangements to be broken by recombination.

Keywords: bread and durum wheat, genetic advance, protein and wet gluten content, Zeleny sedimentation volume

Procedia PDF Downloads 233
218 Geodynamic Evolution of the Tunisian Dorsal Backland (Central Mediterranean) from the Cenozoic to Present

Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed

Abstract:

The study region is located in the Tunisian Dorsal Backland (Central Mediterranean), which is the easternmost part of the Saharan Atlas mountain range, trending southwest-northeast. Based on our fieldwork, seismic tomography images, seismicity, and previous studies, we propose an interpretation of the relationship between the surface deformation and fault kinematics in the study area and the internal dynamic processes acting in the Central Mediterranean from the Cenozoic to the present. The subduction and dynamics of internal forces beneath the complicated Maghrebides mobile belt have an impact on the Tertiary and Quaternary tectonic regimes in the Pelagian and Atlassic foreland that is part of our study region. The left lateral reactivation of the major "Tunisian N-S Axis fault" and the development of a compressional relay between the Hammamet Korbous and Messella-Ressas faults are possibly a result of tectonic stresses due to the slab roll-back following the Africa/Eurasia convergence. After the slab segmentation and its eastward migration (5–4 Ma) and the formation of the Strait of Sicily "rift zone" further east, a transtensional tectonic regime has been installed in this area. According to seismic tomography images, the STEP fault of the "North-South Axis" at Hammamet-Korbous coincides with the western edge of the "Slab windows" of the Sicilian Channel and the eastern boundary of the positive anomalies attributed to the residual Slab of Tunisia. On the other hand, significant E-W Plio-Quaternary tectonic activity may be observed along the eastern portion of this STEP fault system in the Grombalia zone as a result of recent vertical lithospheric motion in response to the lateral slab migration eastward to Sicily Channel. According to SKS fast splitting directions, the upper mantle flow pattern beneath Tunisian Dorsal is parallel to the NE-SW to E-W orientation of the Shmin identified in the study area, similar to the Plio-Quaternary extensional orientation in the Central Mediterranean. Additionally, the removal of the lithosphere and the subsequent uplift of the sub-lithospheric mantle beneath the topographic highs of the Dorsal and its surroundings may be the cause of the dominant extensional to transtensional Quaternary regime. The occurrence of strike-slip and extensional seismic events in the Pelagian block reveals that the regional transtensional tectonic regime persists today. Finally, we believe that the geodynamic history of the study area since the Cenozoic is primarily influenced by the preexisting weak zones, the African slab detachment, and the upper mantle flow pattern in the central Mediterranean.

Keywords: Tunisia, lithospheric discontinuity (STEP fault), geodynamic evolution, Tunisian dorsal backland, strike-slip fault, seismic tomography, seismicity, central Mediterranean

Procedia PDF Downloads 52
217 Ethnic Identity as an Asset: Linking Ethnic Identity, Perceived Social Support, and Mental Health among Indigenous Adults in Taiwan

Authors: A.H.Y. Lai, C. Teyra

Abstract:

In Taiwan, there are 16 official indigenous groups, accounting for 2.3% of the total population. Like other indigenous populations worldwide, indigenous peoples in Taiwan have poorer mental health because of their history of oppression and colonisation. Amid the negative narratives, the ethnic identity of cultural minorities is their unique psychological and cultural asset. Moreover, positive socialisation is found to be related to strong ethnic identity. Based on Phinney’s theory on ethnic identity development and social support theory, this study adopted a strength-based approach conceptualising ethnic identity as the central organising principle that linked perceived social support and mental health among indigenous adults in Taiwan. Aims. Overall aim is to examine the effect of ethnic identity and social support on mental health. Specific aims were to examine : (1) the association between ethnic identity and mental health; (2) the association between perceived social support and mental health ; (3) the indirect effect of ethnic identity linking perceived social support and mental health. Methods. Participants were indigenous adults in Taiwan (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Respondent-driven sampling was used. Standardised measurements were: Ethnic Identity Scale(6-item); Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender and economic satisfaction. A four-stage structural equation modelling (SEM) with robust maximin likelihood estimation was employed using Mplus8.0. Step 1: A measurement model was built and tested using confirmatory factor analysis (CFA). Step 2: Factor covariates were re-specified as direct effects in the SEM. Covariates were added. The direct effects of (1) ethnic identity and social support on depression and anxiety and (2) social support on ethnic identity were tested. The indirect effect of ethnic identity was examined with the bootstrapping technique. Results. The CFA model showed satisfactory fit statistics: x^2(df)=869.69(608), p<.05; Comparative ft index (CFI)/ Tucker-Lewis fit index (TLI)=0.95/0.94; root mean square error of approximation (RMSEA)=0.05; Standardized Root Mean Squared Residual (SRMR)=0.05. Ethnic identity is represented by two latent factors: ethnic identity-commitment and ethnic identity-exploration. Depression, anxiety and social support are single-factor latent variables. For the SEM, model fit statistics were: x^2(df)=779.26(527), p<.05; CFI/TLI=0.94/0.93; RMSEA=0.05; SRMR=0.05. Ethnic identity-commitment (b=-0.30) and social support (b=-0.33) had direct negative effects on depression, but ethnic identity-exploration did not. Ethnic identity-commitment (b=-0.43) and social support (b=-0.31) had direct negative effects on anxiety, while identity-exploration (b=0.24) demonstrated a positive effect. Social support had direct positive effects on ethnic identity-exploration (b=0.26) and ethnic identity-commitment (b=0.31). Mediation analysis demonstrated the indirect effect of ethnic identity-commitment linking social support and depression (b=0.22). Implications: Results underscore the role of social support in preventing depression via ethnic identity commitment among indigenous adults in Taiwan. Adopting the strength-based approach, mental health practitioners can mobilise indigenous peoples’ commitment to their group to promote their well-being.

Keywords: ethnic identity, indigenous population, mental health, perceived social support

Procedia PDF Downloads 91
216 Inflammatory and Cardio Hypertrophic Remodeling Biomarkers in Patients with Fabry Disease

Authors: Margarita Ivanova, Julia Dao, Andrew Friedman, Neil Kasaci, Rekha Gopal, Ozlem Goker-Alpan

Abstract:

In Fabry disease (FD), α-galactosidase A (α-Gal A) deficiency leads to the accumulation of globotriaosylceramide (Lyso-Gb3 and Gb3), triggering a pathologic cascade that causes the severity of organs damage. The heart is one of the several organs with high sensitivity to the α-Gal A deficiency. A subgroup of patients with significant residual of α-Gal A activity with primary cardiac involvement is occasionally referred to as “cardiac variant.” The cardiovascular complications are most frequently encountered, contributing substantially to morbidity, and are the leading cause of premature death in male and female patients with FD. The deposition of Lyso-Gb-3 and Gb-3 within the myocardium affects cardiac function with resultant progressive cardiovascular pathology. Gb-3 and Lyso-Gb-3 accumulation at the cellular level trigger a cascade of events leading to end-stage fibrosis. In the cardiac tissue, Lyso-Gb-3 deposition is associated with the increased release of inflammatory factors and transforming growth factors. Infiltration of lymphocytes and macrophages into endomyocardial tissue indicates that inflammation plays a significant role in cardiac damage. Moreover, accumulated data suggest that chronic inflammation leads to multisystemic FD pathology even under enzyme replacement therapy (ERT). NF-κB activation plays a subsequent role in the inflammatory response to cardiac dysfunction and advanced heart failure in the general population. TNFalpha/NF-κB signaling protects the myocardial evoking by ischemic preconditioning; however, this protective effect depends on the concentration of TNF-α. Thus, we hypothesize that TNF-α is a critical factor in determining the grade of cardio-pathology. Cardiac hypertrophy corresponds to the expansion of the coronary vasculature to maintain a sufficient supply of nutrients and oxygen. Coronary activation of angiogenesis and fibrosis plays a vital role in cardiac vascularization, hypertrophy, and tissue remodeling. We suggest that the interaction between the inflammatory pathways and cardiac vascularization is a bi-directional process controlled by secreted cytokines and growth factors. The co-coordination of these two processes has never been explored in FD. In a cohort of 40 patients with FD, biomarkers associated with inflammation and cardio hypertrophic remodeling were studied. FD patients were categorized into three groups based on LVmass/DSA, LVEF, and ECG abnormalities: FD with no cardio complication, FD with moderate cardio complication, and severe cardio complication. Serum levels of NF-kB, TNFalpha, Il-6, Il-2, MCP1, ING-gamma, VEGF, IGF-1, TGFβ, and FGF2 were quantified by enzyme-linked immunosorbent assays (ELISA). Among the biomarkers, MCP-1, INF-gamma, VEGF, TNF-alpha, and TGF-beta were elevated in FD patients. Some of these biomarkers also have the potential to correlate with cardio pathology in FD. Conclusion: The study provides information about the role of inflammatory pathways and biomarkers of cardio hypertrophic remodeling in FD patients. This study will also reveal the mechanisms that link intracellular accumulation of Lyso-GB-3 and Gb3 to the development of cardiomyopathy with myocardial thickening and resultant fibrosis.

Keywords: biomarkers, Fabry disease, inflammation, growth factors

Procedia PDF Downloads 67
215 Microplastic Storages in Riverbed Sediments: Experimental on the Settling Process and Its Deposits

Authors: Alvarez Barrantes, Robert Dorrell, Christopher Hackney, Anne Baar, Roberto Fernandez, Daniel Parsons

Abstract:

Microplastic particles entering fluvial environments are deposited with natural sediments. Their settling properties can change by the absorption or adsorption of contaminants, organic matter, and organisms. These deposits include positively, neutrally, and negatively buoyant particles. This study aims to understand how plastic particles of different densities interact with natural sediments as they settle and how they are stored within the sediment deposit. The results of this study contribute to a better understanding of the deposition of microplastic particles and associated pollution in rivers. A set of 48 experiments was designed to investigate the settling process of microplastic particles in freshwater. The experimental work describes the vertical variation of cohesive and/or non-cohesive sediment versus microplastic densities in deposited sediment. The experiment consisted of adding microplastic particles, sediment, and water in a waterproof carton tube of a height of 24 cm and a diameter of 5 cm. The plastic selected is positively, neutrally, and negatively buoyant. The sediments consist of sand and clay with four different concentrations. The mixture of materials was shaken until is thoroughly mixed and left to settle for 24 hours. After the settlement, the tubes were frozen at -20 °C to be able to cut them and measure the thickness of the deposits and analyze the sediment and plastic distribution. The most representative experiments were repeated in a glass tube of the same size; to analyse the influences of current flows and depositional process. Finally, the glass tube experiments were used to study organic materials adsorption in plastic, settling the sample for four months. Defined microplastic layers were identified as the density of the plastic change. Preliminary results show that most of the positive buoyancy particles floated, neutral buoyancy particles form a layer above the sediment and negative buoyancy particles mixed with the sediment. The vertical grain size distribution of the deposits was analysed to determine deposition variation with and without plastic. It is expected that the positively buoyant particles are trapped in the sediment by the currents flows and sink due to organic material adsorption. Finally, the experiments will explain how microplastic particles, including positively buoyant ones, are stored in natural sediment deposits.

Keywords: microplastic adsorption process, microplastic deposition in natural sediment, microplastic pollution in rivers, storages of positive buoyancy microplastic particles

Procedia PDF Downloads 174
214 Exploring the Correlation between Body Constitution of an Individual as Per Ayurveda and Gut Microbiome in Healthy, Multi Ethnic Urban Population in Bangalore, India

Authors: Shalini TV, Gangadharan GG, Sriranjini S Jaideep, ASN Seshasayee, Awadhesh Pandit

Abstract:

Introduction: Prakriti (body-mind constitution of an individual) is a conventional, customized and unique understanding of which is essential for the personalized medicine described in Ayurveda, Indian System of Medicine. Based on the Doshas( functional, bio humoral unit in the body), individuals are categorized into three major Prakriti- Vata, Pitta, and Kapha. The human gut microbiome hosts plenty of highly diverse and metabolically active microorganisms, mainly dominated by the bacteria, which are known to influence the physiology of an individual. Few researches have shown the correlation between the Prakriti and the biochemical parameters. In this study, an attempt was made to explore any correlation between the Prakriti (phenotype of an individual) with the Genetic makeup of the gut microbiome in healthy individuals. Materials and methods: 270 multi-ethnic, healthy volunteers of both sex with the age group between 18 to 40 years, with no history of antibiotics in the last 6 months were recruited into three groups of Vata, Pitta, and Kapha. The Prakriti of the individual was determined using Ayusoft, a software designed by CDAC, Pune, India. The volunteers were subjected to initial screening for the assessment of their height, weight, Body Mass Index, Vital signs and Blood investigations to ensure they are healthy. The stool and saliva samples of the recruited volunteers were collected as per the standard operating procedure developed, and the bacterial DNA was isolated using Qiagen kits. The extracted DNA was subjected to 16s rRNA sequencing using the Illumina kits. The sequencing libraries are targeting the variable V3 and V4 regions of the 16s rRNA gene. Paired sequencing was done on the MiSeq system and data were analyzed using the CLC Genomics workbench 11. Results: The 16s rRNA sequencing of the V3 and V4 regions showed a diverse pattern in both the oral and stool microbial DNA. The study did not reveal any specific pattern of bacterial flora amongst the Prakriti. All the p-values were more than the effective alpha values for all OTUs in both the buccal cavity and stool samples. Therefore, there was no observed significant enrichment of an OTU in the patient samples from either the buccal cavity or stool samples. Conclusion: In healthy volunteers of multi-ethnicity, due to the influence of the various factors, the correlation between the Prakriti and the gut microbiome was not seen.

Keywords: gut microbiome, ayurveda Prakriti, sequencing, multi-ethnic urban population

Procedia PDF Downloads 116
213 Insectivorous Medicinal Plant Drosera Ecologyand its Biodiversity Conservation through Tissue Culture and Sustainable Biotechnology

Authors: Sushil Pradhan

Abstract:

Biotechnology contributes to sustainable development in several ways such as biofertilizer production, biopesticide production and management of environmental pollution, tissue culture and biodiversity conservation in vitro, in vivo and in situ, Insectivorous medicinal plant Drosera burmannii Vahl belongs to the Family-Droseraceae under Order-Caryophyllales, Dicotyledoneae, Angiospermeae which has 31 (thirty one) living genera and 194 species besides 7 (seven) extinct (fossil) genera. Locally it is known as “Patkanduri” in Odia. Its Hindi name is “Mukhajali” and its English name is “Sundew”. The earliest species of Drosera was first reported in 1753 by Carolous Linnaeus called Drosera indica L (Indian Sundew). The latest species of Drosera reported by Fleisch A, Robinson, AS, McPherson S, Heinrich V, Gironella E and Madulida D.A. (2011) is Drosera ultramafica from Malaysia. More than 50 % species of Drosera have been reported from Australia and next to Australia is South Africa. India harbours only 3 species such as D. indica L, Drosera burmannii Vahl and D. peltata L. From our Odisha only D. burmannii Vahl is being reported for the first time from the district of Subarnapur near Sonepur (Arjunpur Reserve Forest Area). Drosera plant is autotrophic but to supplement its Nitrogen (N2) requirement it adopts heterotrophic mode of nutrition (insectivorous/carnivorous) as well. The colour of plant in mostly red and about 20-30cm in height with beautiful pink or white pentamerous flowers. Plants grow luxuriantly during November to February in shady and moist places near small water bodies of running water stream. Medicinally it is a popular herb in the locality for the treatment of cold and cough in children in rainy season by the local Doctors (Kabiraj and Baidya). In the present field investigation an attempt has been made to understand the unique reproductive phase and life cycle of the plant thereby planning for its conservation and propagation through various techniques of tissue culture and biotechnology. More importantly besides morphological and anatomical studies, cytological investigation is being carried out to find out the number of chromosomes in the cell and its genomics as there is no such report as yet for Drosera burmannii Vahl. The ecological significance and biodiversity conservation of Drosera with special reference to energy, environmental and chemical engineering has been discussed in the research paper presentation.

Keywords: insectivorous, medicinal, drosera, biotechnology, chromosome, genome

Procedia PDF Downloads 367
212 Mini-Open Repair Using Ring Forceps Show Similar Results to Repair Using Achillon Device in Acute Achilles Tendon Rupture

Authors: Chul Hyun Park

Abstract:

Background:Repair using the Achillon deviceis a representative mini-open repair technique;however, the limitations of this technique includethe need for special instruments and decreasedrepair strength.A modifiedmini-open repair using ring forcepsmight overcome these limitations. Purpose:This study was performed to compare the Achillon device with ring forceps in mini-open repairsof acute Achilles tendon rupture. Study Design:This was a retrospective cohort study, and the level of evidence was3. Methods:Fifty patients (41 men and 9 women), withacute Achilles tendon rupture on one foot, were consecutively treated using mini-open repair techniques. The first 20 patients were treated using the Achillon device (Achillon group) and the subsequent 30 patients were treated using a ring forceps (Forcep group). Clinical, functional, and isokinetic results,and postoperative complications were compared between the two groups at the last follow-up. Clinical evaluations wereperformed using the American Orthopedic Foot and Ankle Society (AOFAS) score, Achilles tendon Total Rupture Score (ATRS), length of incision, and operation time. Functional evaluationsincludedactive range of motion (ROM) of the ankle joint, maximum calf circumference (MCC), hopping test, and single limb heel-rise (SLHR) test. Isokinetic evaluations were performed using the isokinetic test for ankle plantar flexion. Results:The AOFAS score (p=0.669), ATRS (p=0.753), and length of incision (p=0.305) were not significantly different between the groups. Operative times in the Achillon group were significantly shorter than that in the Forcep group (p<0.001).The maximum height of SLHR (p=0.023) and number of SLHRs (p=0.045) in the Forcep group were significantly greater than that in the Achillon group. No significant differences in the mean peak torques for plantar flexion at angular speeds of 30°/s (p=0.219) and 120°/s (p=0.656) were detected between the groups. There was no significant difference in the occurrence of postoperative complications between the groups (p=0.093). Conclusion:The ring forceps technique is comparable with the Achillon technique with respect to clinical, functional, and isokinetic results and the postoperative complications. Given that no special instrument is required, the ring forceps technique could be a better option for acute Achilles tendon rupture repair.

Keywords: achilles tendon, acute rupture, repair, mini-open

Procedia PDF Downloads 68
211 Understanding the Role of Concussions as a Risk Factor for Multiple Sclerosis

Authors: Alvin Han, Reema Shafi, Alishba Afaq, Jennifer Gommerman, Valeria Ramaglia, Shannon E. Dunn

Abstract:

Adolescents engaged in contact-sports can suffer from recurrent brain concussions with no loss of consciousness and no need for hospitalization, yet they face the possibility of long-term neurocognitive problems. Recent studies suggest that head concussive injuries during adolescence can also predispose individuals to multiple sclerosis (MS). The underlying mechanisms of how brain concussions predispose to MS is not understood. Here, we hypothesize that: (1) recurrent brain concussions prime microglial cells, the tissue resident myeloid cells of the brain, setting them up for exacerbated responses when exposed to additional challenges later in life; and (2) brain concussions lead to the sensitization of myelin-specific T cells in the peripheral lymphoid organs. Towards addressing these hypotheses, we implemented a mouse model of closed head injury that uses a weight-drop device. First, we calibrated the model in male 12 week-old mice and established that a weight drop from a 3 cm height induced mild neurological symptoms (mean neurological score of 1.6+0.4 at 1 hour post-injury) from which the mice fully recovered by 72 hours post-trauma. Then, we performed immunohistochemistry on the brain of concussed mice at 72 hours post-trauma. Despite mice having recovered from all neurological symptoms, immunostaining for leukocytes (CD45) and IBA-1 revealed no peripheral immune infiltration, but an increase in the intensity of IBA1+ staining compared to uninjured controls, suggesting that resident microglia had acquired a more active phenotype. This microglia activation was most apparent in the white matter tracts in the brain and in the olfactory bulb. Immunostaining for the microglia-specific homeostatic marker TMEM119, showed a reduction in TMEM119+ area in the brain of concussed mice compared to uninjured controls, confirming a loss of this homeostatic signal by microglia after injury. Future studies will test whether single or repetitive concussive injury can worsen or accelerate autoimmunity in male and female mice. Understanding these mechanisms will guide the development of timed and targeted therapies to prevent MS from getting started in people at risk.

Keywords: concussion, microglia, microglial priming, multiple sclerosis

Procedia PDF Downloads 82
210 Assessment of Designed Outdoor Playspaces as Learning Environments and Its Impact on Child’s Wellbeing: A Case of Bhopal, India

Authors: Richa Raje, Anumol Antony

Abstract:

Playing is the foremost stepping stone for childhood development. Play is an essential aspect of a child’s development and learning because it creates meaningful enduring environmental connections and increases children’s performance. The children’s proficiencies are ever varying in their course of growth. There is innovation in the activities, as it kindles the senses, surges the love for exploration, overcomes linguistic barriers and physiological development, which in turn allows them to find their own caliber, spontaneity, curiosity, cognitive skills, and creativity while learning during play. This paper aims to comprehend the learning in play which is the most essential underpinning aspect of the outdoor play area. It also assesses the trend of playgrounds design that is merely hammered with equipment's. It attempts to derive a relation between the natural environment and children’s activities and the emotions/senses that can be evoked in the process. One of the major concerns with our outdoor play is that it is limited to an area with a similar kind of equipment, thus making the play highly regimented and monotonous. This problem is often lead by the strict timetables of our education system that hardly accommodates play. Due to these reasons, the play areas remain neglected both in terms of design that allows learning and wellbeing. Poorly designed spaces fail to inspire the physical, emotional, social and psychological development of the young ones. Currently, the play space has been condensed to an enclosed playground, driveway or backyard which confines the children’s capability to leap the boundaries set for him. The paper emphasizes on study related to kids ranging from 5 to 11 years where the behaviors during their interactions in a playground are mapped and analyzed. The theory of affordance is applied to various outdoor play areas, in order to study and understand the children’s environment and how variedly they perceive and use them. A higher degree of affordance shall form the basis for designing the activities suitable in play spaces. It was observed during their play that, they choose certain spaces of interest majority being natural over other artificial equipment. The activities like rolling on the ground, jumping from a height, molding earth, hiding behind tree, etc. suggest that despite equipment they have an affinity towards nature. Therefore, we as designers need to take a cue from their behavior and practices to be able to design meaningful spaces for them, so the child gets the freedom to test their precincts.

Keywords: children, landscape design, learning environment, nature and play, outdoor play

Procedia PDF Downloads 108
209 The Covid Pandemic at a Level III Trauma Center: Challenges in the Management of the Spine Trauma.

Authors: Joana PaScoa Pinheiro, David Goncalves Ferreira, Filipe Ramos, Joaquim Soares Do Brito, Samuel Martins, Marco Sarmento

Abstract:

Introduction: The SARS-CoV-2 (COVID-19) pandemic was identified in January 2020 in China, in the city of Wuhan. The increase in the number of cases over the following months was responsible for the restructuring of hospitals and departments in order to accommodate admissions related to COVID-19. Essential services, such as trauma, had to readapt to maintain their functionality and thus guarantee quick and safe access in case of an emergency. Objectives: This study describes the impact of COVID-19 on a Level III Trauma Center and particularly on the clinical management of hospitalized patients with spine injuries. Study Design & Methods: This is a retrospective cohort study whose results were obtained through the medical records of patients with spine injuries who underwent surgical intervention in the years 2019 and 2020 (period from March 1st to December 31st). A comparison between the two groups was made. In the study patients with injuries in the context of trauma were included who underwent surgery in the periods previously described. Patients hospitalized with a spine injury in a non-traumatic context and/or were not surgically treated were excluded. Results: In total, 137 patients underwent trauma spine surgery of which 71 in 2019 (51.8%) were without significant differences in intergroup comparisons. The most frequent injury mechanism in 2019 was motor vehicle crash (47.9%) compared to 2020 which was of a person falling from a height between 2-4 meters (37.9%). Cervical trauma was reported to be the most frequent spine injury in both years. There was a significant decrease in the need for intensive care in 2020, 51.4% vs 30.3%, p = .015 and the number of complications was also lower in 2020 (1.35% vs 0.98%), including the number of deaths, being the difference marginally significant. There were no significant differences regarding time for presentation to surgery or in the total days of hospitalization. Conclusions: The restructuring made in the trauma unit at a Level III Trauma Center in the context of the current COVID-19 pandemic was effective, with no significant differences between the years of 2019 vs 2020 when compared with the time for presentation to surgery or the number of days of hospitalization. It was also found that lockdown rules in 2020 were probably responsible for the decrease in the number of road traffic accidents, which justifies a significant decrease in the need for intensive care as well as in the number of complications in patients hospitalized in the context of spine trauma.

Keywords: trauma, spine, impact, covid-19

Procedia PDF Downloads 234
208 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer

Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi

Abstract:

Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.

Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales

Procedia PDF Downloads 114
207 Compact, Lightweight, Low Cost, Rectangular Core Power Transformers

Authors: Abidin Tortum, Kubra Kocabey

Abstract:

One of the sectors where the competition is experienced at the highest level in the world is the transformer sector, and sales can be made with a limited profit margin. For this reason, manufacturers must develop cost-cutting designs to achieve higher profits. The use of rectangular cores and coils in transformer design is one of the methods that can be used to reduce costs. According to the best knowledge we have obtained, we think that we are the first company producing rectangular core power transformers in our country. BETA, to reduce the cost of this project, more compact products to reveal, as we know it to increase the alleviate and competitiveness of the product, will perform cored coil design and production rectangle for the first-time power transformers in Turkey. The transformer to be designed shall be 16 MVA, 33/11 kV voltage level. With the rectangular design of the transformer core and windings, no-load losses can be reduced. Also, the least costly transformer type is rectangular. However, short-circuit forces on rectangular windings do not affect every point of the windings in the same way. Whereas more force is applied inwards to the mid-points of the low-voltage winding, the opposite occurs in the high-voltage winding. Therefore, the windings tend to deteriorate in the event of a short circuit. While trying to reach the project objectives, the difficulties in the design should be overcome. Rectangular core transformers to be produced in our country offer a more compact structure than conventional transformers. In other words, both height and width were smaller. Thus, the reducer takes up less space in the center. Because the transformer boiler is smaller, less oil is used, and its weight is lower. Biotemp natural ester fluid is used in rectangular transformer and the cooling performance of this oil is analyzed. The cost was also reduced with the reduction of dimensions. The decrease in the amount of oil used has also increased the environmental friendliness of the developed product. Transportation costs have been reduced by reducing the total weight. The amount of carbon emissions generated during the transportation process is reduced. Since the low-voltage winding is wound with a foil winding technique, a more resistant structure is obtained against short circuit forces. No-load losses were lower due to the use of a rectangular core. The project was handled in three phases. In the first stage, preliminary research and designs were carried out. In the second stage, the prototype manufacturing of the transformer whose designs have been completed has been started. The prototype developed in the last stage has been subjected to routine, type and special tests.

Keywords: rectangular core, power transformer, transformer, productivity

Procedia PDF Downloads 106
206 Effect of Planting Date on Quantitative and Qualitative Characteristics of Different Bread Wheat and Durum Cultivars

Authors: Mahdi Nasiri Tabrizi, A. Dadkhah, M. Khirkhah

Abstract:

In order to study the effect of planting on yield, yield components and quality traits in bread and durum wheat varieties, a field split-plot experiment based on complete randomized design with three replications was conducted in Agricultural and Natural Resources Research Center of Razavi Khorasan located in city of Mashhad during 2013-2014. Main factor were consisted of five sowing dates (first October, fifteenth December, first March, tenth March, twentieth March) and as sub-factors consisted of different bread wheat (Bahar, Pishgam, Pishtaz, Mihan, Falat and Karim) and two durum wheat (Dena and Dehdasht). According to results of analysis variance the effect of planting date was significant on all examined traits (grain yield, biological yield, harvest index, number of grain per spike, thousands kernel weight, number of spike per square meter, plant height, the number of days to heading, the number of days to maturity, during the grain filling period, percentage of wet gluten, percentage of dry gluten, gluten index, percentage of protein). By delay in planting, majority of traits significantly decreased, except quality traits (percentage of wet gluten, percentage of dry gluten and percentage of protein). Results of means comparison showed, among planting date the highest grain yield and biological yield were related to first planting date (Octobr) with mean of production of 5/6 and 1/17 tons per hectare respectively and the highest bread quality (gluten index) with mean of 85 and percentage of protein with mean of 13% to fifth planting date also the effect of genotype was significant on all traits. The highest grain yield among of studied wheat genotypes was related to Dehdasht cultivar with an average production of 4.4 tons per hectare. The highest protein percentage and bread quality (gluten index) were related to Dehdasht cultivar with 13.4% and Falat cultivar with number of 90 respectively. The interaction between cultivar and planting date was significant on all traits and different varieties had different trend for these traits. The highest grain yield was related to first planting date (October) and Falat cultivar with an average of production of 6/7 tons per hectare while in grain yield did not show a significant different with Pishtas and Mihan cultivars also the most of gluten index (bread quality index) and protein percentage was belonged to the third planting date and Karim cultivar with 7.98 and Dena cultivar with 7.14% respectively.

Keywords: yield component, yield, planting date, cultivar, quality traits, wheat

Procedia PDF Downloads 413
205 Agreement between Basal Metabolic Rate Measured by Bioelectrical Impedance Analysis and Estimated by Prediction Equations in Obese Groups

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Basal metabolic rate (BMR) is widely used and an accepted measure of energy expenditure. Its principal determinant is body mass. However, this parameter is also correlated with a variety of other factors. The objective of this study is to measure BMR and compare it with the values obtained from predictive equations in adults classified according to their body mass index (BMI) values. 276 adults were included into the scope of this study. Their age, height and weight values were recorded. Five groups were designed based on their BMI values. First group (n = 85) was composed of individuals with BMI values varying between 18.5 and 24.9 kg/m2. Those with BMI values varying from 25.0 to 29.9 kg/m2 constituted Group 2 (n = 90). Individuals with 30.0-34.9 kg/m2, 35.0-39.9 kg/m2, > 40.0 kg/m2 were included in Group 3 (n = 53), 4 (n = 28) and 5 (n = 20), respectively. The most commonly used equations to be compared with the measured BMR values were selected. For this purpose, the values were calculated by the use of four equations to predict BMR values, by name, introduced by Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU), Harris and Benedict, Owen and Mifflin. Descriptive statistics, ANOVA, post-Hoc Tukey and Pearson’s correlation tests were performed by a statistical program designed for Windows (SPSS, version 16.0). p values smaller than 0.05 were accepted as statistically significant. Mean ± SD of groups 1, 2, 3, 4 and 5 for measured BMR in kcal were 1440.3 ± 210.0, 1618.8 ± 268.6, 1741.1 ± 345.2, 1853.1 ± 351.2 and 2028.0 ± 412.1, respectively. Upon evaluation of the comparison of means among groups, differences were highly significant between Group 1 and each of the remaining four groups. The values were increasing from Group 2 to Group 5. However, differences between Group 2 and Group 3, Group 3 and Group 4, Group 4 and Group 5 were not statistically significant. These insignificances were lost in predictive equations proposed by Harris and Benedict, FAO/WHO/UNU and Owen. For Mifflin, the insignificance was limited only to Group 4 and Group 5. Upon evaluation of the correlations of measured BMR and the estimated values computed from prediction equations, the lowest correlations between measured BMR and estimated BMR values were observed among the individuals within normal BMI range. The highest correlations were detected in individuals with BMI values varying between 30.0 and 34.9 kg/m2. Correlations between measured BMR values and BMR values calculated by FAO/WHO/UNU as well as Owen were the same and the highest. In all groups, the highest correlations were observed between BMR values calculated from Mifflin and Harris and Benedict equations using age as an additional parameter. In conclusion, the unique resemblance of the FAO/WHO/UNU and Owen equations were pointed out. However, mean values obtained from FAO/WHO/UNU were much closer to the measured BMR values. Besides, the highest correlations were found between BMR calculated from FAO/WHO/UNU and measured BMR. These findings suggested that FAO/WHO/UNU was the most reliable equation, which may be used in conditions when the measured BMR values are not available.

Keywords: adult, basal metabolic rate, fao/who/unu, obesity, prediction equations

Procedia PDF Downloads 111
204 Effect of Laser Ablation OTR Films on the Storability of Endive and Pak Choi by Baby Vegetables in Modified Atmosphere Condition

Authors: In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang

Abstract:

As the consumption trends of vegetables become different from the past, it is increased using vegetable more convenience such as fresh-cut vegetables, sprouts, baby vegetables rather than an existing hole piece of vegetables. Selected baby vegetables have various functional materials but they have short shelf life. This study was conducted to improve storability by using suitable laser ablation OTR (oxygen transmission rate) films. Baby vegetable of endive (Cichorium endivia L.) and pak choi (Brassica rapa chinensis) for this research, around 10 cm height, cultivated in glass greenhouse during 3 weeks. Harvested endive and pak choi were stored at 8 ℃ for 5 days and were packed by PP (Polypropylene) container and covered different types of laser ablation OTR film (DaeRyung Co., Ltd.) such as 1,300 cc, 10,000 cc, 20,000 cc, 40,000 cc /m2•day•atm, and control (perforated film) with heat sealing machine (SC200-IP, Kumkang, Korea). All the samples conducted 5 times replication. Statistical analysis was carried out using a Microsoft Excel 2010 program and results were expressed as standard deviations. The fresh weight loss rate of both baby vegetables were less than 0.3 % in treated films as maximum weight loss rate. On the other hands, control in the final storage day had around 3.0 % weight loss rate and it followed decreasing quantity. Endive had less 2.0 % carbon dioxide contents as maximum contents in 20,000 cc and 40,000 cc. Oxygen contents was maintained between 17 and 20 % in endive, 19 and 20 % in pak choi. Ethylene concentration of both vegetables maintained little lower contents in 20,000 cc treatments than others at final storage day without statistical significance. In the case of hardness, 40,000 cc film was shown little higher value at both baby vegetables without statistical significance. Visual quality was good at 10,000 cc and 20,000 cc in endive and pak choi, and off-flavor was not appeard any off-flavor in both vegetables. Chlorophyll (SPAD-502, Minolta, Japan) value of endive was shown as similar result with initial in all treatments except 20,000 cc as little lower. And chlorophyll value of pak choi decreased in all treatments compared with initial value but was not shown significantly difference each other. Color of leaves (CR-400, Minolta, Japan) changed significantly in 40,000 cc at endive. In an event of pak choi, all the treatments started yellowing by increasing hunter b value, among them control increased substantially. As above the result, 10,000 cc film was most reasonable packaging film for storing at endive and 20,000 cc at pak choi with good quality.

Keywords: carbon dioxide, shelf-life, visual quality, pak choi

Procedia PDF Downloads 774
203 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 115
202 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 285
201 Physico-Mechanical Behavior of Indian Oil Shales

Authors: K. S. Rao, Ankesh Kumar

Abstract:

The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.

Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior

Procedia PDF Downloads 332
200 Human Coronary Sinus Venous System as a Target for Clinical Procedures

Authors: Wiesława Klimek-Piotrowska, Mateusz K. Hołda, Mateusz Koziej, Katarzyna Piątek, Jakub Hołda

Abstract:

Introduction: The coronary sinus venous system (CSVS), which has always been overshadowed by the coronary arterial tree, has recently begun to attract more attention. Since it is a target for clinicians the knowledge of its anatomy is essential. Cardiac resynchronization therapy, catheter ablation of cardiac arrhythmias, defibrillation, perfusion therapy, mitral valve annuloplasty, targeted drug delivery, and retrograde cardioplegia administration are commonly used therapeutic methods involving the CSVS. The great variability in the course of coronary veins and tributaries makes the diagnostic and therapeutic processes difficult. Our aim was to investigate detailed anatomy of most common clinically used CSVS`s structures: the coronary sinus with its ostium, great cardiac vein, posterior vein of the left ventricle, middle cardiac vein and oblique vein of the left atrium. Methodology: This is a prospective study of 70 randomly selected autopsied hearts dissected from adult humans (Caucasian) aged 50.1±17.6 years old (24.3% females) with BMI=27.6±6.7 kg/m2. The morphology of the CSVS was assessed as well as its precise measurements were performed. Results: The coronary sinus (CS) with its ostium was present in all hearts. The mean CS ostium diameter was 9.9±2.5mm. Considered ostium was covered by its valve in 87.1% with mean valve height amounted 5.1±3.1mm. The mean percentage coverage of the CS ostium by the valve was 56%. The Vieussens valve was present in 71.4% and was unicuspid in 70%, bicuspid in 26% and tricuspid in 4% of hearts. The great cardiac vein was present in all cases. The oblique vein of the left atrium was observed in 84.3% of hearts with mean length amounted 20.2±9.3mm and mean ostium diameter 1.4±0.9mm. The average length of the CS (from the CS ostium to the Vieussens valve) was 31.1±9.5mm or (from the CS ostium to the ostium of the oblique vein of the left atrium) 28.9±10.1mm and both were correlated with the heart weight (r=0.47; p=0.00 and r=0.38; p=0.006 respectively). In 90.5% the ostium of the oblique vein of the left atrium was located proximally to the Vieussens valve, in remaining cases was distally. The middle cardiac vein was present in all hearts and its valve was noticed in more than half of all the cases (52.9%). The posterior vein of the left ventricle was observed in 91.4% of cases. Conclusions: The CSVS is vastly variable and none of basic hearts parameters is a good predictor of its morphology. The Vieussens valve could be a significant obstacle during CS cannulation. Caution should be exercised in this area to avoid coronary sinus perforation. Because of the higher incidence of the presence of the oblique vein of the left atrium than the Vieussens valve, the vein orifice is more useful in determining the CS length.

Keywords: cardiac resynchronization therapy, coronary sinus, Thebesian valve, Vieussens valve

Procedia PDF Downloads 282
199 Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire

Authors: Robert Pečenko, Karin Tomažič, Igor Planinc, Sabina Huč, Tomaž Hozjan

Abstract:

Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future.

Keywords: advanced numerical modelling, parametric fire exposure, timber structures, zero strength layer

Procedia PDF Downloads 152
198 Control of Helminthosporiosis in Oryza sativa Varieties Treated with 24-Epibrassinolide

Authors: Kuate Tueguem William Norbert, Ngoh Dooh Jules Patrice, Kone Sangou Abdou Nourou, Mboussi Serge Bertrand, Chewachang Godwill Mih, Essome Sale Charles, Djuissi Tohoto Doriane, Ambang Zachee

Abstract:

The objectives of this study were to evaluate the effects of foliar application of 24-epibrassinolide (EBR) on the development of rice helminthosporiosis caused by Bipolaris oryzae and its influence on the improvement of growth parameters and induction of the synthesis of defense substances in the rice plants. The experimental asset up involved a multifactorial split-plot with two varieties (NERICA 3 and local variety KAMKOU) and five treatments (T0: control, T1: EBR, T2: BANKO PLUS (fungicide), T3: NPK (chemical fertilizer), T4: mixture: NPK + BANKO PLUS + EBR) with three repetitions. Agro-morphological and epidemiological parameters, as well as substances for plant resistance, were evaluated over two growing seasons. The application of the EBR induced significant growth of the rice plants for the 2015 and 2016 growing seasons on the two varieties tested compared to the T0 treatment. At 74 days after sowing (DAS), NERICA 3 showed plant heights of 58.9 ± 5.4; 83.1 ± 10.4; 86.01 ± 9.4; 69.4 ± 11.1 and 87.12 ± 7.4 cm at T0; T1; T2; T3, and T4, respectively. Plant height for the variety KAMKOU varied from 87,12 ± 8,1; 88.1 ± 8.1 and 92.02 ± 6.3 cm in T1, T2, and T3 to 74.1 ± 8.6 and 74.21 ± 11.4 cm in T0 and T3. In accordance with the low rate of expansion of helminthosporiosis in experimental plots, EBR (T1) significantly reduced the development of the disease with severities of 0.0; 1.29, and 2.04%, respectively at 78; 92, and 111 DAS on the variety NERICA 3 compared with1; 3.15 and 3.79% in the control T0. The reduction of disease development/severity as a result of the application of EBR is due to the induction of acquired resistance of rice varieties through increased phenol (13.73 eqAG/mg/PMF) and total protein (117.89 eqBSA/mg/PMF) in the T1 treatment against 5.37 eqAG/mg/PMF and 104.97 eqBSA/mg/PMF in T0 for the NERICA 3 variety. Similarly, on the KAMKOU variety, 148.53 eqBSA/mg/PMF were protein and 6.10 eqAG/mg/PMF of phenol in T1. In summary, the results show the significant effect of EBR on plant growth, yield, synthesis of secondary metabolites and defense proteins, and disease resistance. The EBR significantly reduced losses of rice grains by causing an average gain of about 1.55 t/ha compared to the control and 1.00 t/ha compared to the NPK-based treatment for the two varieties studied. Further, the enzymatic activities of PPOs, POXs, and PR2s were higher in leaves from treated EBR-based plants. These results show that 24-epibrassinolide can be used in the control of helminthosporiosis of rice to reduce disease and increase yields.

Keywords: Oryza sativa, 24-epibrassinolide, helminthosporiosis, secondary metabolites, PR proteins, acquired resistance

Procedia PDF Downloads 173
197 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells

Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo

Abstract:

Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.

Keywords: biosensors, polymer, skin irritation, degradation products, cell viability

Procedia PDF Downloads 126
196 New Suspension Mechanism for a Formula Car using Camber Thrust

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.

Keywords: automobile, camber thrust, cornering force, suspension

Procedia PDF Downloads 308
195 Drying Shrinkage of Concrete: Scale Effect and Influence of Reinforcement

Authors: Qier Wu, Issam Takla, Thomas Rougelot, Nicolas Burlion

Abstract:

In the framework of French underground disposal of intermediate level radioactive wastes, concrete is widely used as a construction material for containers and tunnels. Drying shrinkage is one of the most disadvantageous phenomena of concrete structures. Cracks generated by differential shrinkage could impair the mechanical behavior, increase the permeability of concrete and act as a preferential path for aggressive species, hence leading to an overall decrease in durability and serviceability. It is of great interest to understand the drying shrinkage phenomenon in order to predict and even to control the strains of concrete. The question is whether the results obtained from laboratory samples are in accordance with the measurements on a real structure. Another question concerns the influence of reinforcement on drying shrinkage of concrete. As part of a global project with Andra (French National Radioactive Waste Management Agency), the present study aims to experimentally investigate the scale effect as well as the influence of reinforcement on the development of drying shrinkage of two high performance concretes (based on CEM I and CEM V cements, according to European standards). Various sizes of samples are chosen, from ordinary laboratory specimens up to real-scale specimens: prismatic specimens with different volume-to-surface (V/S) ratios, thin slices (thickness of 2 mm), cylinders with different sizes (37 and 160 mm in diameter), hollow cylinders, cylindrical columns (height of 1000 mm) and square columns (320×320×1000 mm). The square columns have been manufactured with different reinforcement rates and can be considered as mini-structures, to approximate the behavior of a real voussoir from the waste disposal facility. All the samples are kept, in a first stage, at 20°C and 50% of relative humidity (initial conditions in the tunnel) in a specific climatic chamber developed by the Laboratory of Mechanics of Lille. The mass evolution and the drying shrinkage are monitored regularly. The obtained results show that the specimen size has a great impact on water loss and drying shrinkage of concrete. The specimens with a smaller V/S ratio and a smaller size have a bigger drying shrinkage. The correlation between mass variation and drying shrinkage follows the same tendency for all specimens in spite of the size difference. However, the influence of reinforcement rate on drying shrinkage is not clear based on the present results. The second stage of conservation (50°C and 30% of relative humidity) could give additional results on these influences.

Keywords: concrete, drying shrinkage, mass evolution, reinforcement, scale effect

Procedia PDF Downloads 159
194 Gas Systems of the Amadeus Basin, Australia

Authors: Chris J. Boreham, Dianne S. Edwards, Amber Jarrett, Justin Davies, Robert Poreda, Alex Sessions, John Eiler

Abstract:

The origins of natural gases in the Amadeus Basin have been assessed using molecular and stable isotope (C, H, N, He) systematics. A dominant end-member thermogenic, oil-associated gas is considered for the Ordovician Pacoota−Stairway sandstones of the Mereenie gas and oil field. In addition, an abiogenic end-member is identified in the latest Proterozoic lower Arumbera Sandstone of the Dingo gasfield, being most likely associated with radiolysis of methane with polymerisation to wet gases. The latter source assignment is based on a similar geochemical fingerprint derived from the laboratory gamma irradiation experiments on methane. A mixed gas source is considered for the Palm Valley gasfield in the Ordovician Pacoota Sandstone. Gas wetness (%∑C₂−C₅/∑C₁−C₅) decreases in the order Mereenie (19.1%) > Palm Valley (9.4%) > Dingo (4.1%). Non-produced gases at Magee-1 (23.5%; Late Proterozoic Heavitree Quartzite) and Mount Kitty-1 (18.9%; Paleo-Mesoproterozoic fractured granitoid basement) are very wet. Methane thermometry based on clumped isotopes of methane (¹³CDH₃) is consistent with the abiogenic origin for the Dingo gas field with methane formation temperature of 254ᵒC. However, the low methane formation temperature of 57°C for the Mereenie gas suggests either a mixed thermogenic-biogenic methane source or there is no thermodynamic equilibrium between the methane isotopomers. The shallow reservoir depth and present-day formation temperature below 80ᵒC would support microbial methanogenesis, but there is no accompanying alteration of the C- and H-isotopes of the wet gases and CO₂ that is typically associated with biodegradation. The Amadeus Basin gases show low to extremely high inorganic gas contents. Carbon dioxide is low in abundance (< 1% CO₂) and becomes increasing depleted in ¹³C from the Palm Valley (av. δ¹³C 0‰) to the Mereenie (av. δ¹³C -6.6‰) and Dingo (av. δ¹³C -14.3‰) gas fields. Although the wide range in carbon isotopes for CO₂ is consistent with multiple origins from inorganic to organic inputs, the most likely process is fluid-rock alteration with enrichment in ¹²C in the residual gaseous CO₂ accompanying progressive carbonate precipitation within the reservoir. Nitrogen ranges from low−moderate (1.7−9.9% N₂) abundance (Palm Valley av. 1.8%; Mereenie av. 9.1%; Dingo av. 9.4%) to extremely high abundance in Magee-1 (43.6%) and Mount Kitty-1 (61.0%). The nitrogen isotopes for the production gases have δ¹⁵N = -3.0‰ for Mereenie, -3.0‰ for Palm Valley and -7.1‰ for Dingo, suggest all being mixed inorganic and thermogenic nitrogen sources. Helium (He) abundance varies over a wide range from a low of 0.17% to one of the world’s highest at 9% (Mereenie av. 0.23%; Palm Valley av. 0.48%, Dingo av. 0.18%, Magee-1 6.2%; Mount Kitty-1 9.0%). Complementary helium isotopes (R/Ra = ³He/⁴Hesample / ³He/⁴Heair) range from 0.013 to 0.031 R/Ra, indicating a dominant crustal origin for helium with a sustained input of radiogenic 4He from the decomposition of U- and Th-bearing minerals, effectively diluting any original mantle helium input. The high helium content in the non-produced gases compared to the shallower producing wells most likely reflects their stratigraphic position relative to the Tonian Bitter Springs Group with the former below and the latter above an effective carbonate-salt seal.

Keywords: amadeus gas, thermogenic, abiogenic, C, H, N, He isotopes

Procedia PDF Downloads 180
193 Multi-Modality Brain Stimulation: A Treatment Protocol for Tinnitus

Authors: Prajakta Patil, Yash Huzurbazar, Abhijeet Shinde

Abstract:

Aim: To develop a treatment protocol for the management of tinnitus through multi-modality brain stimulation. Methodology: Present study included 33 adults with unilateral (31 subjects) and bilateral (2 subjects) chronic tinnitus with and/or without hearing loss independent of their etiology. The Treatment protocol included 5 consecutive sessions with follow-up of 6 months. Each session was divided into 3 parts: • Pre-treatment: a) Informed consent b) Pitch and loudness matching. • Treatment: Bimanual paper pen task with tinnitus masking for 30 minutes. • Post-treatment: a) Pitch and loudness matching b) Directive counseling and obtaining feedback. Paper-pen task is to be performed bimanually that included carrying out two different writing activities in different context. The level of difficulty of the activities was increased in successive sessions. Narrowband noise of a frequency same as that of tinnitus was presented at 10 dBSL of tinnitus for 30 minutes simultaneously in the ear with tinnitus. Result: The perception of tinnitus was no longer present in 4 subjects while in remaining subjects it reduced to an intensity that its perception no longer troubled them without causing residual facilitation. In all subjects, the intensity of tinnitus decreased by an extent of 45 dB at an average. However, in few subjects, the intensity of tinnitus also decreased by more than 45 dB. The approach resulted in statistically significant reductions in Tinnitus Functional Index and Tinnitus Handicap Inventory scores. The results correlate with pre and post treatment score of Tinnitus Handicap Inventory that dropped from 90% to 0%. Discussion: Brain mapping(qEEG) Studies report that there is multiple parallel overlapping of neural subnetworks in the non-auditory areas of the brain which exhibits abnormal, constant and spontaneous neural activity involved in the perception of tinnitus with each subnetwork and area reflecting a specific aspect of tinnitus percept. The paper pen task and directive counseling are designed and delivered respectively in a way that is assumed to induce normal, rhythmically constant and premeditated neural activity and mask the abnormal, constant and spontaneous neural activity in the above-mentioned subnetworks and the specific non-auditory area. Counseling was focused on breaking the vicious cycle causing and maintaining the presence of tinnitus. Diverting auditory attention alone is insufficient to reduce the perception of tinnitus. Conscious awareness of tinnitus can be suppressed when individuals engage in cognitively demanding tasks of non-auditory nature as the paper pen task used in the present study. To carry out this task selective, divided, sustained, simultaneous and split attention act cumulatively. Bimanual paper pen task represents a top-down activity which underlies brain’s ability to selectively attend to the bimanual written activity as a relevant stimulus and to ignore tinnitus that is the irrelevant stimuli in the present study. Conclusion: The study suggests that this novel treatment approach is cost effective, time saving and efficient to vanish the tinnitus or to reduce the intensity of tinnitus to a negligible level and thereby eliminating the negative reactions towards tinnitus.

Keywords: multi-modality brain stimulation, neural subnetworks, non-auditory areas, paper-pen task, top-down activity

Procedia PDF Downloads 134
192 Enhancement of Mass Transport and Separations of Species in a Electroosmotic Flow by Distinct Oscillatory Signals

Authors: Carlos Teodoro, Oscar Bautista

Abstract:

In this work, we analyze theoretically the mass transport in a time-periodic electroosmotic flow through a parallel flat plate microchannel under different periodic functions of the applied external electric field. The microchannel connects two reservoirs having different constant concentrations of an electro-neutral solute, and the zeta potential of the microchannel walls are assumed to be uniform. The governing equations that allow determining the mass transport in the microchannel are given by the Poisson-Boltzmann equation, the modified Navier-Stokes equations, where the Debye-Hückel approximation is considered (the zeta potential is less than 25 mV), and the species conservation. These equations are nondimensionalized and four dimensionless parameters appear which control the mass transport phenomenon. In this sense, these parameters are an angular Reynolds, the Schmidt and the Péclet numbers, and an electrokinetic parameter representing the ratio of the half-height of the microchannel to the Debye length. To solve the mathematical model, first, the electric potential is determined from the Poisson-Boltzmann equation, which allows determining the electric force for various periodic functions of the external electric field expressed as Fourier series. In particular, three different excitation wave forms of the external electric field are assumed, a) sawteeth, b) step, and c) a periodic irregular functions. The periodic electric forces are substituted in the modified Navier-Stokes equations, and the hydrodynamic field is derived for each case of the electric force. From the obtained velocity fields, the species conservation equation is solved and the concentration fields are found. Numerical calculations were done by considering several binary systems where two dilute species are transported in the presence of a carrier. It is observed that there are different angular frequencies of the imposed external electric signal where the total mass transport of each species is the same, independently of the molecular diffusion coefficient. These frequencies are called crossover frequencies and are obtained graphically at the intersection when the total mass transport is plotted against the imposed frequency. The crossover frequencies are different depending on the Schmidt number, the electrokinetic parameter, the angular Reynolds number, and on the type of signal of the external electric field. It is demonstrated that the mass transport through the microchannel is strongly dependent on the modulation frequency of the applied particular alternating electric field. Possible extensions of the analysis to more complicated pulsation profiles are also outlined.

Keywords: electroosmotic flow, mass transport, oscillatory flow, species separation

Procedia PDF Downloads 201
191 On-Farm Biopurification Systems: Fungal Bioaugmentation of Biomixtures For Carbofuran Removal

Authors: Carlos E. Rodríguez-Rodríguez, Karla Ruiz-Hidalgo, Kattia Madrigal-Zúñiga, Juan Salvador Chin-Pampillo, Mario Masís-Mora, Elizabeth Carazo-Rojas

Abstract:

One of the main causes of contamination linked to agricultural activities is the spillage and disposal of pesticides, especially during the loading, mixing or cleaning of agricultural spraying equipment. One improvement in the handling of pesticides is the use of biopurification systems (BPS), simple and cheap degradation devices where the pesticides are biologically degraded at accelerated rates. The biologically active core of BPS is the biomixture, which is constituted by soil pre-exposed to the target pesticide, a lignocellulosic substrate to promote the activity of ligninolitic fungi and a humic component (peat or compost), mixed at a volumetric proportion of 50:25:25. Considering the known ability of lignocellulosic fungi to degrade a wide range of organic pollutants, and the high amount of lignocellulosic waste used in biomixture preparation, the bioaugmentation of biomixtures with these fungi represents an interesting approach for improving biomixtures. The present work aimed at evaluating the effect of the bioaugmentation of rice husk based biomixtures with the fungus Trametes versicolor in the removal of the insectice/nematicide carbofuran (CFN) and to optimize the composition of the biomixture to obtain the best performance in terms of CFN removal and mineralization, reduction in formation of transformation products and decrease in residual toxicity of the matrix. The evaluation of several lignocellulosic residues (rice husk, wood chips, coconut fiber, sugarcane bagasse or newspaper print) revealed the best colonization by T. versicolor in rice husk. Pre-colonized rice husk was then used in the bioaugmentation of biomixtures also containing soil pre-exposed to CFN and either peat (GTS biomixture) or compost (GCS biomixture). After spiking with 10 mg/kg CBF, the efficiency of the biomixture was evaluated through a multi-component approach that included: monitoring of CBF removal and production of CBF transformation products, mineralization of radioisotopically labeled carbofuran (14C-CBF) and changes in the toxicity of the matrix after the treatment (Daphnia magna acute immobilization test). Estimated half-lives of CBF in the biomixtures were 3.4 d and 8.1 d in GTS and GCS, respectively. The transformation products 3-hydroxycarbofuran and 3-ketocarbofuran were detected at the moment of CFN application, however their concentration continuously disappeared. Mineralization of 14C-CFN was also faster in GTS than GCS. The toxicological evaluation showed a complete toxicity removal in the biomixtures after 48 d of treatment. The composition of the GCS biomixture was optimized using a central composite design and response surface methodology. The design variables were the volumetric content of fungally pre-colonized rice husk and the volumetric ratio compost/soil. According to the response models, maximization of CFN removal and mineralization rate, and minimization in the accumulation of transformation products were obtained with an optimized biomixture of composition 30:43:27 (pre-colonized rice husk:compost:soil), which differs from the 50:25:25 composition commonly employed in BPS. Results suggest that fungal bioaugmentation may enhance the performance of biomixtures in CFN removal. Optimization reveals the importance of assessing new biomixture formulations in order to maximize their performance.

Keywords: bioaugmentation, biopurification systems, degradation, fungi, pesticides, toxicity

Procedia PDF Downloads 291