Search results for: mental image
2622 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring
Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie
Abstract:
Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement
Procedia PDF Downloads 102621 Two Fold Dimensional Analysis of Post-Employment Dissonance in Employer Branding Framework of it SMES
Authors: J. Janani, S. Gomathi
Abstract:
Despite the new economy is embodied with the ample size of talent pool, the corporate world is facing the hardship in the mismatch of talent demand supply. Therefore to combat with this fallout crisis, here depicts the relevance of Employer Branding. Employer branding is gaining its popularity in Large sized companies especially IT companies but less employer branding awareness among IT SMEs (Small and Medium size Enterprises). There are N range of analysis has been dole out on employer branding from different perspectives and in different industries. The hidden factor behind the employer branding namely the post employment dissonance was not given a lot of importance into the research picture. The present study examines the employer branding as the employer image and the organizational identity. It focuses on the two fold dimensional branding initiatives namely job offer attributes and organizational attractiveness. The study will depict the dissonance level and their variations among the foresaid initiatives from the former employees and the post-employment dissonance from the present employees in IT SMEs and it will also examine the employer perception from the prospective employees towards the stated branding initiatives. The demographic factors such as generational factors (gen X and gen Y) and the career stages are majorly focused in the study. The study will promote the IT SMEs to strengthen their employer branding effectively and efficiently through implementing varied strategies and this will help them to enhance the talent pool at their best. This will eventually result in talent attraction and talent retention.Keywords: employer image, organizational identity, post-employment dissonance, job offer attributes, organizational attractiveness, talent pool, career stages, generational factors, information technology, SMEs
Procedia PDF Downloads 4962620 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 642619 Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices
Authors: Zhuang Yiwen
Abstract:
The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety.Keywords: medical device tracking, unique device identifier, barcoding and image recognition, systematized nomenclature of medicine clinical terms
Procedia PDF Downloads 772618 Investigating Kinetics and Mathematical Modeling of Batch Clarification Process for Non-Centrifugal Sugar Production
Authors: Divya Vats, Sanjay Mahajani
Abstract:
The clarification of sugarcane juice plays a pivotal role in the production of non-centrifugal sugar (NCS), profoundly influencing the quality of the final NCS product. In this study, we have investigated the kinetics and mathematical modeling of the batch clarification process. The turbidity of the clarified cane juice (NTU) emerges as the determinant of the end product’s color. Moreover, this parameter underscores the significance of considering other variables as performance indicators for accessing the efficacy of the clarification process. Temperature-controlled experiments were meticulously conducted in a laboratory-scale batch mode. The primary objective was to discern the essential and optimized parameters crucial for augmenting the clarity of cane juice. Additionally, we explored the impact of pH and flocculant loading on the kinetics. Particle Image Velocimetry (PIV) is employed to comprehend the particle-particle and fluid-particle interaction. This technique facilitated a comprehensive understanding, paving the way for the subsequent multiphase computational fluid dynamics (CFD) simulations using the Eulerian-Lagrangian approach in the Ansys fluent. Impressively, these simulations accurately replicated comparable velocity profiles. The final mechanism of this study helps to make a mathematical model and presents a valuable framework for transitioning from the traditional batch process to a continuous process. The ultimate aim is to attain heightened productivity and unwavering consistency in product quality.Keywords: non-centrifugal sugar, particle image velocimetry, computational fluid dynamics, mathematical modeling, turbidity
Procedia PDF Downloads 712617 Substitutional Inference in Poetry: Word Choice Substitutions Craft Multiple Meanings by Inference
Authors: J. Marie Hicks
Abstract:
The art of the poetic conjoins meaning and symbolism with imagery and rhythm. Perhaps the reader might read this opening sentence as 'The art of the poetic combines meaning and symbolism with imagery and rhythm,' which holds a similar message, but is not quite the same. The reader understands that these factors are combined in this literary form, but to gain a sense of the conjoining of these factors, the reader is forced to consider that these aspects of poetry are not simply combined, but actually adjoin, abut, skirt, or touch in the poetic form. This alternative word choice is an example of substitutional inference. Poetry is, ostensibly, a literary form where language is used precisely or creatively to evoke specific images or emotions for the reader. Often, the reader can predict a coming rhyme or descriptive word choice in a poem, based on previous rhyming pattern or earlier imagery in the poem. However, there are instances when the poet uses an unexpected word choice to create multiple meanings and connections. In these cases, the reader is presented with an unusual phrase or image, requiring that they think about what that image is meant to suggest, and their mind also suggests the word they expected, creating a second, overlying image or meaning. This is what is meant by the term 'substitutional inference.' This is different than simply using a double entendre, a word or phrase that has two meanings, often one complementary and the other disparaging, or one that is innocuous and the other suggestive. In substitutional inference, the poet utilizes an unanticipated word that is either visually or phonetically similar to the expected word, provoking the reader to work to understand the poetic phrase as written, while unconsciously incorporating the meaning of the line as anticipated. In other words, by virtue of a word substitution, an inference of the logical word choice is imparted to the reader, while they are seeking to rationalize the word that was actually used. There is a substitutional inference of meaning created by the alternate word choice. For example, Louise Bogan, 4th Poet Laureate of the United States, used substitutional inference in the form of homonyms, malapropisms, and other unusual word choices in a number of her poems, lending depth and greater complexity, while actively engaging her readers intellectually with her poetry. Substitutional inference not only adds complexity to the potential interpretations of Bogan’s poetry, as well as the poetry of others, but provided a method for writers to infuse additional meanings into their work, thus expressing more information in a compact format. Additionally, this nuancing enriches the poetic experience for the reader, who can enjoy the poem superficially as written, or on a deeper level exploring gradations of meaning.Keywords: poetic inference, poetic word play, substitutional inference, word substitution
Procedia PDF Downloads 2382616 The Development of the First Inter-Agency Residential Rehabilitation Service for Gambling Disorder with Complex Clinical Needs
Authors: Dragos Dragomir-Stanciu, Leon Marsh
Abstract:
Background As a response to the gaps identified in recent research in the provision of residential care to address co-occurring health needs, including mental health problems and complexities Gamble Aware has facilitated the possibility to provide a new service which would extend the NGTS provision of residential rehabilitation for gambling disorder with complex and co-morbid presentation. Gordon Moody, together with Adferiad have been successful in securing the tender for this service and this presentation aims to introduce FOLD, the resulting model of treatment developed for the delivery of the service. Setting As a partnership, we have come together to coproduce a model which allows us to share our clinical and industry knowledge and build on our reputations as trusted treatment providers. The presentation will outline our expertise share in development of a unified approach to recovery-oriented models of care, clinical governance, risk assessment and management and aftercare and continuous recovery. We will also introduce our innovative specialist referral portal which will offer referring partners the ability to include the service user in planning their own recovery journey. Outcomes Our collaboration has resulted in the development of the FOLD model which includes three agile and flexible treatment packages aimed at offering the most enhanced and comprehensive treatment in UK, to date, for those most affected by gambling harm. The paper will offer insight into each treatment package and all recovery model stages involved, as well as into the partnership work with NGST providers, local mental health and social care providers and lived experience organisation that will enable us to offer support to more 100 people a year who would otherwise get “lost in the system”. Conclusion FOLD offers a great opportunity to develop, implement and evaluate a new, much needed, whole-person and whole-system approach to counter gambling related harms.Keywords: gambling treatment, partnership working, integrated care pathways, NGTS, complex needs
Procedia PDF Downloads 1342615 'It Is a Sin to Be in Love with a Disabled Woman': Stigma, Rejection and Intersections of Womanhood and Violence among Physically Disabled Women Living in South Africa
Authors: Ingrid Van Der Heijden, Naeemah Abrahams, Jane Harries
Abstract:
Background: Commonly, womanhood is defined as the qualities considered to be natural to or characteristic of a woman. However, womanhood is not a static concept; it is contextual and negotiable. For women with disabilities, gender roles or ‘qualities’ of womanhood are often overstated or contradicted because of assumptions of weakness, passivity, asexuality and infertility. Currently, little is known about how disability stigma intersects with notions of womanhood to make women with disabilities vulnerable to violence, or how women navigate this intersection to prevent or protect themselves from violence. Objective: To describe how the stigmatized constructions of womanhood and disability promote women with physical disabilities’ exposure to or protection from violence. Methods: Qualitative data for this paper comes from a doctoral study involving women with disabilities living in Cape Town, South Africa. It presents data from repeat in-depth interviews with 30 women with a range of physical impairments. Women attending protective workshops, rehabilitative centers and residential care facilities for people living with disabilities were invited to participate. Consent procedures and interviews were conducted by the first author (who is herself a woman living with a physical disability), and a female research assistant/translator who is a qualified occupational therapist. Reasonable accommodation is central to the methodology and the study as a whole. Findings: Descriptive and thematic analyses reveal how stigma and local constructions around womanhood, as well as women’s self-image and physical limitations, promotes women’s exposure to psychological, physical and sexual violence. It reveals how disabled women feel they are presumed incapable of living up to expectations of a ‘proper’ woman. This plays out as psychological violence, with women reporting that they feel ‘devalued,' ‘rejected’ and deprived of lasting intimate relationships. Furthermore, forms of psychological violence perpetuate physical and sexual violence. Women also discuss using strategies to prevent violence; by refusing to date, avoiding certain places or avoiding isolation, creating awareness, hiding their physical impairments, and exaggerating their ‘femininity.' Implications: Service providers need to be made aware of women’s violence experiences, and provide a range of accessible psychological and mental health services to women living with disabilities, as well as raising awareness around disability, and violence prevention, among caregivers, men, and women. Violence awareness and prevention interventions need to involve disability experts, researchers and people with disabilities.Keywords: disability, gender, stigma, violence awareness and prevention interventions
Procedia PDF Downloads 3522614 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques
Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri
Abstract:
Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology
Procedia PDF Downloads 1552613 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit
Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana
Abstract:
Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification
Procedia PDF Downloads 1552612 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images
Authors: U. Datta
Abstract:
The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection
Procedia PDF Downloads 1352611 Determination of ILSS of Composite Materials Using Micromechanical FEA Analysis
Authors: K. Rana, H.A.Saeed, S. Zahir
Abstract:
Inter Laminar Shear Stress (ILSS) is a main key parameter which quantify the properties of composite materials. These properties can ascertain the use of material for a specific purpose like aerospace, automotive etc. A modelling approach for determination of ILSS is presented in this paper. Geometric modelling of composite material is performed in TEXGEN software where reinforcement, cured matrix and their interfaces are modelled separately as per actual geometry. Mechanical properties of matrix and reinforcements are modelled separately which incorporated anisotropy in the real world composite material. ASTM D2344 is modelled in ANSYS for ILSS. In macroscopic analysis model approximates the anisotropy of the material and uses orthotropic properties by applying homogenization techniques. Shear Stress analysis in that case does not show the actual real world scenario and rather approximates it. In this paper actual geometry and properties of reinforcement and matrix are modelled to capture the actual stress state during the testing of samples as per ASTM standards. Testing of samples is also performed in order to validate the results. Fibre volume fraction of yarn is determined by image analysis of manufactured samples. Fibre volume fraction data is incorporated into the numerical model for correction of transversely isotropic properties of yarn. A comparison between experimental and simulated results is presented.Keywords: ILSS, FEA, micromechanical, fibre volume fraction, image analysis
Procedia PDF Downloads 3732610 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network
Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal
Abstract:
This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography
Procedia PDF Downloads 1432609 The Desire for Significance & Memorability in Popular Culture: A Cognitive Psychological Study of Contemporary Literature, Art, and Media
Authors: Israel B. Bitton
Abstract:
“Memory” is associated with various phenomena, from physical to mental, personal to collective and historical to cultural. As part of a broader exploration of memory studies in philosophy and science (slated for academic publication October 2021), this specific study employs analytical methods of cognitive psychology and philosophy of memory to theorize that A) the primary human will (drive) is to significance, in that every human action and expression can be rooted in a most primal desire to be cosmically significant (however that is individually perceived); and B) that the will to significance manifests as the will to memorability, an innate desire to be remembered by others after death. In support of these broad claims, a review of various popular culture “touchpoints”—historic and contemporary records spanning literature, film and television, traditional news media, and social media—is presented to demonstrate how this very theory is repeatedly and commonly expressed (and has been for a long time) by many popular public figures as well as “everyday people.” Though developed before COVID, the crisis only increased the theory’s relevance: so many people were forced to die alone, leaving them and their loved ones to face even greater existential angst than what ordinarily accompanies death since the usual expectations for one’s “final moments” were shattered. To underscore this issue of, and response to, what can be considered a sociocultural “memory gap,” this study concludes with a summary of several projects launched by journalists at the height of the pandemic to document the memorable human stories behind COVID’s tragic warped speed death toll that, when analyzed through the lens of Viktor E. Frankl’s psychoanalytical perspective on “existential meaning,” shows how countless individuals were robbed of the last wills and testaments to their self-significance and memorability typically afforded to the dying and the aggrieved. The resulting insight ought to inform how government and public health officials determine what is truly “non-essential” to human health, physical and mental, at times of crisis.Keywords: cognitive psychology, covid, neuroscience, philosophy of memory
Procedia PDF Downloads 1842608 The Social Construction of Diagnosis: An Exploratory Study on Gender Dysphoria and Its Implications on Personal Narratives
Authors: Jessica Neri, Elena Faccio
Abstract:
In Europe, except for Denmark and Malta, the legal gender change and the stages of the possible process of gender transition are bound to the diagnosis of a gender identity disorder. The requirement of the evaluation of a mental disorder might have many implications on trans people’s self-representations, interpersonal relations in different social contexts and the therapeutic relations with clinicians during the transition. Psychopathological language may contribute to define the individual’s reality from normative presuppositions with value implications related to the dominant cultural principles. In an effort to mark the boundaries between sanity and pathology, it concurs to the definition of the management procedures of the constructed diversities and deviances, legitimizing the operational practices of particular professional figures. The aim of this research concerns the analysis of the diagnostic category of gender dysphoria contained in the last edition of the Diagnostic and Statistical Manual of Mental Disorders. In particular, this study focuses on the relationship between the implicit and explicit assumptions related to the expressions of gender non-conformity, that sustain the language and the criteria characterizing the Manual, and the possible implications on people’s narratives of transition. In order to achieve this objective two main research methods were used: historical reconstruction of the diagnostic category in the different versions of the Manual and content analysis of that category in the present version. From the historical analysis, in the medical and psychiatric field gender non-conformity has been predominantly explicated by naturalistic perspectives, naming it ‘transsexualism’ and collocating it in the category of gender identity disorder. Currently, pathological judged experiences are represented by gender dysphoria, described in the DSM-5 as the distress that may accompany the incongruence between one's experienced or expressed gender and one's assigned gender, specifying that there must be ‘evidence’ of this. Implicit theories about gender binary, parallelism between gender identity, sex and sexuality and the understanding of the mental health and the subject’s agency as subordinated to the expert knowledge, can be found in the process of designation of the category. A lack of awareness of the historical, social and political aspects connected to the cultural and normative dimensions at the basis of these implicit theories, can be noticed and data given by culture and data given by supposed -biological or psychological- nature, are often confused. This reductionist interpretation of gender and its presumed diversities legitimize the clinician to assume the role of searching and orienting, in a correctional perspective, the biographical elements that correspond to him specific expectations, with no space for other possibilities and identity configurations for people in transition. This research may contribute to the current critical debate about the epistemological foundation of the psychodiagnosis, emphasizing the pragmatic effects on the individuals and on the psychological practice in its wider social context. This work also permits to underline the risks due to the lack of awareness of the processes of social construction of the diagnostic system and its essential role of defence of the values that hold up the symbolic universe of reference.Keywords: diagnosis, gender dysphoria, narratives, social constructionism
Procedia PDF Downloads 2292607 Exploring Suicidal Behaviors among Transgender and Gender Nonconforming Youth in China
Authors: Krystal Wang, Chongzheng Wei, Runsen Chen, Shufang Sun
Abstract:
Suicide is a global public mental health issue and is the tenth leading cause of death globally. Approximately 75% of suicides occur in low- and middle-income countries (LMIC). Compared to the general population, transgender and gender nonconforming (TGNC) young people have higher suicidal risks. Research has shown that the prevalence of suicidal behaviors among TGNC populations was high in both the United States and China. However, studies were mostly embedded within Western cultures. Limited data and research were available to assess suicidal behaviors among TGNC youth in LMIC countries and to consider various types of TGNC youth. The goal of the current project is to 1) investigate the prevalence of lifetime and past-year suicidal ideations, plans, and attempts among Chinese TGNC youth, 2) explore the relationship between gender identity and suicidal outcomes among TGNC youth in China, 3) identify individual, school, and family level risk and protective factors for suicidal behaviors. The study used data from a cross-sectional survey conducted by Beijing LGBTQ Center in 2021. The survey was the largest TGNC population study in China to understand the health conditions of TGNC individuals. Of the 7612 individuals who completed the survey, a total of 5632 youth (aged 10 to 19) was included in the final analysis. 2259 (40.11%) participants were categorized as transfeminine youth, 1034 (18.36%) as transmasculine youth, 1169 (20.76%) as nonbinary youth AFAB, 568 (10.09%) as nonbinary youth AMAB, 344 (6.11%) as questioning youth AFAB and 258 (4.58%) as questioning youth AMAB. Suicidal behaviors were assessed by asking about lifetime suicidal ideation and attempts, past 12 months suicidal ideation, plan and attempts, and suicidal methods. To achieve the aims, we conducted statistical analysis in Stata/SE 17.0 to 1) describe the prevalence of suicidal outcomes and 2) assess the relationship between gender identity and suicidal outcomes by performing crosstabs, bivariate and multivariate logistic regressions, and adjusting for covariates. The lifetime prevalence of suicidal ideations and attempts for the whole sample was 85.13% and 51.7%. Transfeminine youth had a significantly higher risk for lifetime suicidal ideations (Odds Ratios (OR) = 1.67, CI:1.28,2.18) and attempts than transmasculine youth (OR=1.66, CI: 1.35,2.03), adjusting for age and past year binge drinking, known risk factors of suicide behavior. Past-year prevalence of suicidal behaviors was also high among TGNC youth, with 75.69% in suicidal ideation, 88.77% in suicidal plans, and 57.96% in suicidal attempts. Transfeminine youth, among six subgroups, had the highest risk for past-year suicidal ideations and attempts compared to transmasculine youth. Non-binary youth, regardless of sex assigned at birth, also had a significantly higher risk for suicidal ideations. The prevalence of lifetime and past-year suicidal behaviors was alarming among TGNC youth in China. Among different categories of TGNC youth, transfeminine youth reported the most elevated suicidal risk. The findings indicated a compelling need for researchers and practitioners to address the mental health risks for this specific group and target interventions for TGNC youth in China.Keywords: child and adolescent mental health, gender minority health, cross-cultural perspective, preventing suicide in youth
Procedia PDF Downloads 742606 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations
Authors: Zhao Gao, Eran Edirisinghe
Abstract:
The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.Keywords: RNN, GAN, NLP, facial composition, criminal investigation
Procedia PDF Downloads 1612605 Internet Health: A Cross-Sectional Survey Exploring Identified Risks and Online Safety Measures in Parent and Children with Neurodevelopmental Disorders
Authors: Abdirahim Mohamed, Sarita Rana Chhetri, Michael Sleath, Nadia Saleem
Abstract:
Rationale: Internet usage has been very much integrated into our daily lives. Internet usage within a neurodevelopmental disorder population is also on the increase. Nevertheless, there is very little empirical research on how this population virtually protect themselves; along with how their parents can keep them safe online. This topic was an ever-growing concern to the parents within our services and in many cases would add to the stresses and mental health of parents. This ignited an idea within our team to conduct research to explore the perceived online risks within this population and how they keep themselves safe. In conjunction, we also explored how parents and caregivers monitor and safeguard their young people to the potential threats online. Our hypothesis was that the perceived risks will heavily outnumber the safeguarding measures implemented by this population. Method: Within the Coventry and Warwickshire NHS Partnership Trust Child and Adolescent Mental Health Service (CAMHS), we distributed qualitative questionnaires to all the clinical bases (N=80). Questions explored topics such as daily internet usage, safeguarding measures, and perceived threats. The researchers requested for all CAMHS clinicians to identify participants. Participants in this study were accessing CAMHS for neurodevelopmental specific interventions. Results: The data were analysed using both Excel and SPSS. Within SPSS, a MANOVA was conducted and found a significant difference between safeguarding measures and perceived online risks within responses (p ≤ 0.5). This supports our hypothesis that participants in this population are well versed in the safeguarding issues of the internet; however, struggle to implement appropriate preventative measures. Data were also screened using Excel and found that all parents and carers stated they 'monitored their child’s internet use'. Conclusion: Data suggest that parents/carers may require more specific intervention to equip them with preventative measures due to the clear discrepancy between perceived risks and safeguarding measures. More research may also need to be conducted around this area to determine appropriate methodology to explore this topic further.Keywords: Internet, health , how safe are we , internet health check
Procedia PDF Downloads 2682604 The Influence of Culture on Manifestations of Animus
Authors: Anahit Khananyan
Abstract:
The results of the long-term Jungian analysis with female clients from Eastern and Asian countries, which belong to collectivist cultures, are summarised in the article. The goal of the paper is to describe the cultural complex, which was found by the author in the analysis of women of collectivistic culture. It was named “the repression of Animus”. Generally, C.G.Jung himself and the Post-Jungians studied conditions caused by the possession by Animus. The conditions and cases of the repressed Animus, depending on the type of culture and cultural complexes, as we know, were not widely disseminated. C.G. Jung discovered and recognized the Animus as the second component of a pair of opposites of the psyche of women – femininity and Animus. In the way of individuation, an awareness of manifestations of Animus plays an important role: understanding the differences between negative and positive Animus as well as the Animus and the Shadow, then standing the tension of the presence of a pair of opposites - femininity and Animus, acceptance of the tension of them, finding the balance between them and reconciliation of this opposites. All of the above are steps towards the realization of the Animus, its release Animua, and the healing of the psyche. In the paper, the author will share her experience of analyzing the women of different collectivist cultures and her experience of recognizing the repressed Animus during the analysis. Also, she will describe some peculiarities of upbringing and cultural traditions, which reflected the cultural complex of repression of Animus. This complex is manifested in the traditions of girls' upbringing in accordance with which an image of a woman with overly developed femininity and an absence or underdeveloped Animus is idealized and encouraged as well as an evaluating attitude towards females who have to correspond to this image and fulfill the role prescribed in this way in the family and society.Keywords: analysis, cultural complex, animus, manifestation, culture
Procedia PDF Downloads 832603 Effective Dose and Size Specific Dose Estimation with and without Tube Current Modulation for Thoracic Computed Tomography Examinations: A Phantom Study
Authors: S. Gharbi, S. Labidi, M. Mars, M. Chelli, F. Ladeb
Abstract:
The purpose of this study is to reduce radiation dose for chest CT examination by including Tube Current Modulation (TCM) to a standard CT protocol. A scan of an anthropomorphic male Alderson phantom was performed on a 128-slice scanner. The estimation of effective dose (ED) in both scans with and without mAs modulation was done via multiplication of Dose Length Product (DLP) to a conversion factor. Results were compared to those measured with a CT-Expo software. The size specific dose estimation (SSDE) values were obtained by multiplication of the volume CT dose index (CTDIvol) with a conversion size factor related to the phantom’s effective diameter. Objective assessment of image quality was performed with Signal to Noise Ratio (SNR) measurements in phantom. SPSS software was used for data analysis. Results showed including CARE Dose 4D; ED was lowered by 48.35% and 51.51% using DLP and CT-expo, respectively. In addition, ED ranges between 7.01 mSv and 6.6 mSv in case of standard protocol, while it ranges between 3.62 mSv and 3.2 mSv with TCM. Similar results are found for SSDE; dose was higher without TCM of 16.25 mGy and was lower by 48.8% including TCM. The SNR values calculated were significantly different (p=0.03<0.05). The highest one is measured on images acquired with TCM and reconstructed with Filtered back projection (FBP). In conclusion, this study proves the potential of TCM technique in SSDE and ED reduction and in conserving image quality with high diagnostic reference level for thoracic CT examinations.Keywords: anthropomorphic phantom, computed tomography, CT-expo, radiation dose
Procedia PDF Downloads 2212602 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah
Abstract:
Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph
Procedia PDF Downloads 3062601 Soil Salinity from Wastewater Irrigation in Urban Greenery
Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton
Abstract:
The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities
Procedia PDF Downloads 1622600 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 3502599 American Slang: Perception and Connotations – Issues of Translation
Authors: Lison Carlier
Abstract:
The English language that is taught in school or used in media nowadays is defined as 'standard English,' although unstandardized Englishes, or 'parallel' Englishes, are practiced throughout the world. The existence of these 'parallel' Englishes has challenged standardization by imposing its own specific vocabulary or grammar. These non-standard languages tend to be regarded as inferior and, therefore, pose a problem regarding their translation. In the USA, 'slanguage', or slang, is a good example of a 'parallel' language. It consists of a particular set of vocabulary, used mostly in speech, and rarely in writing. Qualified as vulgar, often reduced to an urban language spoken by young people from lower classes, slanguage – or the language that is often first spoken between youths – is still the most common language used in the English-speaking world. Moreover, it appears that the prime meaning of 'informal' (as in an informal language) – a language that is spoken with persons the speaker knows – has been put aside and replaced in the general mind by the idea of vulgarity and non-appropriateness, when in fact informality is a sign of intimacy, not of vulgarity. When it comes to translating American slang, the main problem a translator encounters is the image and the cultural background usually associated with this 'parallel' language. Indeed, one will have, unwillingly, a predisposition to categorize a speaker of a 'parallel' language as being part of a particular group of people. The way one sees a speaker using it is paramount, and needs to be transposed into the target language. This paper will conduct an analysis of American slang – its use, perception and the image it gives of its speakers – and its translation into French, using the novel Is Everyone Hanging Out Without Me? (and other concerns) by way of example. In her autobiography/personal essay book, comedy writer, actress and author Mindy Kaling speaks with a very familiar English, including slang, which participates in the construction of her own voice and style, and enables a deeper connection with her readers.Keywords: translation, English, slang, French
Procedia PDF Downloads 3182598 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection
Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye
Abstract:
The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document
Procedia PDF Downloads 1592597 Assessing the Spatial Distribution of Urban Parks Using Remote Sensing and Geographic Information Systems Techniques
Authors: Hira Jabbar, Tanzeel-Ur Rehman
Abstract:
Urban parks and open spaces play a significant role in improving physical and mental health of the citizens, strengthen the societies and make the cities more attractive places to live and work. As the world’s cities continue to grow, continuing to value green space in cities is vital but is also a challenge, particularly in developing countries where there is pressure for space, resources, and development. Offering equal opportunity of accessibility to parks is one of the important issues of park distribution. The distribution of parks should allow all inhabitants to have close proximity to their residence. Remote sensing and Geographic information systems (GIS) can provide decision makers with enormous opportunities to improve the planning and management of Park facilities. This study exhibits the capability of GIS and RS techniques to provide baseline knowledge about the distribution of parks, level of accessibility and to help in identification of potential areas for such facilities. For this purpose Landsat OLI imagery for year 2016 was acquired from USGS Earth Explorer. Preprocessing models were applied using Erdas Imagine 2014v for the atmospheric correction and NDVI model was developed and applied to quantify the land use/land cover classes including built up, barren land, water, and vegetation. The parks amongst total public green spaces were selected based on their signature in remote sensing image and distribution. Percentages of total green and parks green were calculated for each town of Lahore City and results were then synchronized with the recommended standards. ANGSt model was applied to calculate the accessibility from parks. Service area analysis was performed using Network Analyst tool. Serviceability of these parks has been evaluated by employing statistical indices like service area, service population and park area per capita. Findings of the study may contribute in helping the town planners for understanding the distribution of parks, demands for new parks and potential areas which are deprived of parks. The purpose of present study is to provide necessary information to planners, policy makers and scientific researchers in the process of decision making for the management and improvement of urban parks.Keywords: accessible natural green space standards (ANGSt), geographic information systems (GIS), remote sensing (RS), United States geological survey (USGS)
Procedia PDF Downloads 3412596 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling
Authors: Erfan Niazi, Marianne Fenech
Abstract:
Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.Keywords: red blood cell, rouleaux, microfluidics, image processing, population balance modeling
Procedia PDF Downloads 3552595 Brand Identity Creation for Thai Halal Brands
Authors: Pibool Waijittragum
Abstract:
The purpose of this paper is to synthesize the research result of brand Identities of Thai Halal brands which related to the way of life for Thai Muslims. The results will be transforming to Thai Halal Brands packaging and label design. The expected benefit is an alternative of marketing strategy for brand building process for Halal products in Thailand. Four elements of marketing strategies which necessary for the brand identity creation is the research framework: consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, Desserts and Snacks 5) Hygienic daily products. The results will explain some suitable approach for brand Identities of Thai Halal brands as are: 1) Benefit approach as the characteristics of the product with its benefit. The brand identity created transform to the packaging design should be clear and display a fresh product 2) Value approach as the value of products that affect to consumers’ perception. The brand identity created transform to the packaging design should be simply look and using a trustful image 3) Personality approach as the reflection of consumers thought. The brand identity created transform to the packaging design should be sincere, enjoyable, merry, flamboyant look and using a humoristic image.Keywords: marketing strategies, brand identity, packaging and label design, Thai Halal products
Procedia PDF Downloads 4372594 Film Censorship and Female Chastity: Exploring State's Discourses and Patriarchal Values in Reconstructing Chinese Film Stardom of Tang Wei
Authors: Xinchen Zhu
Abstract:
The rapid fame of the renowned female film star Tang Wei has made her a typical subject (or object) entangled with sensitive issues involving the official ideology, sexuality, and patriarchal values of contemporary China. In 2008, Tang Wei’s official ban has triggered the wave of debates concerning state power and censorship, actor’s rights, sexual ethics, and feminism in the public sphere. Her ban implies that Chinese film censorship acts as a key factor in reconstructing Chinese film stardom. Following the ban, as sensational media texts are re-interpreting the official discourses, the texts also functioned as a crucial vehicle in reconstructing Tang's female image. Therefore, the case study of Tang's film stardom allows us to further explore how female stardom has been entangled with the issues involving official ideology, female sexual ethics, and patriarchal values in contemporary China. This paper argues that Chinese female film stars shoulder the responsibility of film acting which would conform to the official male-dominated values. However, with the development of the Internet, the state no longer remains an absolute control over the new venues. The netizens’ discussion about her ban reshaped Tang’s image as a victim and scapegoat under the unfair oppression of the official authority. Additionally, this paper argues that similar to State’s discourse, netizens’ discourse did not reject patriarchal values, and in turn emphasized Tang Wei’s female chastity.Keywords: film censorship, Chinese female film stardom, party-state’s power, national discourses, Tang Wei
Procedia PDF Downloads 1702593 Comparison between Photogrammetric and Structure from Motion Techniques in Processing Unmanned Aerial Vehicles Imageries
Authors: Ahmed Elaksher
Abstract:
Over the last few years, significant progresses have been made and new approaches have been proposed for efficient collection of 3D spatial data from Unmanned aerial vehicles (UAVs) with reduced costs compared to imagery from satellite or manned aircraft. In these systems, a low-cost GPS unit provides the position, velocity of the vehicle, a low-quality inertial measurement unit (IMU) determines its orientation, and off-the-shelf cameras capture the images. Structure from Motion (SfM) and photogrammetry are the main tools for 3D surface reconstruction from images collected by these systems. Unlike traditional techniques, SfM allows the computation of calibration parameters using point correspondences across images without performing a rigorous laboratory or field calibration process and it is more flexible in that it does not require consistent image overlap or same rotation angles between successive photos. These benefits make SfM ideal for UAVs aerial mapping. In this paper, a direct comparison between SfM Digital Elevation Models (DEM) and those generated through traditional photogrammetric techniques was performed. Data was collected by a 3DR IRIS+ Quadcopter with a Canon PowerShot S100 digital camera. Twenty ground control points were randomly distributed on the ground and surveyed with a total station in a local coordinate system. Images were collected from an altitude of 30 meters with a ground resolution of nine mm/pixel. Data was processed with PhotoScan, VisualSFM, Imagine Photogrammetry, and a photogrammetric algorithm developed by the author. The algorithm starts with performing a laboratory camera calibration then the acquired imagery undergoes an orientation procedure to determine the cameras’ positions and orientations. After the orientation is attained, correlation based image matching is conducted to automatically generate three-dimensional surface models followed by a refining step using sub-pixel image information for high matching accuracy. Tests with different number and configurations of the control points were conducted. Camera calibration parameters estimated from commercial software and those obtained with laboratory procedures were comparable. Exposure station positions were within less than few centimeters and insignificant differences, within less than three seconds, among orientation angles were found. DEM differencing was performed between generated DEMs and few centimeters vertical shifts were found.Keywords: UAV, photogrammetry, SfM, DEM
Procedia PDF Downloads 295