Search results for: estimation of properties of the model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25464

Search results for: estimation of properties of the model

5784 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 50
5783 The Impact of Foreign Direct Investment on Economic Growth of Ethiopia: Econometrics Cointegration Analysis

Authors: Dejene Gizaw Kidane

Abstract:

This study examines the impact of foreign direct investment on economic growth of Ethiopia using yearly time-series data for 1974 through 2013. Economic growth is proxies by real per capita gross domestic product and foreign direct investment proxies by the inflow of foreign direct investment. Other control variables such as gross domestic saving, trade, government consumption and inflation has been incorporated. In order to fully account for feedbacks, a vector autoregressive model is utilized. The results show that there is a stable, long-run relationship between foreign direct investment and economic growth. The variance decomposition results show that the main sources of Ethiopia economic growth variations are due largely own shocks. The pairwise Granger causality results show that there is a unidirectional causality that runs from FDI to economic growth of Ethiopia. Hence, the researcher therefore recommends that, FDI facilitate economic growth, so the government has to exert much effort in order to attract more FDI into the country.

Keywords: real per capita GDP, FDI, co-integration, VECM, Granger causality

Procedia PDF Downloads 438
5782 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
5781 Spatial Integrity of Seismic Data for Oil and Gas Exploration

Authors: Afiq Juazer Rizal, Siti Zaleha Misnan, M. Zairi M. Yusof

Abstract:

Seismic data is the fundamental tool utilized by exploration companies to determine potential hydrocarbon. However, the importance of seismic trace data will be undermined unless the geo-spatial component of the data is understood. Deriving a proposed well to be drilled from data that has positional ambiguity will jeopardize business decision and millions of dollars’ investment that every oil and gas company would like to avoid. Spatial integrity QC workflow has been introduced in PETRONAS to ensure positional errors within the seismic data are recognized throughout the exploration’s lifecycle from acquisition, processing, and seismic interpretation. This includes, amongst other tests, quantifying that the data is referenced to the appropriate coordinate reference system, survey configuration validation, and geometry loading verification. The direct outcome of the workflow implementation helps improve reliability and integrity of sub-surface geological model produced by geoscientist and provide important input to potential hazard assessment where positional accuracy is crucial. This workflow’s development initiative is part of a bigger geospatial integrity management effort, whereby nearly eighty percent of the oil and gas data are location-dependent.

Keywords: oil and gas exploration, PETRONAS, seismic data, spatial integrity QC workflow

Procedia PDF Downloads 227
5780 Dynamic Evaluation of Shallow Lake Habitat Quality Based on InVEST Model: A Case in Baiyangdian Lake

Authors: Shengjun Yan, Xuan Wang

Abstract:

Water level changes in a shallow lake always introduce dramatic land pattern changes. To achieve sustainable ecosystem service, it is necessary to evaluate habitat quality dynamic and its spatio-temporal variation resulted from water level changes, which can provide a scientific basis for protection of biodiversity and planning of wetland ecological system. Landsat data in the spring was chosen to obtain landscape data at different times based on the high, moderate and low water level of Baiyangdian Shallow Lake. We used the InVEST to evaluate the habitat quality, habitat degradation, and habitat scarcity. The result showed that: 1) the water level of shallow lake changes from high to low lead to an obvious landscape pattern changes and habitat degradation, 2) the most change area occurred in northwestward and southwest of Baiyangdian Shallow Lake, which there was a 21 percent of suitable habitat and 42 percent of moderately suitable habitat lost. Our findings show that the changes of water level in the shallow lake would have a strong relationship with the habitat quality.

Keywords: habitat quality, habitat degradation, water level changes, shallow lake

Procedia PDF Downloads 255
5779 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 145
5778 Plasma Technology for Hazardous Biomedical Waste Treatment

Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko

Abstract:

One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.

Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas

Procedia PDF Downloads 525
5777 Analysis of Steel Beam-Column Joints Under Seismic Loads

Authors: Mizam Doğan

Abstract:

Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.

Keywords: column-beam connection, seismic analysis, seismic load, steel structure

Procedia PDF Downloads 277
5776 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation

Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita

Abstract:

In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during changes in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain equal power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.

Keywords: droop control, droop characteristic, grid-connected inverter, microgrid, power control

Procedia PDF Downloads 888
5775 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 551
5774 The Impact of Citizens’ Involvement on Their Perception of the Brand’s Image: The Case of the City of Casablanca

Authors: Abderrahmane Mousstain, Ez-Zohra Belkadi

Abstract:

Many authors support more participatory and inclusive place branding practices that empower stakeholders’ participation. According to this participatory point of view, the effectiveness of place branding strategies cannot be achieved without citizen involvement. However, the role of all residents as key participants in the city branding process has not been widely discussed. The aim of this paper was to determine how citizens’ involvement impacts their perceptions of the city's image, using a multivariate model. To test our hypotheses hypothetical-deductive reasoning by the quantitative method was chosen. Our investigation is based on data collected through a survey among 200 citizens of Casablanca. Results show that the more citizens are involved, the more they tend to evaluate the image of the brand positively. Additionally, the degree of involvement seems to impact satisfaction and a sense of belonging. As well, the more citizen develops a sense of belonging to the city, the more favorable his or her perception of the brand image is. Ultimately, the role of citizens shouldn’t be limited to reception. They are also Co-creators of the brand, who ensure the correlation of the brand with authentic place roots.

Keywords: citybranding, sense of belonging, satisfaction, impact, brand’s image

Procedia PDF Downloads 177
5773 DNA Vaccine Study against Vaccinia Virus Using In vivo Electroporation

Authors: Jai Myung Yang, Na Young Kim, Sung Ho Shin

Abstract:

The adverse reactions of current live smallpox vaccines and potential use of smallpox as a bioterror weapon have heightened the development of new effective vaccine for this infectious disease. In the present study, DNA vaccine vector was produced which was optimized for expression of the vaccinia virus L1 antigen in the mouse model. A plasmid IgM-tL1R, which contains codon-optimized L1R gene, was constructed and fused with an IgM signal sequence under the regulation of a SV40 enhancer. The expression and secretion of recombinant L1 protein was confirmed in vitro 293 T cell. Mice were administered the DNA vaccine by electroporation and challenged with vaccinia virus. We observed that immunization with IgM-tL1R induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Isotyping studies reveal that immunoglobulin G2 (IgG2) antibody predominated after the immunization, indicative of a T helper type 1 response. Our results suggest that an optimized DNA vaccine, IgM-tL1R, can be effective in stimulating anti-vaccinia virus immune response and provide protection against lethal orthopoxvirus challenge.

Keywords: DNA vaccine, electroporation, L1R, vaccinia virus

Procedia PDF Downloads 268
5772 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics

Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.

Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance

Procedia PDF Downloads 152
5771 Surface Enhanced Infrared Absorption for Detection of Ultra Trace of 3,4- Methylene Dioxy- Methamphetamine (MDMA)

Authors: Sultan Ben Jaber

Abstract:

Optical properties of molecules exhibit dramatic changes when adsorbed close to nano-structure metallic surfaces such as gold and silver nanomaterial. This phenomena opened a wide range of research to improve conventional spectroscopies efficiency. A well-known technique that has an intensive focus of study is surface-enhanced Raman spectroscopy (SERS), as since the first observation of SERS phenomena, researchers have published a great number of articles about the potential mechanisms behind this effect as well as developing materials to maximize the enhancement. Infrared and Raman spectroscopy are complementary techniques; thus, surface-enhanced infrared absorption (SEIRA) also shows a noticeable enhancement of molecules in the mid-IR excitation on nonmetallic structure substrates. In the SEIRA, vibrational modes that gave change in dipole moments perpendicular to the nano-metallic substrate enhanced 200 times greater than the free molecule’s modes. SEIRA spectroscopy is promising for the characterization and identification of adsorbed molecules on metallic surfaces, especially at trace levels. IR reflection-absorption spectroscopy (IRAS) is a well-known technique for measuring IR spectra of adsorbed molecules on metallic surfaces. However, SEIRA spectroscopy sensitivity is up to 50 times higher than IRAS. SEIRA enhancement has been observed for a wide range of molecules adsorbed on metallic substrates such as Au, Ag, Pd, Pt, Al, and Ni, but Au and Ag substrates exhibited the highest enhancement among the other mentioned substrates. In this work, trace levels of 3,4-methylenedioxymethamphetamine (MDMA) have been detected using gold nanoparticles (AuNPs) substrates with surface-enhanced infrared absorption (SEIRA). AuNPs were first prepared and washed, then mixed with different concentrations of MDMA samples. The process of fabricating the substrate prior SEIRA measurements included mixing of AuNPs and MDMA samples followed by vigorous stirring. The stirring step is particularly crucial, as stirring allows molecules to be robustly adsorbed on AuNPs. Thus, remarkable SEIRA was observed for MDMA samples even at trace levels, showing the rigidity of our approach to preparing SEIRA substrates.

Keywords: surface-enhanced infrared absorption (SEIRA), gold nanoparticles (AuNPs), amphetamines, methylene dioxy- methamphetamine (MDMA), enhancement factor

Procedia PDF Downloads 71
5770 An Inviscid Compressible Flow Solver Based on Unstructured OpenFOAM Mesh Format

Authors: Utkan Caliskan

Abstract:

Two types of numerical codes based on finite volume method are developed in order to solve compressible Euler equations to simulate the flow through forward facing step channel. Both algorithms have AUSM+- up (Advection Upstream Splitting Method) scheme for flux splitting and two-stage Runge-Kutta scheme for time stepping. In this study, the flux calculations differentiate between the algorithm based on OpenFOAM mesh format which is called 'face-based' algorithm and the basic algorithm which is called 'element-based' algorithm. The face-based algorithm avoids redundant flux computations and also is more flexible with hybrid grids. Moreover, some of OpenFOAM’s preprocessing utilities can be used on the mesh. Parallelization of the face based algorithm for which atomic operations are needed due to the shared memory model, is also presented. For several mesh sizes, 2.13x speed up is obtained with face-based approach over the element-based approach.

Keywords: cell centered finite volume method, compressible Euler equations, OpenFOAM mesh format, OpenMP

Procedia PDF Downloads 320
5769 Shaped Crystal Growth of Fe-Ga and Fe-Al Alloy Plates by the Micro Pulling down Method

Authors: Kei Kamada, Rikito Murakami, Masahiko Ito, Mototaka Arakawa, Yasuhiro Shoji, Toshiyuki Ueno, Masao Yoshino, Akihiro Yamaji, Shunsuke Kurosawa, Yuui Yokota, Yuji Ohashi, Akira Yoshikawa

Abstract:

Techniques of energy harvesting y have been widely developed in recent years, due to high demand on the power supply for ‘Internet of things’ devices such as wireless sensor nodes. In these applications, conversion technique of mechanical vibration energy into electrical energy using magnetostrictive materials n have been brought to attention. Among the magnetostrictive materials, Fe-Ga and Fe-Al alloys are attractive materials due to the figure of merits such price, mechanical strength, high magnetostrictive constant. Up to now, bulk crystals of these alloys are produced by the Bridgman–Stockbarger method or the Czochralski method. Using these method big bulk crystal up to 2~3 inch diameter can be grown. However, non-uniformity of chemical composition along to the crystal growth direction cannot be avoid, which results in non-uniformity of magnetostriction constant and reduction of the production yield. The micro-pulling down (μ-PD) method has been developed as a shaped crystal growth technique. Our group have reported shaped crystal growth of oxide, fluoride single crystals with different shape such rod, plate tube, thin fiber, etc. Advantages of this method is low segregation due to high growth rate and small diffusion of melt at the solid-liquid interface, and small kerf loss due to near net shape crystal. In this presentation, we report the shaped long plate crystal growth of Fe-Ga and Fe-Al alloys using the μ-PD method. Alloy crystals were grown by the μ-PD method using calcium oxide crucible and induction heating system under the nitrogen atmosphere. The bottom hole of crucibles was 5 x 1mm² size. A <100> oriented iron-based alloy was used as a seed crystal. 5 x 1 x 320 mm³ alloy crystal plates were successfully grown. The results of crystal growth, chemical composition analysis, magnetostrictive properties and a prototype vibration energy harvester are reported. Furthermore, continuous crystal growth using powder supply system will be reported to minimize the chemical composition non-uniformity along the growth direction.

Keywords: crystal growth, micro-pulling-down method, Fe-Ga, Fe-Al

Procedia PDF Downloads 335
5768 Distribution of Dynamical and Energy Parameters in Axisymmetric Air Plasma Jet

Authors: Vitas Valinčius, Rolandas Uscila, Viktorija Grigaitienė, Žydrūnas Kavaliauskas, Romualdas Kėželis

Abstract:

Determination of integral dynamical and energy characteristics of high-temperature gas flows is a very important task of gas-dynamic for hazardous substances destruction systems. They are also always necessary for the investigation of high-temperature turbulent flow dynamics, heat and mass transfer. It is well known that distribution of dynamical and thermal characteristics of high-temperature flows and jets is strongly related to heat flux variation over an imposed area of heating. As is visible from numerous experiments and theoretical considerations, the fundamental properties of an isothermal jet are well investigated. However, the establishment of regularities in high-temperature conditions meets certain specific behavior comparing with moderate-temperature jets and flows. Their structures have not been thoroughly studied yet, especially in the cases of plasma ambient. It is well known that the distribution of local plasma jet parameters in high temperature and isothermal jets and flows may significantly differ. High temperature axisymmetric air jet generated by atmospheric pressure DC arc plasma torch was investigated employing enthalpy probe 3.8∙10-3 m of diameter. Distribution of velocities and temperatures were established in different cross-sections of the plasma jet outflowing from 42∙10-3 m diameter pipe at the average mean velocity of 700 m∙s-1, and averaged temperature of 4000 K. It has been found that gas heating fractionally influences shape and values of a dimensionless profile of velocity and temperature in the main zone of plasma jet and has a significant influence in the initial zone of the plasma jet. The width of the initial zone of the plasma jet has been found to be lesser than in the case of isothermal flow. The relation between dynamical thickness and turbulent number of Prandtl has been established along jet axis. Experimental results were generalized in dimensionless form. The presence of convective heating shows that heat transfer in a moving high-temperature jet also occurs due to heat transfer by moving particles of the jet. In this case, the intensity of convective heat transfer is proportional to the instantaneous value of the flow velocity at a given point in space. Consequently, the configuration of the temperature field in moving jets and flows essentially depends on the configuration of the velocity field.

Keywords: plasma jet, plasma torch, heat transfer, enthalpy probe, turbulent number of Prandtl

Procedia PDF Downloads 184
5767 Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant

Authors: Olusola Bamisile, Ferdinard Dika, Mustafa Dagbasi, Serkan Abbasoglu

Abstract:

The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage.

Keywords: air conditioning, solar energy, performance, energy saving

Procedia PDF Downloads 148
5766 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 480
5765 Cross-Dialect Sentence Transformation: A Comparative Analysis of Language Models for Adapting Sentences to British English

Authors: Shashwat Mookherjee, Shruti Dutta

Abstract:

This study explores linguistic distinctions among American, Indian, and Irish English dialects and assesses various Language Models (LLMs) in their ability to generate British English translations from these dialects. Using cosine similarity analysis, the study measures the linguistic proximity between original British English translations and those produced by LLMs for each dialect. The findings reveal that Indian and Irish English translations maintain notably high similarity scores, suggesting strong linguistic alignment with British English. In contrast, American English exhibits slightly lower similarity, reflecting its distinct linguistic traits. Additionally, the choice of LLM significantly impacts translation quality, with Llama-2-70b consistently demonstrating superior performance. The study underscores the importance of selecting the right model for dialect translation, emphasizing the role of linguistic expertise and contextual understanding in achieving accurate translations.

Keywords: cross-dialect translation, language models, linguistic similarity, multilingual NLP

Procedia PDF Downloads 79
5764 Thermal Comfort and Energy Saving Evaluation of a Combined System in an Office Room Using Displacement Ventilation

Authors: A. Q. Ahmed, S. Gao

Abstract:

In this paper, the energy saving and human thermal comfort in a typical office room are investigated. The impact of a combined system of exhaust inlet air with light slots located at the ceiling level in a room served by displacement ventilation system is numerically modelled. Previous experimental data are used to validate the computational fluid dynamic (CFD) model. A case study of simulated office room includes two seating occupants, two computers, two data loggers and four lamps. The combined system is located at the ceiling level above the heat sources. A new method of calculation for the cooling coil load in stratified air distribution (STRAD) system is used in this study. The results show that 47.4 % energy saving of space cooling load can be achieved by combing the exhaust inlet air with light slots at the ceiling level above the heat sources.

Keywords: air conditioning, displacement ventilation, energy saving, thermal comfort

Procedia PDF Downloads 486
5763 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm

Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot

Abstract:

The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.

Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump

Procedia PDF Downloads 155
5762 Energy Saving and Performance Evaluation of an Air Handling Unit Integrated with a Membrane Energy Exchanger for Cold Climates

Authors: Peng Liu, Maria Justo Alonso, Hans Martin Mathisen

Abstract:

A theoretical model is developed to evaluate the performance and energy saving potential of an air handling unit integrated with a membrane energy exchanger in cold climates. The recovered sensible and latent heat, fan preheating use for frost prevention and heating energy consumed by heating coil after the ventilator is compared for the air handling unit combined heat and energy exchanger respectively. A concept of coefficient of performance of air handling unit is presented and applied to assess the energy use of air handling unit (AHU) in cold climates. The analytic results indicate downsizing of the preheating coil before exchanger and heating coils after exchanger are expected since the required power to preheat and condition the air is reduced compared to heat exchanger when the MEE is integrated with AHU. Simultaneously, a superior ratio of energy recovered (RER) is obtained from AHU build-in a counter-flow MEE. The AHU with sensible-only heat exchanger has noticeably low RER, around 1 at low outdoor air temperature where the maximum energy rate is desired to condition the severe cold and dry air.

Keywords: membrane energy exchanger, cold climate, energy efficient building, HVAC

Procedia PDF Downloads 327
5761 Limos Lactobacillus Fermentum from Buffalo Milk Is Suitable for Potential Biotechnological Process Development

Authors: Sergio D’Ambrosioa, Azza Dobousa, Chiara Schiraldia, Donatella Ciminib

Abstract:

Probiotics are living microorganisms that give beneficial effects while consumed. Lactic acid bacteria and bifidobacteria are among the most representative strains assessed as probiotics and exploited as food supplements. Numerous studies demonstrated their potential as a therapeutic candidate for a variety of diseases (restoring gut flora, lowering cholesterol, immune response-enhancing, anti-inflammation and anti-oxidation activities). These beneficial actions are also due to biomolecules produced by probiotics, such as exopolysaccharides (EPSs), that demonstrate plenty of beneficial properties such as antimicrobial, antitumor, anti-biofilm, antiviral and immunomodulatory activities. Limosilactobacillus fermentum is a widely studied member of probiotics; however, few data are available on the development of fermentation and downstream processes for the production of viable biomasses for potential industrial applications. However, few data are available on the development of fermentation processes for the large-scale production of probiotics biomass for industrial applications and for purification processes of EPSs at an industrial scale. For this purpose, L. fermentum strain was isolated from buffalo milk and used as a test example for biotechnological process development. The strain was able to produce up to 109 CFU/mL on a (glucose-based) semi-defined medium deprived of animal-derived raw materials up to the pilot scale (150 L), demonstrating improved results compared to commonly used, although industrially not suitable, media-rich of casein and beef extract. Biomass concentration via microfiltration on hollow fibers, and subsequent spray-drying allowed to recover of about 5.7 × 1010CFU/gpowder of viable cells, indicating strain resistance to harsh processing conditions. Overall, these data demonstrate the possibility of obtaining and maintaining adequate levels of viable L. fermentum cells by using a simple approach that is potentially suitable for industrial development. A downstream EPS purification protocol based on ultrafiltration, precipitation and activated charcoal treatments showed a purity of the recovered polysaccharides of about 70-80%.

Keywords: probiotics, fermentation, exopolysaccharides (EPSs), purification

Procedia PDF Downloads 84
5760 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method

Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha

Abstract:

In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.

Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency

Procedia PDF Downloads 154
5759 Design of Collection and Transportation System of Municipal Solid Waste in Meshkinshahr City

Authors: Ebrahim Fataei, Seyed Ali Hosseini, Zahra Arabi, Habib farhadi, Mehdi Aalipour Erdi, Seiied Taghi Seiied Safavian

Abstract:

Solid waste production is an integral part of human life and management of waste require full scientific approach and essential planning. The allocation of most management cost to collection and transportation and also the necessity of operational efficiency in this system, by limiting time consumption, and on the other hand optimum collection system and transportation is the base of waste design and management. This study was done to optimize the exits collection and transportation system of solid waste in Meshkinshahr city. So based on the analyzed data of municipal solid waste components in seven zones of Meshkinshahr city, and GIS software, applied to design storage place based on origin recycling and a route to collect and transport. It was attempted to represent an appropriate model to store, collect and transport municipal solid waste. The result shows that GIS can be applied to locate the waste container and determine a waste collection direction in an appropriate way.

Keywords: municipal solid waste management, transportation, optimizing, GIS, Iran

Procedia PDF Downloads 536
5758 Knowledge Management to Develop the Graduate Study Programs

Authors: Chuen-arom Janthimachai-amorn, Chirawadee Harnrittha

Abstract:

This study aims to identify the factors facilitating the knowledge management to develop the graduate study programs to achieve success and to identify the approaches in developing the graduate study programs in the Rajbhat Suansunantha University. The 10 respondents were the administrators, the faculty, and the personnel of its Graduate School. The research methodology was based on Pla-too Model of the Knowledge Management Institute (KMI) by allocating the knowledge indicators, the knowledge creation and search, knowledge systematization, knowledge processing and filtering, knowledge access, knowledge sharing and exchanges and learning. The results revealed that major success factors were knowledge indicators, evident knowledge management planning, knowledge exchange and strong solidarity of the team and systematic and tenacious access of knowledge. The approaches allowing the researchers to critically develop the graduate study programs were the environmental data analyses, the local needs and general situations, data analyses of the previous programs, cost analyses of the resources, and the identification of the structure and the purposes to develop the new programs.

Keywords: program development, knowledge management, graduate study programs, Rajbhat Suansunantha University

Procedia PDF Downloads 308
5757 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging

Authors: Chih-Chung Huang, Po-Hsun Peng

Abstract:

Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.

Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming

Procedia PDF Downloads 542
5756 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit

Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira

Abstract:

Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.

Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing

Procedia PDF Downloads 144
5755 Performance of Slot-Entry Hybrid Worn Journal Bearing under Turbulent Lubrication

Authors: Nathi Ram, Saurabh K. Yadav

Abstract:

In turbomachinery, the turbulent flow occurs due to the use of high velocity of low kinematic viscosity lubricants and used in many industrial applications. In the present work, the performance of symmetric slot-entry hybrid worn journal bearing under laminar and turbulent lubrication has been investigated. For turbulent lubrication, the Reynolds equation has been modified using Constantinescu turbulent model. This modified equation has been solved using the finite element method. The effect of turbulent lubrication on bearing’s performance has been presented for symmetric hybrid journal bearing. The slot-entry hybrid worn journal bearing under turbulent/laminar regimes have been investigated. It has been observed that the stiffness and damping coefficients are more for the bearing having slot width ratio (SWR) of 0.25 than the bearing with SWR of 0.5 and 0.75 under the turbulent regime. Further, it is also observed that for constant wear depth parameter, stability threshold speed gets increased for bearing operates at slot width ratio 0.25 under turbulent lubrication.

Keywords: hydrostatic bearings, journal bearings, restrictors, turbulent flow models, finite element technique

Procedia PDF Downloads 165