Search results for: testing techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9426

Search results for: testing techniques

7506 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO

Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky

Abstract:

The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.

Keywords: aeronautics, big data, data processing, machine learning, S1000D

Procedia PDF Downloads 157
7505 Corrosion Analysis of a 3-1/2” Production Tubing of an Offshore Oil and Gas Well

Authors: Suraj Makkar, Asis Isor, Jeetendra Gupta, Simran Bareja, Maushumi K. Talukdar

Abstract:

During the exploratory testing phase of an offshore oil and gas well, when the tubing string was pulled out after production testing, it was observed that there was visible corrosion/pitting in a few of the 3-1/2” API 5 CT L-80 Grade tubing. The area of corrosion was at the same location in all the tubing, i.e., just above the pin end. Since the corrosion was observed in the tubing within two months of their installation, it was a matter of concern, as it could lead to premature failures resulting in leakages and production loss and thus affecting the integrity of the asset. Therefore, the tubing was analysed to ascertain the mechanism of the corrosion occurring on its surface. During the visual inspection, it was observed that the corrosion was totally external, which was near the pin end, and no significant internal corrosion was observed. The chemical compositional analysis and mechanical properties (tensile and impact) show that the pipeline material was conforming to API 5 CT L-80 specifications. The metallographic analysis of the tubing revealed tempered martensitic microstructure. The grain size was observed to be different at the pin end as compared to the microstructure at base metal. The microstructures of the corroded area near threads reveal an oriented microstructure. The clearly oriented microstructure of the cold-worked zone near threads and the difference in microstructure represents inappropriate heat treatment after cold work. This was substantiated by hardness test results as well, which show higher hardness at the pin end in comparison to hardness at base metal. Scanning Electron Microscope (SEM) analysis revealed the presence of round and deep pits and cracks on the corroded surface of the tubing. The cracks were stress corrosion cracks in a corrosive environment arising out of the residual stress, which was not relieved after cold working, as mentioned above. Energy Dispersive Spectroscopy (EDS) analysis indicates the presence of mainly Fe₂O₃, Chlorides, Sulphides, and Silica in the corroded part indicating the interaction of the tubing with the well completion fluid and well bore environment. Thus it was concluded that residual stress after the cold working of male pins during threading and the corrosive environment acted in synergy to cause this pitting corrosion attack on the highly stressed zone along the circumference of the tubing just below the threaded area. Accordingly, the following suitable recommendations were given to avoid the recurrence of such corrosion problems in the wells. (i) After any kind of hot work/cold work, tubing should be normalized at full length to achieve uniform microstructure throughout its length. (ii) Heat treatment requirements (as per API 5 CT) should be part of technical specifications while at the procurement stage.

Keywords: pin end, microstructure, grain size, stress corrosion cracks

Procedia PDF Downloads 80
7504 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images

Authors: Eiman Kattan, Hong Wei

Abstract:

In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.

Keywords: CNNs, hyperparamters, remote sensing, land cover, land use

Procedia PDF Downloads 169
7503 Helicopter Exhaust Gases Cooler in Terms of Computational Fluid Dynamics (CFD) Analysis

Authors: Mateusz Paszko, Ksenia Siadkowska

Abstract:

Due to the low-altitude and relatively low-speed flight, helicopters are easy targets for actual combat assets e.g. infrared-guided missiles. Current techniques aim to increase the combat effectiveness of the military helicopters. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. One of them is cooling hot exhaust gasses, emitting from the engines to the atmosphere in special heat exchangers. Nowadays, this process is realized in ejective coolers, where strong heat and momentum exchange between hot exhaust gases and cold air ejected from atmosphere takes place. Flow effects of air, exhaust gases; mixture of those two and the heat transfer between cold air and hot exhaust gases are given by differential equations of: Mass transportation–flow continuity, ejection of cold air through expanding exhaust gasses, conservation of momentum, energy and physical relationship equations. Calculation of those processes in ejective cooler by means of classic mathematical analysis is extremely hard or even impossible. Because of this, it is necessary to apply the numeric approach with modern, numeric computer programs. The paper discussed the general usability of the Computational Fluid Dynamics (CFD) in a process of projecting the ejective exhaust gases cooler cooperating with helicopter turbine engine. In this work, the CFD calculations have been performed for ejective-based cooler cooperating with the PA W3 helicopter’s engines.

Keywords: aviation, CFD analysis, ejective-cooler, helicopter techniques

Procedia PDF Downloads 332
7502 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 267
7501 Energy Justice and Economic Growth

Authors: Marinko Skare, Malgorzata Porada Rochon

Abstract:

This paper study the link between energy justice and economic growth. The link between energy justice and growth has not been extensively studied. Here we study the impact and importance of energy justice, as a part of the energy transition process, on economic growth. Our study shows energy justice growth is an important determinant of economic growth and development that should be addressed at the industry and economic levels. We use panel data modeling and causality testing to research the empirical link between energy justice and economic growth. Industry and economy-level policies designed to support energy justice initiatives are beneficial to economic growth. Energy justice is a necessary condition for green growth and sustainability targets.

Keywords: energy justice, economic growth, panel data, energy transition

Procedia PDF Downloads 113
7500 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction

Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun

Abstract:

The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.

Keywords: usability, qualitative data, text-processing algorithm, natural language processing

Procedia PDF Downloads 285
7499 Assessment of the Growth Enhancement Support Scheme in Adamawa State, Nigeria

Authors: Oto J. Okwu, Ornan Henry, Victor A. Otene

Abstract:

The agricultural sector contributes a great deal to the sustenance of Nigeria’s food security and economy, with an attendant impact on rural development. In spite of the relatively high number of farmers in the country, self-sufficiency in food production is still a challenge. Farmers are faced with myriad problems which hinder their production efficiency, one of which is their access to agricultural inputs required for optimum production. To meet the challenges faced by farmers, the government at the federal level has come up with many agricultural policies, one of which is the Agricultural Transformation Agenda (ATA). The Growth Enhancement Support Scheme (GESS) is one of the critical components of ATA, which is aimed at ensuring the effective distribution of agricultural inputs delivered directly to farmers, and at a regulated cost. After about 8 years of launching this policy, it will be necessary to carry out an assessment of GESS and determine the impact it has made on rural farmers with respect to their access to farm inputs. This study was carried out to assess the Growth Enhancement Support Scheme (GESS) in Adamawa State, Nigeria. Crop farmers who registered under the GESS in Adamawa State, Nigeria, formed the population for the study. Primary data for the study were obtained through a survey, and the use of a structured questionnaire. A sample size of 167 respondents was selected using multi-stage, purposive, and random sampling techniques. The validity and reliability of the research instrument (questionnaire) were obtained through pilot testing and test-retest method, respectively. The objectives of the study were to determine the difference in the level of access to agricultural inputs before and after GESS, determine the difference in cost of agricultural inputs before and after GESS, and to determine the challenges faced by rural farmers in accessing agricultural inputs through GESS. Both descriptive and inferential statistics were used in analyzing the collected data. Specifically, Mann-Whitney, student t-test, and factor analysis were used to test the stated hypotheses. Research findings revealed there was a significant difference in the level of access to farm inputs after the introduction of GESS (Z=14.216). Also, there was a significant difference in the cost of agro-inputs after the introduction of GESS (Pr |T| > |t|= 0.0000). The challenges faced by respondents in accessing agro-inputs through GESS were administrative and technical in nature. Based on the findings of the research, it was recommended that efforts be made by the government to sustain the GESS, as it has significantly improved the level of farmers’ access to agricultural inputs and has reduced the cost of agro-inputs, while administrative challenges faced by the respondents in accessing inputs be addressed by the government, and extension agents assist the farmers to overcome the technical challenges they face in accessing inputs.

Keywords: agricultural policy, agro-inputs, assessment, growth enhancement support scheme, rural farmers

Procedia PDF Downloads 110
7498 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image

Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa

Abstract:

A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.

Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever

Procedia PDF Downloads 120
7497 Development of a Hamster Knowledge System Based on Android Application

Authors: Satien Janpla, Thanawan Boonpuck, Pattarapan Roonrakwit

Abstract:

In this paper, we present a hamster knowledge system based on android application. The objective of this system is to advice user to upkeep and feed hamsters based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on knowledge based of hamster experts. The results were divided by the research purposes into 2 parts: developing the mobile application for advice users and testing and evaluating the system. Black box technique was used to evaluate application performances and questionnaires were applied to measure user satisfaction with system usability by specialists and users.

Keywords: hamster knowledge, Android application, black box, questionnaires

Procedia PDF Downloads 341
7496 Video Sharing System Based On Wi-fi Camera

Authors: Qidi Lin, Jinbin Huang, Weile Liang

Abstract:

This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition that, it is able to send commands to camera and control the camera’s holder to rotate. The platform can be applied to interactive teaching and dangerous area’s monitoring and so on. Testing results show that the platform can share the live video of mobile phone. Furthermore, if the system’s PC sever and the camera and many mobile phones are connected together, it can transfer photos concurrently.

Keywords: Wifi Camera, socket mobile, platform video monitoring, remote control

Procedia PDF Downloads 337
7495 Effect of Highway Construction on Soil Properties and Soil Organic Carbon (Soc) Along Lagos-Badagry Expressway, Lagos, Nigeria

Authors: Fatai Olakunle Ogundele

Abstract:

Road construction is increasingly common in today's world as human development expands and people increasingly rely on cars for transportation on a daily basis. The construction of a large network of roads has dramatically altered the landscape and impacted well-being in a number of deleterious ways. In addition, the road can also shift population demographics and be a source of pollution into the environment. Road construction activities normally result in changes in alteration of the soil's physical properties through soil compaction on the road itself and on adjacent areas and chemical and biological properties, among other effects. Understanding roadside soil properties that are influenced by road construction activities can serve as a basis for formulating conservation-based management strategies. Therefore, this study examined the effects of road construction on soil properties and soil organic carbon along Lagos Badagry Expressway, Lagos, Nigeria. The study adopted purposive sampling techniques and 40 soil samples were collected at a depth of 0 – 30cm from each of the identified road intersections and infrastructures using a soil auger. The soil samples collected were taken to the laboratory for soil properties and carbon stock analysis using standard methods. Both descriptive and inferential statistical techniques were applied to analyze the data obtained. The results revealed that soil compaction inhibits ecological succession on roadsides in that increased compaction suppresses plant growth as well as causes changes in soil quality.

Keywords: highway, soil properties, organic carbon, road construction, land degradation

Procedia PDF Downloads 80
7494 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: machining, milling operation, tool condition monitoring, tool wear prediction

Procedia PDF Downloads 303
7493 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study

Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker

Abstract:

In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.

Keywords: admissions, algorithms, cloud computing, differentiation, fog computing, levelling, machine learning

Procedia PDF Downloads 142
7492 In vitro Effects of Porcine Follicular Fluid Proteins on Cell Culture Growth in Luteal Phase Porcine Oviductal Epithelial Cells

Authors: Mayuva Youngsabanant, Chanikarn Srinark, Supanyika Sengsai, Soratorn Kerdkriangkrai, Nongnuch Gumlungpat, Mayuree Pumipaiboon

Abstract:

The follicular fluid proteins of healthy medium size follicles (4-6 mm in diameters) and large size follicles (7-8 mm in diameter) of large white pig ovaries were collected by using sterile technique. They were used for testing the effect on primary in vitro cell culture growth of porcine oviductal epithelial cells (pOEC). Porcine oviductal epithelial cells of luteal phase was culture in M199 and added with 10% fetal calf serum 2.2 mg/mL, NaHCO₃, 0.25 mM pyruvate, 15 µg/mL and 50 µg/mL, gentamycin sulfate at high humidified atmosphere with 5% CO₂ in 95% air atmosphere at 37°C for 96 h before testing. The optimized concentration of pFF of two follicle sizes (at concentration of 2, 4, 20, 40, 200, 400, 500, and 600 µg proteins) in culture medium was observed for 24 h using MTT assay. Results were analyzed with a one-way ANOVA in SPSS statistic. Moreover, pOEC was also studied in morphological characteristic on long-term culture. The results of long-term study revealed that pOEC showed 70-80 percentage of healthy morphology on epithelial-like character and contained 30 percentage of an elongated shape (fibroblast-like morphology) at 4 weeks of culture time. MTT assay reviewed an increase in the percentage of viability of pOEC in 2 treated of follicular fluid groups. Two treatment concentration groups were higher than control group (p < 0.05) but not in positive control group. Interestingly, at 200 µg protein of 2 treated follicular fluid groups were reached the highest cell viability which is higher than a positive control and it is significantly different form control group (P < 0.05). These cells are developed and had fibroblast elongate shape which is longer than the cells in control group and positive control group. This report implies that pFF of medium follicle size at 200 µg proteins and large follicle size at 200 and 500 µg proteins could be optimized concentration for using as a supplement in culture medium to promote cell growth and development instead of growth hormone from fetal calf serum. It could be applied in cell biotechnology researches. Acknowledgements: The project was funded by a grant from Silpakorn University Research and Development Institute (SURDI) and Faculty of Science, Silpakorn University, Thailand.

Keywords: in vitro, porcine follicular fluid protein (pFF), porcine oviductal epithelial cells (pOEC), MTT

Procedia PDF Downloads 145
7491 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil

Procedia PDF Downloads 130
7490 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics

Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih

Abstract:

Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.

Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability

Procedia PDF Downloads 158
7489 Comparative Study on Sensory Profiles of Liquor from Different Dried Cocoa Beans

Authors: Khairul Bariah Sulaiman, Tajul Aris Yang

Abstract:

Malaysian dried cocoa beans have been reported to have low quality flavour and are often sold at discounted prices. Various efforts have been made to improve the Malaysian beans quality. Among these efforts is introduction of the shallow box fermentation technique and pulp preconditioned through pods storage. However, after nearly four decades of the effort was done, Malaysian cocoa farmers still received lower prices for their beans. So, this study was carried out in order to assess the flavour quality of dried cocoa beans produced by shallow box fermentation techniques, combination of shallow box fermentation with pods storage and compared to dried cocoa beans obtained from Ghana. A total of eight samples of dried cocoa was used in this study, which one of the samples was Ghanaian beans (coded with no.8), while the rest were Malaysian cocoa beans with different post-harvest processing (coded with no. 1, 2, 3, 4, 5, 6 and 7). Cocoa liquor was prepared from all samples in the prescribed techniques and sensory evaluation was carried out using Quantitative Descriptive Analysis (QDA) Method with 0-10 scale by Malaysian Cocoa Board trained panelist. Sensory evaluation showed that cocoa attributes for all cocoa liquors ranging from 3.5 to 5.3, whereas bitterness was ranging from 3.4 to 4.6 and astringent attribute ranging from 3.9 to 5.5, respectively. Meanwhile, all cocoa liquors were having acid or sourness attribute ranging from 1.6 to 3.6, respectively. In general cocoa liquor prepared from sample coded no 4 has almost similar flavour profile and no significantly different at p < 0.05 with Ghana, in term of most flavour attributes as compared to the other six samples.

Keywords: cocoa beans, flavour, fermentation, shallow box, pods storage

Procedia PDF Downloads 394
7488 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 38
7487 Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)

Authors: S. M. Shahinul Islam, Israt Ara, Narendra Tuteja, Sreeramanan Subramaniam

Abstract:

Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.

Keywords: androgenesis, pretreatment, microspore culture, regeneration, albino plants, Oryza sativa

Procedia PDF Downloads 362
7486 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem

Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo

Abstract:

At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.

Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system

Procedia PDF Downloads 399
7485 Accurate and Repeatable Pressure Control for Critical Testing of Advanced Ceramics Using Proportional and Derivative Controller

Authors: Benchalak Muangmeesri

Abstract:

The purpose of this paper is to discuss how to test the best control performance of a ceramics. Hydraulic press machine (HPM) is the most common shaping of advanced ceramic with products, dimensions, and ceramic products mainly from synthetic powders. A microcontroller can be achieved to control process and has set high standards in the shaping of raw materials in powder form. HPM was proposed to develop a position control system that linked to the embedded controller PIC16F877 via Proportional and Derivative (PD) controller. The model is performed using MATLAB/SIMULINK and the best control performance of an HPM. Finally, PD controller results, showing the best performance as it had the smallest overshoot and highest quality using a microcontroller control.

Keywords: ceramics, hydraulic press, microcontroller, PD controller

Procedia PDF Downloads 356
7484 Design of Torque Actuator in Hybrid Multi-DOF System with Taking into Account Magnetic Saturation

Authors: Hyun-Seok Hong, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee

Abstract:

In this paper, proposes to replace the three-phase SPM for tilting by a single-phase torque actuator of the hybrid multi-DOF system. If a three-phase motor for tilting SPM as acting as instantaneous, low electricity use efficiency, controllability is bad disadvantages. It uses a single-phase torque actuator has a high electrical efficiency compared, good controllability. Thus this will have a great influence on the development and practical use of the system. This study designed a single phase torque actuator in consideration of the magnetic saturation. And compared the SPM and FEM analysis and validation through testing of the production model.

Keywords: hybrid multi-DOF system, SPM, torque actuator, UAV, drone

Procedia PDF Downloads 611
7483 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds

Authors: N. Stevulova, I. Schwarzova

Abstract:

The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.

Keywords: hemp hurds, chemical modification, lightweight composites, testing material properties

Procedia PDF Downloads 349
7482 Evaluating the Radiation Dose Involved in Interventional Radiology Procedures

Authors: Kholood Baron

Abstract:

Radiologic interventional studies use fluoroscopy imaging guidance to perform both diagnostic and therapeutic procedures. These could result in high radiation doses being delivered to the patients and also to the radiology team. This is due to the prolonged fluoroscopy time and the large number of images taken, even when dose-minimizing techniques and modern fluoroscopic tools are applied. Hence, these procedures are part of the everyday routine of interventional radiology doctors, assistant nurses, and radiographers. Thus, it is important to estimate the radiation exposure dose they received in order to give objective advice and reduce both patient and radiology team radiation exposure dose. The aim of this study was to find out the total radiation dose reaching the radiologist and the patient during an interventional procedure and to determine the impact of certain parameters on the patient dose. Method: The radiation dose was measured by TLD devices (thermoluminescent dosimeter; radiation dosimeter device). Physicians, patients, nurses, and radiographers wore TLDs during 12 interventional radiology procedures performed in two hospitals, Mubarak and Chest Hospital. This study highlights the need for interventional radiologists to be mindful of the radiation doses received by both patients and medical staff during interventional radiology procedures. The findings emphasize the impact of factors such as fluoroscopy duration and the number of images taken on the patient dose. By raising awareness and providing insights into optimizing techniques and protective measures, this research contributes to the overall goal of reducing radiation doses and ensuring the safety of patients and medical staff.

Keywords: dosimetry, radiation dose, interventional radiology procedures, patient radiation dose

Procedia PDF Downloads 111
7481 Cut-Out Animation as an Technic and Development inside History Process

Authors: Armagan Gokcearslan

Abstract:

The art of animation has developed very rapidly from the aspects of script, sound and music, motion, character design, techniques being used and technological tools being developed since the first years until today. Technical variety attracts a particular attention in the art of animation. Being perceived as a kind of illusion in the beginning; animations commonly used the Flash Sketch technique. Animations artists using the Flash Sketch technique created scenes by drawing them on a blackboard with chalk. The Flash Sketch technique was used by primary animation artists like Emile Cohl, Winsor McCay ande Blackton. And then tools like Magical Lantern, Thaumatrope, Phenakisticope, and Zeotrap were developed and started to be used intensely in the first years of the art of animation. Today, on the other hand, the art of animation is affected by developments in the computer technology. It is possible to create three-dimensional and two-dimensional animations with the help of various computer software. Cut-out technique is among the important techniques being used in the art of animation. Cut-out animation technique is based on the art of paper cutting. Examining cut-out animations; it is observed that they technically resemble the art of paper cutting. The art of paper cutting has a rooted history. It is possible to see the oldest samples of paper cutting in the People’s Republic of China in the period after the 2. century B.C. when the Chinese invented paper. The most popular artist using the cut-out animation technique is the German artist Lotte Reiniger. This study titled “Cut-out Animation as a Technic and Development Inside History Process” will embrace the art of paper cutting, the relationship between the art of paper cutting and cut-out animation, its development within the historical process, animation artists producing artworks in this field, important cut-out animations, and their technical properties.

Keywords: cut-out, paper art, animation, technic

Procedia PDF Downloads 275
7480 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 364
7479 Markowitz and Implementation of a Multi-Objective Evolutionary Technique Applied to the Colombia Stock Exchange (2009-2015)

Authors: Feijoo E. Colomine Duran, Carlos E. Peñaloza Corredor

Abstract:

There modeling component selection financial investment (Portfolio) a variety of problems that can be addressed with optimization techniques under evolutionary schemes. For his feature, the problem of selection of investment components of a dichotomous relationship between two elements that are opposed: The Portfolio Performance and Risk presented by choosing it. This relationship was modeled by Markowitz through a media problem (Performance) - variance (risk), ie must Maximize Performance and Minimize Risk. This research included the study and implementation of multi-objective evolutionary techniques to solve these problems, taking as experimental framework financial market equities Colombia Stock Exchange between 2009-2015. Comparisons three multiobjective evolutionary algorithms, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Indicator-Based Selection in Multiobjective Search (IBEA) were performed using two measures well known performance: The Hypervolume indicator and R_2 indicator, also it became a nonparametric statistical analysis and the Wilcoxon rank-sum test. The comparative analysis also includes an evaluation of the financial efficiency of the investment portfolio chosen by the implementation of various algorithms through the Sharpe ratio. It is shown that the portfolio provided by the implementation of the algorithms mentioned above is very well located between the different stock indices provided by the Colombia Stock Exchange.

Keywords: finance, optimization, portfolio, Markowitz, evolutionary algorithms

Procedia PDF Downloads 302
7478 Management of Urban Watering: A Study of Appliance of Technologies and Legislation in Goiania, Brazil

Authors: Vinicius Marzall, Jussanã Milograna

Abstract:

The urban drainwatering remains a major challenge for most of the Brazilian cities. Not so different of the most part, Goiania, a state capital located in Midwest of the country has few legislations about the subject matter and only one registered solution of compensative techniques for drainwater. This paper clam to show some solutions which are adopted in other Brazilian cities with consolidated legislation, suggesting technics about detention tanks in a building sit. This study analyzed and compared the legislation of Curitiba, Porto Alegre e Sao Paulo, with the actual legislation and politics of Goiania. After this, were created models with adopted data for dimensioning the size of detention tanks using the envelope curve method considering synthetic series for intense precipitations and building sits between 250 m² and 600 m², with an impermeabilization tax of 50%. The results showed great differences between the legislation of Goiania and the documentation of the others cities analyzed, like the number of techniques for drainwatering applied to the reality of the cities, educational actions to awareness the population about care the water courses and political management by having a specified funds for drainwater subjects, for example. Besides, the use of detention tank showed itself practicable, have seen that the occupation of the tank is minor than 3% of the building sit, whatever the size of the terrain, granting the exit flow to pre-occupational taxes in extreme rainfall events. Also, was developed a linear equation to measure the detention tank based in the size of the building sit in Goiania, making simpler the calculation and implementation for non-specialized people.

Keywords: clean technology, legislation, rainwater management, urban drainwater

Procedia PDF Downloads 159
7477 Stress Corrosion Crackings Test of Candidate Materials in Support of the Development of the European Small Modular Supercritical Water Cooled Rector Concept

Authors: Radek Novotny, Michal Novak, Daniela Marusakova, Monika Sipova, Hugo Fuentes, Peter Borst

Abstract:

This research has been conducted within the European HORIZON 2020 project ECC-SMART. The main objective is to assess whether it is feasible to design and develop a small modular reactor (SMR) that would be cooled by supercritical water (SCW). One of the main objectives for material research concerns the corrosion of the candidate cladding materials. The experimental part has been conducted in support of the qualification procedure of the future SCW-SMR constructional materials. The last objective was to identify the gaps in current norms and guidelines. Apart from corrosion, resistance testing of candidate materials stresses corrosion cracking susceptibility tests have been performed in supercritical water. This paper describes part of these tests, in particular, those slow strain rate tensile loading applied for tangential ring shape specimens of two candidate materials, Alloy 800H and 310S stainless steel. These ring tensile tests are one the methods used for tensile testing of nuclear cladding. Here full circular heads with dimensions roughly equal to the inner diameter of the sample and the gage sections are placed in the parallel direction to the applied load. Slow strain rate tensile tests have been conducted in 380 or 500oC supercritical water applying two different elongation rates, 1x10-6 and 1x10-7 s-1. The effect of temperature and dissolved oxygen content on the SCC susceptibility of Alloy 800H and 310S stainless steel was investigated when two different temperatures and concentrations of dissolved oxygen were applied in supercritical water. The post-fracture analysis includes fractographic analysis of the fracture surfaces using SEM as well as cross-sectional analysis on the occurrence of secondary cracks. Assessment of the effect of environment and dissolved oxygen content was by comparing to the results of the reference tests performed in air and N2 gas overpressure. The effect of high temperature on creep and its role in the initiation of SCC was assessed as well. It has been concluded that the applied test method could be very useful for the investigation of stress corrosion cracking susceptibility of candidate cladding materials in supercritical water.

Keywords: stress corrosion cracking, ring tensile tests, super-critical water, alloy 800H, 310S stainless steel

Procedia PDF Downloads 87