Search results for: temperature change
11170 Nutrient in River Ecosystems Follows Human Activities More Than Climate Warming
Authors: Mohammed Abdulridha Hamdan
Abstract:
To face the water crisis, understanding the role of human activities on nutrient concentrations in aquatic ecosystems needs more investigations to compare to extensively studies which have been carried out to understand these impacts on the water quality of different aquatic ecosystems. We hypothesized human activates on the catchments of Tigris river may change nutrient concentrations in water along the river. The results showed that phosphate concentration differed significantly among the studied sites due to distributed human activities, while nitrate concentration did not. Phosphate and nitrate concentrations were not affected by water temperature. We concluded that human activities on the surrounding landscapes could be more essential sources for nutrients of aquatic ecosystems than role of ongoing climate warming. Despite the role of warming in driving nutrients availability in aquatic ecosystems, our findings suggest to take the different activities on the surrounding catchments into account in the studies caring about the trophic status classification of aquatic ecosystems.Keywords: nitrate, phosphate, anthropogenic, warming
Procedia PDF Downloads 8111169 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors
Authors: Galatee Levadoux, Trevor Benson, Chris Worrall
Abstract:
With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades
Procedia PDF Downloads 16611168 Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation
Authors: Jinge Liu, Shuyuan Min, Bingchuan Liu, Bangzhao Yin, Bo Peng, Peng Wen, Yun Tian
Abstract:
WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%.Keywords: laser powder bed fusion, biodegradable metal, high temperature oxidation, biodegradation behavior, WE43
Procedia PDF Downloads 10511167 The Actuation of Semicrystalline Poly(Vinylidene Fluoride) Tie Molecules: A Computational and Experimental Study
Authors: Abas Mohsenzadeh, Tariq Bashir, Waseen Tahir, Ulf Stigh, Mikael Skrifvars, Kim Bolton
Abstract:
The area of artificial muscles has received significant attention from many research domains including soft robotics, biomechanics and smart textiles in recent years. Poly(vinylidene fluoride) (PVDF) has been used to form artificial muscles since it contracts upon heating when under load. In this study, PVDF fibers were produced by melt spinning technique at different solid state draw ratios and then actuation mechanism for PVDF tie molecules within the semicrystalline region of PVDF polymer has been investigated using molecular dynamics simulations. Tie molecules are polymer chains that link two (or more) crystalline regions in semicrystalline polymers. The changes in fiber length upon heating have been investigated using a novel simulation technique. The results show that conformational changes of the tie molecules from the longer all-trans conformation at low temperature (β structure) to the shorter conformation (α structure) at higher temperature accrue by increasing the temperature. These results may be applied to understand the actuation observed for PVDF upon heating.Keywords: poly(vinylidene fluoride), molecular dynamics, simulation, actuators, tie molecules, semicrystalline
Procedia PDF Downloads 30811166 The Agroclimatic Atlas of Croatia for the Periods 1981-2010 and 1991-2020
Authors: Višnjica Vučetić, Mislav Anić, Jelena Bašić, Petra Sviličić, Ivana Tomašević
Abstract:
The Agroclimatic Atlas of Croatia (Atlas) for the periods 1981–2010 and 1991–2020 is monograph of six chapters in digital form. Detailed descriptions of particular agroclimatological data are given in separate chapters as follows: agroclimatic indices based on air temperature (degree days, Huglin heliothermal index), soil temperature, water balance components (precipitation, potential evapotranspiration, actual evapotranspiration, soil moisture content, runoff, recharge and soil moisture loss) and fire weather indices. The last chapter is a description of the digital methods for the spatial interpolations (R and GIS). The Atlas comprises textual description of the relevant climate characteristic, maps of the spatial distribution of climatological elements at 109 stations (26 stations for soil temperature) and tables of the 30-year mean monthly, seasonal and annual values of climatological parameters at 24 stations. The Atlas was published in 2021, on the seventieth anniversary of the agrometeorology development at the Meteorological and Hydrological Service of Croatia. It is intended to support improvement of sustainable system of agricultural production and forest protection from fire and as a rich source of information for agronomic and forestry experts, but also for the decision-making bodies to use it for the development of strategic plans.Keywords: agrometeorology, agroclimatic indices, soil temperature, water balance components, fire weather index, meteorological and hydrological service of Croatia
Procedia PDF Downloads 12711165 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 16111164 Comparative Analysis of Different Land Use Land Cover (LULC) Maps in WRF Modelling Over Indian Region
Authors: Sen Tanmoy, Jain Sarika, Panda Jagabandhu
Abstract:
The studies regarding the impact of urbanization using the WRF-ARW model rely heavily on the static geographical information selected, including domain configuration and land use land cover (LULC) data. Accurate representation of LULC data provides essential information for understanding urban growth and simulating meteorological parameters such as temperature, precipitation etc. Researchers are using different LULC data as per availability and their requirements. As far as India is concerned, we have very limited resources and data availability. So, it is important to understand how we can optimize our results using limited LULC data. In this review article, we explored how a LULC map is generated from different sources in the Indian context and what its significance is in WRF-ARW modeling to study urbanization/Climate change or any other meteorological parameters. Bibliometric analyses were also performed in this review article based on countries of study and indexed keywords. Finally, some key points are marked out for selecting the most suitable LULC map for any urbanization-related study.Keywords: LULC, LULC mapping, LANDSAT, WRF-ARW, ISRO, bibliometric Analysis.
Procedia PDF Downloads 2711163 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin
Authors: Mohammad Salehi, Mohammad Erfan Doraki
Abstract:
In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink
Procedia PDF Downloads 12211162 The Effect of Progressive Muscle Relaxation and Sleep Hygiene Education to Change Sleep Quality Index Scores of Patient with Breast Cancer
Authors: Ika Wulansari, Yati Afiyanti, Indang Trihandini
Abstract:
Sleeping disorder experienced by patients with breast cancer can affect the physical, mental, health, and well-being. This study examines the effect of progressive muscle relaxation training and sleep hygiene education to change sleep quality scores of the patient with breast cancer. The study design using quasi-experiment with pre-post test within the control group, involving 62 breast cancer patients using consecutive sampling method in Jakarta. Statistical test results with independent t-test showed a significant difference in score of sleep quality between in intervention group and the control group (6,66±3,815; 9,30±3,334, p-value = 0,005). Progressive muscle relaxation exercise and sleep hygiene education proven to be affective to change the patients sleeping quality, so that it can be an alternative therapeutic option to overcome sleeping disorders.Keywords: sleeping disorders, breast cancer, progressive muscle relaxation, sleep hygiene education
Procedia PDF Downloads 31511161 Effects of Changes in LULC on Hydrological Response in Upper Indus Basin
Authors: Ahmad Ammar, Umar Khan Khattak, Muhammad Majid
Abstract:
Empirically based lumped hydrologic models have an extensive track record of use for various watershed managements and flood related studies. This study focuses on the impacts of LULC change for 10 year period on the discharge in watershed using lumped model HEC-HMS. The Indus above Tarbela region acts as a source of the main flood events in the middle and lower portions of Indus because of the amount of rainfall and topographic setting of the region. The discharge pattern of the region is influenced by the LULC associated with it. In this study the Landsat TM images were used to do LULC analysis of the watershed. Satellite daily precipitation TRMM data was used as input rainfall. The input variables for model building in HEC-HMS were then calculated based on the GIS data collected and pre-processed in HEC-GeoHMS. SCS-CN was used as transform model, SCS unit hydrograph method was used as loss model and Muskingum was used as routing model. For discharge simulation years 2000 and 2010 were taken. HEC-HMS was calibrated for the year 2000 and then validated for 2010.The performance of the model was assessed through calibration and validation process and resulted R2=0.92 during calibration and validation. Relative Bias for the years 2000 was -9% and for2010 was -14%. The result shows that in 10 years the impact of LULC change on discharge has been negligible in the study area overall. One reason is that, the proportion of built-up area in the watershed, which is the main causative factor of change in discharge, is less than 1% of the total area. However, locally, the impact of development was found significant in built up area of Mansehra city. The analysis was done on Mansehra city sub-watershed with an area of about 16 km2 and has more than 13% built up area in 2010. The results showed that with an increase of 40% built-up area in the city from 2000 to 2010 the discharge values increased about 33 percent, indicating the impact of LULC change on discharge value.Keywords: LULC change, HEC-HMS, Indus Above Tarbela, SCS-CN
Procedia PDF Downloads 51311160 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover
Authors: Javed Mallick
Abstract:
In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islandsKeywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot
Procedia PDF Downloads 7811159 Development and Characterization of a Bio-Sourced Composite Material Based on Phase Change Material and Hemp Shives
Authors: Hachmi Toifane, Pierre Tittelein, Anh Dung Tran Le, Laurent Zalewsi
Abstract:
This study introduces a composite material composed of bio-sourced phase-change material (PCM) of plant origin combined with hemp shives, developed in response to environmental challenges in the construction sector. The state of the art emphasizes the low thermal storage capacity of bio-based materials and highlights increasing need for developing sustainable materials that offer optimal thermal, mechanical, and hydric performances. The combining of PCM's thermal properties and hygric properties of hemp shives results in a material that combines lightness, strength, and hygrothermal regulation. Various formulations are being assessed and compared to conventional hemp concrete. Thermal characterization includes the measurements of thermal conductivity and numerical simulations to evaluate the thermal storage capacity. The results indicate that the addition of PCM significantly enhances the material's thermal storage capacity, positioning this one as a promising, eco-friendly solution for sustainable construction and for improving the energy efficiency of buildings.Keywords: hemp composite, bio-sourced phase change material, thermal storage, hemp shives
Procedia PDF Downloads 4511158 Polygeneration Solar Thermal System
Authors: S. K. Deb, B. C. Sarma
Abstract:
The concentrating solar thermal devices using low cost thin metallic reflector sheet of moderate reflectance can generate heat both at higher temperature for the receiver at it’s focus and at moderate temperature through direct solar irradiative heat absorption by the reflector sheet itself. Investigation on well insulated rear surface of the concentrator with glass covers at it’s aperture plane for waste heat recovery against the conventional radiative, convective & conductive heat losses for a bench model with a thermal analysis is the prime motivation of this study along with an effort to popularize a compact solar thermal polygeneration system.Keywords: concentrator, polygeneration, aperture, renewable energy, exergy, solar energy
Procedia PDF Downloads 52811157 Investigating of the Fuel Consumption in Construction Machinery and Ways to Reduce Fuel Consumption
Authors: Reza Bahboodian
Abstract:
One of the most important factors in the use of construction machinery is the fuel consumption cost of this equipment. The use of diesel engines in off-road vehicles is an important source of nitrogen oxides and particulate matter. Emissions of nitrogen oxides and particulate matter 10 in off-road vehicles (construction and mining) may be high. Due to the high cost of fuel, it is necessary to minimize fuel consumption. Factors affecting the fuel consumption of these cars are very diverse. Climate changes such as changes in pressure, temperature, humidity, fuel type selection, type of gearbox used in the car are effective in fuel consumption and pollution, and engine efficiency. In this paper, methods for reducing fuel consumption and pollutants by considering valid European and European standards are examined based on new methods such as hybridization, optimal gear change, adding hydrogen to diesel fuel, determining optimal working fluids, and using oxidation catalysts.Keywords: improve fuel consumption, construction machinery, pollutant reduction, determining the optimal working cycle
Procedia PDF Downloads 16111156 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions
Authors: M. Y. Malik, Farzana Khan
Abstract:
In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity
Procedia PDF Downloads 42311155 Numerical Studies on the Performance of the Finned-Tube Heat Exchanger
Authors: S. P. Praveen Kumar, Bong-Su Sin, Kwon-Hee Lee
Abstract:
Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc. Finned-tube heat exchangers are common devices; however, their performance characteristics are complicated. In this paper, numerical studies have been carried out to analyze the performances of finned tube heat exchanger (without fins considered for experimental purpose) by predicting the characteristics of temperature difference and pressure drop. In this study, a design considering 5 design variables, maximizing the temperature difference and minimizing the pressure drop was suggested by applying DOE. In this process, L18 orthogonal array was adopted. Parametric analytical studies have been carried out using Analysis of Variance (ANOVA) to determine the relative importance of each variable with respect to the temperature difference and the pressure drop. Following the results, the final design was suggested by predicting the optimum design therefore confirming the optimized condition.Keywords: heat exchanger, fluid analysis, heat transfer, design of experiment, analysis of variance
Procedia PDF Downloads 44611154 Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer
Authors: Abdul Hadi Bin Abdol Rahim, Alhassan Salami Tijani
Abstract:
Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.Keywords: diffusion, gases crosover, steady state, Fick’s law
Procedia PDF Downloads 33011153 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams
Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali
Abstract:
This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.Keywords: experimental, fire, high strength concrete beams, monotonic loading
Procedia PDF Downloads 40211152 RFID Logistic Management with Cold Chain Monitoring: Cold Store Case Study
Authors: Mira Trebar
Abstract:
Logistics processes of perishable food in the supply chain include the distribution activities and the real time temperature monitoring to fulfil the cold chain requirements. The paper presents the use of RFID (Radio Frequency Identification) technology as an identification tool of receiving and shipping activities in the cold store. At the same time, the use of RFID data loggers with temperature sensors is presented to observe and store the temperatures for the purpose of analyzing the processes and having the history data available for traceability purposes and efficient recall management.Keywords: logistics, warehouse, RFID device, cold chain
Procedia PDF Downloads 63111151 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis
Authors: Akinola Ikudayisi, Josiah Adeyemo
Abstract:
The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts
Procedia PDF Downloads 25811150 Silviculture for Climate Change: Future Scenarios for Nigeria Forests
Authors: Azeez O. Ganiyu
Abstract:
Climate change is expected to lead to substantial changes in rainfall patterns in southwest Nigeria, and this may have substantial consequence for forest management and for conservation outcomes throughout the region. We examine three different forest types across an environmental spectrum from semi-arid to humid subtropical and consider their response to water shortages and other environmental stresses; we also explore the potential consequence for conservation and timber production by considering impacts on forest structure and limiting stand density. Analysis of a series of scenarios provides the basis for a critique of existing management practices and suggests practical alternatives to develop resilient forests with minimal diminution of production and environmental services. We specifically discuss practical silviculture interventions that are feasible at the landscape-scale, that are economically viable, and that have the potential to enhance resilience of forest stands. We also discuss incentives to encourage adoption of these approaches by private forest owners. We draw on these case studies in southwestern Nigeria to offer generic principle to assist forest researchers and managers faced with similar challenges elsewhere.Keywords: climate change, forest, future, silviculture, Nigeria
Procedia PDF Downloads 11511149 Influence of the Test Environment on the Dynamic Response of a Composite Beam
Authors: B. Moueddene, B. Labbaci, L. Missoum, R. Abdeldjebar
Abstract:
Quality estimation of the experimental simulation of boundary conditions is one of the problems encountered while performing an experimental program. In fact, it is not easy to estimate directly the effective influence of these simulations on the results of experimental investigation. The aim of this is article to evaluate the effect of boundary conditions uncertainties on structure response, using the change of the dynamics characteristics. The experimental models used and the correlation by the Frequency Domain Assurance Criterion (FDAC) allowed an interpretation of the change in the dynamic characteristics. The application of this strategy to stratified composite structures (glass/ polyester) has given satisfactory results.Keywords: vibration, composite, endommagement, correlation
Procedia PDF Downloads 36611148 Norms and Laws: Fate of Community Forestry in Jharkhand
Authors: Pawas Suren
Abstract:
The conflict between livelihood and forest protection has been a perpetual phenomenon in India. In the era of climate change, the problem is expected to aggravate the declining trend of dense forest in the country, creating impediments in the climate change adaptation by the forest dependent communities. In order to access the complexity of the problem, Hazarinagh and Chatra districts of Jharkhand were selected as a case study. To identify norms practiced by the communities to manage community forestry, the ethnographic study was designed to understand the values, traditions, and cultures of forest dependent communities, most of whom were tribal. It was observed that internalization of efficient forest norms is reflected in the pride and honor of such behavior while violators are sanctioned through guilt and shame. The study analyzes the effect of norms being practiced in the management and ecology of community forestry as common property resource. The light of the findings led towards the gaps in the prevalent forest laws to address efficient allocation of property rights. The conclusion embarks on reconsidering accepted factors of forest degradation in India.Keywords: climate change, common property resource, community forestry, norms
Procedia PDF Downloads 34311147 Exfoliation of Functionalized High Structural Integrity Graphene Nanoplatelets at Extremely Low Temperature
Authors: Mohannad N. H. Al-Malichi
Abstract:
Because of its exceptional properties, graphene has become the most promising nanomaterial for the development of a new generation of advanced materials from battery electrodes to structural composites. However, current methods to meet requirements for the mass production of high-quality graphene are limited by harsh oxidation, high temperatures, and tedious processing steps. To extend the scope of the bulk production of graphene, herein, a facile, reproducible and cost-effective approach has been developed. This involved heating a specific mixture of chemical materials at an extremely low temperature (70 C) for a short period (7 minutes) to exfoliate functionalized graphene platelets with high structural integrity. The obtained graphene platelets have an average thickness of 3.86±0.71 nm and a lateral size less than ~2 µm with a low defect intensity ID/IG ~0.06. The thin film (~2 µm thick) exhibited a low surface resistance of ~0.63 Ω/sq⁻¹, confirming its high electrical conductivity. Additionally, these nanoplatelets were decorated with polar functional groups (epoxy and carboxyl groups), thus have the potential to toughen and provide multifunctional polymer nanocomposites. Moreover, such a simple method can be further exploited for the novel exfoliation of other layered two-dimensional materials such as MXenes.Keywords: functionalized graphene nanoplatelets, high structural integrity graphene, low temperature exfoliation of graphene, functional graphene platelets
Procedia PDF Downloads 12011146 Optimization of Reaction Parameters' Influences on Production of Bio-Oil from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in a Fluidized Bed Reactor
Authors: Chayanoot Sangwichien, Taweesak Reungpeerakul, Kyaw Thu
Abstract:
Oil palm mills in Southern Thailand produced a large amount of biomass solid wastes. Lignocellulose biomass is the main source for production of biofuel which can be combined or used as an alternative to fossil fuels. Biomass composed of three main constituents of cellulose, hemicellulose, and lignin. Thermochemical conversion process applied to produce biofuel from biomass. Pyrolysis of biomass is the best way to thermochemical conversion of biomass into pyrolytic products (bio-oil, gas, and char). Operating parameters play an important role to optimize the product yields from fast pyrolysis of biomass. This present work concerns with the modeling of reaction kinetics parameters for fast pyrolysis of empty fruit bunch in the fluidized bed reactor. A global kinetic model used to predict the product yields from fast pyrolysis of empty fruit bunch. The reaction temperature and vapor residence time parameters are mainly affected by product yields of EFB pyrolysis. The reaction temperature and vapor residence time parameters effects on empty fruit bunch pyrolysis are considered at the reaction temperature in the range of 450-500˚C and at a vapor residence time of 2 s, respectively. The optimum simulated bio-oil yield of 53 wt.% obtained at the reaction temperature and vapor residence time of 450˚C and 2 s, 500˚C and 1 s, respectively. The simulated data are in good agreement with the reported experimental data. These simulated data can be applied to the performance of experiment work for the fast pyrolysis of biomass.Keywords: kinetics, empty fruit bunch, fast pyrolysis, modeling
Procedia PDF Downloads 21411145 The Effects of Anapana Meditation Training Program Monitored by Skin Conductance and Temperature (SC/ST) Biofeedback on Stress in Bachelor’s Degree Students
Authors: Ormanee Patarathipakorn
Abstract:
Background: Stress was the major psychological problem that affecting to physical and mental health among undergraduate students. Aim of study was to determine the effective of meditation training program (MTP) for stress reduction measured by biofeedback (BB) machine. Material and Methods: This was quasi-experimental study conducted in Faculty of Dentistry, Thammasat University, Thailand. Study period was between August and December 2023. Participants were the first-year Dentistry students. MTP was concentration meditation (Anapana meditation). Stress measurement was evaluated by using Thai version perceived stress scale (T-PSS-10) was performed at one week before study, 14 and 18 weeks. Stress evaluation by biofeedback machine (skin conductance: SC and skin temperature: ST) were performed at one week before study, 4, 8, 14 and 18 weeks. Data from T-PSS-10 and SC/ST biofeedback were collected and analyzed. Results: A total of 28 subjects were recruited. The mean age of participant was 18.4 years old. Two-thirds (19/28) was female. Stress reduction from MTP was detected since 4 and 8 weeks by STBB and SCBB, respectively. T-PSS 10 scores before MTP, 14 and 18 weeks were 17.7± 5.4, 9.8 ± 3.1 and 8.4 ± 3.1 with statistical significance. Conclusion: Meditation training program could reduce stress and measured by skin conductance and temperature biofeedback.Keywords: stress, meditation, biofeedback, student
Procedia PDF Downloads 3711144 Social Media and the Future of Veganism Influence on Gender Norms
Authors: Athena Johnson
Abstract:
Veganism has seen a rapid increase in members over recent years. Understanding the mechanisms of social change associated with these dietary practices in relation to gender is significant as these groups may seem small, but they have a large impact as they influence many and change the food market. This research article's basic methodology is primarily a deep article research literature review with empirical research. The research findings show that the popularity of veganism is growing, in large part due to the extensive use of social media, which dispels longstanding gendered connotations with food, such as the correlations between meat and masculinity.Keywords: diversity, gender roles, social media, veganism
Procedia PDF Downloads 11311143 Optimization of Oxygen Plant Parameters Simulating with MATLAB
Authors: B. J. Sonani, J. K. Ratnadhariya, Srinivas Palanki
Abstract:
Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market.Keywords: cryogenic, liquefaction, low -temperature, oxygen, claude cycle, optimization, MATLAB
Procedia PDF Downloads 32211142 Effects of Effort and Water Quality on Productivity (CPUE) of Hampal (Hampala macrolepidota) Resources in Jatiluhur Dam, West Java
Authors: Ririn Marinasari, S. Pi
Abstract:
Hampal (Hampala macrolepidota) is one of Citarum river indigenous fishes that still find in Jatiluhur dam. IUCN at 2013 said that hampal listed on redlist species category, this species was rare in Jatiluhur dam. This species more and more decreasing because change of habitats characteristic such as water quality and fishing effort. This study aims to determine and identify the influence of fishing effort and the quality of water on the productivity of fish resources hampal (Hampala macrolepidota) in Jatiluhur. The study was conducted from October to November 2013. Zones of research include lacustrine zone, transition and Riverin. Hampal fish productivity value computed by Hampal’s CPUE values. The results showed that fish MSY hampal obtained from surplus production model of Schaefer is equal to 0.2045 tons / quarterly. In the years 2011-2012 have occurred over fishing in 2013 while still under fishing. Total catches have exceeded the MSY during the year 2011 and the third quarterly of 2012 tons of fish that exceed 0.2045 hampal. The rate of utilization of fish resources hampal is equal to 80% of MSY or equal to the allowable catch (Total Allowable Catch) for fish in Jatiluhur hampal based Schaefer surplus production theory. Fishing effort, water quality parameters such as DO, turbidity and negatively correlated sulfide as H2S, while the temperature and pH positively correlated to productivity or unit catches fish hampal efforts in quarterly time series in the period 2011-2013. Shows that the higher fishing effort, DO, turbidity and sulfide in H2S and diminishing the temperature and pH of the productivity decreases. Variables that affect the productivity of fishing hampal only H2S only factor beta coefficient -0.834 which indicates a negative effect. It can be caused by H2S levels are toxic and have already exceeded the quality standard, while for other water quality parameters are still below the maximum standards allowed in the waters. Result of the study can be a reference of fishing regulation for hampal conservation in Jatiluhur dam.Keywords: effort, hampal, productivity, water quality
Procedia PDF Downloads 29811141 Analysis of Weather Radar Data for the Cloud Seeding in Korea, 2018
Authors: Yonghun Ro, Joo-Wan Cha, Sanghee Chae, Areum Ko, Woonseon Jung, Jong-Chul Ha
Abstract:
National Institute of Meteorological Science (NIMS) in South Korea has performed the cloud seeding to support the field of cloud physics. This is to determine the precipitation occurrence analyzing the changes in the microphysical schemes of clouds. NIMS conducted 12 times of cloud seeding in the lower height of the troposphere at Kangwon and Kyunggi provinces throughout 2018. The change in the reflectivity of the weather radar was analyzed to verify the enhancement of precipitation according to the cloud seeding in this study. First, the natural system in the near of the target area was separated to clear the seeding effect. The radar reflectivity in the point of ground gauge station was extracted in every 10 minutes and the increased values during the reaction time of cloud particles and seeding materials were estimated as a seeding effect considering the cloud temperature, wind speed and direction, and seeding line that the aircraft had passed by. The radar reflectivity affected by seeding materials was showed an increment of 5 to 10 dBZ, and enhanced precipitation cloud was also detected in the 11 cases of cloud seeding experiments.Keywords: cloud seeding, reflectivity, weather radar, seeding effect
Procedia PDF Downloads 170