Search results for: machine and plant engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9035

Search results for: machine and plant engineering

7115 Experimental Determination of Water Productivity of Improved Cassava Varieties Propagation under Rain-Fed Condition in Tropical Environment

Authors: Temitayo Abayomi Ewemoje, Isaac Olugbemiga Afolayan, Badmus Alao Tayo

Abstract:

Researchers in developing countries have worked on improving cassava resistance to diseases and pests, high yielding and early maturity However, water management has received little or no attention as cassava cultivation in Sub-Saharan Africa depended on available precipitation (rain-fed condition). Therefore the need for water management in Agricultural crop production cannot be overemphasized. As other sectors compete with agricultural sector for fresh water (which is not readily available), there is need to increase water productivity in agricultural production. Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had highest number of nodes. Tuber stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions.Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had the highest number of nodes. Tuber, stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions

Keywords: improved TMS varieties, leaf productivity, rain-fed cassava production, stem productivity, tuber productivity

Procedia PDF Downloads 345
7114 Impact of Water Courses Lining on Water Quality and Distribution of Aquatic Vegetations in Two Egyptian Governorates

Authors: Nahed M. M. Ismail, Bayoumy B. Mostafa, Ahmed Abdel-Kader, Khalil M. El-Said, Asmaa Abdel-Motleb, Hoda M. Abu Taleb

Abstract:

This study was carried out in lined and unlined watercourses in Beheira and Giza governorates to investigate the effect of water canals lining on water quality and aquatic vegetations. Samples of water and aquatic plants were collected from the examining sites during four seasons in two successive years. The main ecological parameters were recorded and water quality was measured. Results showed that the mean value of water conductivity and total dissolved salts in lined sites was significantly lower than those of unlined ones (p < 0.01, p < 0.05). In Beheira, the dissolved oxygen concentrations during autumn and winter were higher in lined sites (3.93±1.3 and 9.6±1.1 ppm, respectively) than those of unlined ones (the same values of 1.2±0.6 ppm). However, it represented by lower values of 5.77±6.05 and 4.9±1.8 ppm in lined watercourses in spring and summer, respectively, comparing with those in unlined ones (14.05±5.59 and 5.83±0.8 ppm, respectively). Generally, Zn, Pb, Fe, Cd were higher in both lined and unlined sites during summer than the other seasons. However, Zn and Fe were higher in lined sites (0.78±0.37 and 17.4±4.3 ppb, respectively) during summer than that of unlined ones (0.4±0.1 and 10.95±1.93 ppb, respectively). Cu was absent during summer in lined and unlined sites and only in unlined ones during spring. Regarding to Giza sites, Cu and Pb were absent in both lined and unlined sites during summer and only in unlined ones during spring. Whereas, Fe recorded higher values in autumn in both lined (8.8±20.1 ppb) and unlined sites (15.16±3 ppb) than the other seasons. Present survey study revealed that 13 species of aquatic plants were collected from lined and unlined sites in Beheira and Giza governorates. Eichhornia crassipes, Ceratophyllum demersum, and Potamogeton sp. were the only plant species infested the examined sites during autumn and winter in Beheira. In autumn C. demersum was the only plant found in lined sites represented by highly lower significant percentage (12.5% of the all examined sites) compared to the unlined sites (50%). E. crassipes was completely absent in the lined sites during the two seasons. In spring, there is only 3 plant species in lined sites compared to 6 ones in unlined. Also, in summer, there is only 2 species in lined sites comparing with 5 in unlined. The percentage of occurrence and density of these plants was highly significant (p < 0.01, p < 0.001) higher in unlined sites compared to the lined ones during all seasons. A diversity of plant species, E. crassipes, C. demersum, Jussias repens, Lemma giba, and Polygonum serr were the most abundant in many examined sites during all seasons in Giza. In summer, the percentage of sites containing the two plants E. crassipes (83.3%) and C. demersum (50%) was highly significant (p < 0.001) higher in unlined sites compared to the lined ones (50% and 0.0%, respectively). It concluded from the results that watercourses lining may play a significant role in preserving water with a good quality and reduces the distribution of aquatic vegetation which rendered the current of water.

Keywords: aquatic plants, lining of watercourses, physicochemical parameters, water quality

Procedia PDF Downloads 135
7113 Pharmacognostic, Phytochemical and Antibacterial Activity of Beaumontia Randiflora

Authors: Narmeen Mehmood

Abstract:

The current study was conducted to evaluate the pharmacognostic parameters, phytochemical analysis and antibacterial activity of the plant. Microscopic studies were carried out to determine various Pharmacognostic parameters. Section cutting of the leaf was also done. The study of the ariel parts of Beaumontia grandiflora resulted in the identification of fatty acids mixture and unsaponifiable matters. For the separation of various constituents of the plant, successive solvent extraction was carried out in a laboratory. Material and Methods: The study was carried out with all three extracts of Beaumontia grandiflora i.e. Petroleum ether, Chloroform and Methanol. For the separation of various constituents of the plant, successive solvent extraction was carried out in the laboratory. Raw data containing the measured zones of inhibition in mm was tabulated. Results: The microscopic studies showed the presence of Upper epidermis in surface view, Part of Lamina in section view, cortical parenchyma in longitudinal view, Parenchyma with collapsed tissues, Parenchyma Cells, Epidermal cells with a part of covering trichome, starch granules, reticulated thickened vessels, Transverse Section of leaf of Beaumontia grandiflora showed Upper Epidermis, Lower Epidermis, Hairs, Vascular Bundles, Parenchyma. Phytochemical analysis of leaves of Beaumontia grandiflora indicates that Alkaloids are present. There is a possibility of the presence of some bioactive components in the crude extracts due to which it shows strong activity. Petroleum ether extract shows a greater zone of inhibition at low concentrations. Conclusion: The alkaloids possess good antibacterial activity so the presence of alkaloids may be responsible for the antibacterial activity observed in the crude organic extract of Beaumontia grandiflora.

Keywords: successive solvent extraction, zone of inhibitions., microscopy, phytochemical analysis

Procedia PDF Downloads 22
7112 Brine Waste from Seawater Desalination in Malaysia

Authors: Cynthia Mahadi, Norhafezah Kasmuri

Abstract:

Water scarcity is a growing issue these days. As a result, saltwater is being considered a limitless supply of fresh water through the desalination process, which is likely to address the worldwide water crisis, including in Malaysia. This study aims to offer the best management practice for controlling brine discharge in Malaysia by comparing environmental regulations on brine waste management in other countries. Then, a survey was distributed to the public to acquire further information about their level of awareness of the harmful effects of brine waste and to find out their perspective on the proposed solutions to ensure the effectiveness of the measures. As a result, it has been revealed that Malaysia still lacks regulations regarding the disposal of brine waste. Thus, a recommendation based on practices in other nations has been put forth by this study. This study suggests that the government and Malaysia's environmental regulatory body should govern brine waste disposal in the Environmental Quality Act 1974. Also, to add the construction of a desalination plant in Schedule 1 of prescribed activities was necessary. Because desalination plants can harm the environment during both construction and operation, every proposal for the construction of a desalination plant should involve the submission of an environmental impact assessment (EIA).

Keywords: seawater desalination, brine waste, environmental impact assessment, fuzzy Delphi method

Procedia PDF Downloads 80
7111 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 146
7110 The Optimal Production of Long-Beans in the Swamp Land by Application of Rhizobium and Rice Husk Ash

Authors: Hasan Basri Jumin

Abstract:

The swamp land contains high iron, aluminum, and low pH. Calcium and magnesium in the rice husk ash can reduce plant poisoning so that plant growth increases in fertility. The first factor was the doze of rice husk, and the second factor was 0.0 g rhizobium inoculant /kg seed, 4.0 g rhizobium inoculant/kg seed, 8 g rhizobium inoculant /kg seed, and 12 g l rhizobium inoculant /kg seed. The plants were maintained under light conditions with a + 11.45 – 12.15 hour photoperiod. The combination between rhizobium inoculant and rice husk ash has been an interacting effect on the production of long bean pod fresh weight. The mean relative growth rate, net assimilation rate, and pod fresh weight are increased by a combination of husk rice ash and rhizobium inoculant. Rice husk ash affected increases the availability of nitrogen in the land, albeit in poor condition of nutrition. Rhizobium is active in creating a fixation of nitrogen in the atmosphere because rhizobium increases the abilities of intercellular and symbiotic nitrogen in the long beans. The combination of rice husk ash and rhizobium could be effected to create a thriving in the land.

Keywords: aluminium, calcium, fixation, iron, nitrogen

Procedia PDF Downloads 114
7109 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information

Authors: Babar Khan, Wang Zhijie

Abstract:

Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.

Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel

Procedia PDF Downloads 485
7108 Wheat Dihaploid and Somaclonal Lines Screening for Resistance to P. nodorum

Authors: Lidia Kowalska, Edward Arseniuk

Abstract:

Glume and leaf blotch is a disease of wheat caused by necrotrophic fungus Parastagonospora nodorum. It is a serious pathogen in many wheat-growing areas throughout the world. Use of resistant cultivars is the most effective and economical means to control the above-mentioned disease. Plant breeders and pathologists have worked intensively to incorporate resistance to the pathogen in new cultivars. Conventional methods of breeding for resistance can be supported by using the biotechnological ones, i.e., somatic embryogenesis and androgenesis. Therefore, an effort was undertaken to compare genetic variation in P. nodorum resistance among winter wheat somaclones, dihaploids and conventional varieties. For the purpose, a population of 16 somaclonal and 4 dihaploid wheat lines from six crosses were used to assess their resistance to P. nodorum under field conditions. Lines were grown in disease-free (fungicide protected) and inoculated micro plots in 2 replications of a split-plot design in a single environment. The plant leaves were inoculated with a mixture of P. nodorum isolates three times. Spore concentrations were adjusted to 4 x 10⁶ of viable spores per one milliliter. The disease severity was rated on a scale, where > 90% – susceptible, < 10% - resistant. Disease ratings of plant leaves showed statistically significant differences among all lines tested. Higher resistance to P. nodorum was observed more often on leaves of somaclonal lines than on dihaploid ones. On average, disease, severity reached 15% on leaves of somaclones and 30% on leaves of dihaploids. Some of the genotypes were showing low leaf infection, e.g. dihaploid D-33 (disease severity 4%) and a somaclone S-1 (disease severity 2%). The results from this study prove that dihaploid and somaclonal variation might be successfully used as an additional source of wheat resistance to the pathogen and it could be recommended to use in commercial breeding programs. The reported results prove that biotechnological methods may effectively be used in breeding for disease resistance of wheat to fungal necrotrophic pathogens.

Keywords: glume and leaf blotch, somaclonal, androgenic variation, wheat, resistance breeding

Procedia PDF Downloads 120
7107 Study on the Effects of Indigenous Biological Face Treatment

Authors: Saron Adisu Gezahegn

Abstract:

Commercial cosmetic has been affecting human health due to their contents and dosage composition. Chemical base cosmetics exposes users to unnecessary health problems and financial cost. Some of the cosmetics' interaction with the environment has negative impacts on health such as burning, cracking, coloring, and so on. The users are looking for a temporary service without evaluating the side effects of cosmetics that contain chemical compositions that result in irritation, burning, allergies, cracking, and the nature of the face. Every cosmetic contains a heavy metal such as lead, zinc, cadmium, silicon, and other heavy cosmetics materials. The users may expose at the end of the day to untreatable diseases like cancer. The objective of the research is to study the effects of indigenous biological face treatment without any additives like chemicals. In ancient times this thought was highly tremendous in the world but things were changing bit by bit and reached chemical base cosmetics to maintain the beauty of hair, skin, and faces. The side effects of the treatment on the face were minimum and the side effects with the interaction of the environment were almost nil. But this thought is changed and replaces the indigenous substances with chemical substances by adding additives like heavy chemical lead and cadmium in the sense of preservation, pigments, dye, and shining. Various studies indicated that cosmetics have dangerous side effects that expose users to health problems and expensive financial loss. This study focuses on a local indigenous plant called Kulkual. Kulkual is available everywhere in a study area and sustainable products can harvest to use as indigenous face treatment materials.25 men and 25 women were selected as a sample population randomly to conduct the study effectively.The plant is harvested from the guard in the productive season. The plant was exposed to the sun dry for a week. Then the peel was removed from the plant fruit and the peels were taken to a bath filled with water to soak for three days. Then the flesh of the peel was avoided from the fruit and ready to use as a face treatment. The fleshy peel was smeared on each sample for almost a week and continued for a week. The result indicated that the effects of the treatment were a positive response with minimum cost and minimum side effects due to the environment. The beauty shines, smoothness, and color are better than chemical base cosmetics. Finally, the study is recommended that all users prefer a biological method of treatment with minimum cost and minimums side effects on health with the interaction of the environment.

Keywords: cosmetic, indigneous, heavymetals, toxic

Procedia PDF Downloads 108
7106 Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation

Authors: M. J. Baum, B. Gibbes, A. Grinham, S. Albert, D. Gale, P. Fisher

Abstract:

Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s-1, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg-1 were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future.

Keywords: brine disposal, desalination, field study, negatively buoyant discharge

Procedia PDF Downloads 239
7105 Effects of Macro and Micro Nutrients on Growth and Yield Performances of Tomato (Lycopersicon esculentum MILL.)

Authors: K. M. S. Weerasinghe, A. H. K. Balasooriya, S. L. Ransingha, G. D. Krishantha, R. S. Brhakamanagae, L. C. Wijethilke

Abstract:

Tomato (Lycopersicon esculentum Mill.) is a major horticultural crop with an estimated global production of over 120 million metric tons and ranks first as a processing crop. The average tomato productivity in Sri Lanka (11 metric tons/ha) is much lower than the world average (24 metric tons/ha).To meet the tomato demand for the increasing population the productivity has to be intensified through the agronomic-techniques. Nutrition is one of the main factors which govern the growth and yield of tomato and the main nutrient source soil affect the plant growth and quality of the produce. Continuous cropping, improper fertilizer usage etc., cause widespread nutrient deficiencies. Therefore synthetic fertilizers and organic manures were introduced to enhance plant growth and maximize the crop yields. In this study, effects of macro and micronutrient supplementations on improvement of growth and yield of tomato were investigated. Selected tomato variety is Maheshi and plants were grown in Regional Agricultural and Research Centre Makadura under the Department of Agriculture recommended (DOA) macro nutrients and various combination of Ontario recommended dosages of secondary and micro fertilizer supplementations. There were six treatments in this experiment and each treatment was replicated in three times and each replicate consisted of six plants. Other than the DOA recommendation, five combinations of Ontario recommended dosage of secondary and micronutrients for tomato were also used as treatments. The treatments were arranged in a Randomized Complete Block Design. All cultural practices were carried out according to the DOA recommendations. The mean data was subjected to the statistical analysis using SAS package and mean separation (Duncan’s Multiple Range test at 5% probability level) procedures. Secondary and micronutrients containing treatments significantly increased most of the growth parameters. Plant height, plant girth, number of leaves, leaf area index etc. Fruits harvested from pots amended with macro, secondary and micronutrients performed best in terms of total yield; yield quality; to pots amended with DOA recommended dosage of fertilizer for tomato. It could be due to the application of all essential macro and micro nutrients that rise in photosynthetic activity, efficient translocation and utilization of photosynthates causing rapid cell elongation and cell division in actively growing region of the plant leading to stimulation of growth and yield were caused. The experiment revealed and highlighted the requirements of essential macro, secondary and micro nutrient fertilizer supplementations for tomato farming. The study indicated that, macro and micro nutrient supplementation practices can influence growth and yield performances of tomato fruits and it is a promising approach to get potential tomato yields.

Keywords: macro and micronutrients, tomato, SAS package, photosynthates

Procedia PDF Downloads 475
7104 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna

Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo

Abstract:

The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.

Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system

Procedia PDF Downloads 36
7103 The Determination of Pb and Zn Phytoremediation Potential and Effect of Interaction between Cadmium and Zinc on Metabolism of Buckwheat (Fagopyrum Esculentum)

Authors: Nurdan Olguncelik Kaplan, Aysen Akay

Abstract:

Nowadays soil pollution has become a global problem. External added polluters to the soil are destroying and changing the structure of the soil and the problems are becoming more complex and in this sense the correction of these problems is going to be harder and more costly. Cadmium has got a fast mobility in the soil and plant system because of that cadmium can interfere very easily to the human and animal food chain and in the same time this can be very dangerous. The cadmium which is absorbed and stored by the plants is causing to many metabolic changes of the plants like; protein synthesis, nitrogen and carbohydrate metabolism, enzyme (nitrate reductase) activation, photo and chlorophyll synthesis. The biological function of cadmium is not known over the plants and it is not a necessary element. The plant is generally taking in small amounts the cadmium and this element is competing with the zinc. Cadmium is causing root damages. Buckwheat (Fagopyrum esculentum) is an important nutraceutical because of its high content of flavonoids, minerals and vitamins, and their nutritionally balanced amino-acid composition. Buckwheat has relatively high biomass productivity, is adapted to many areas of the world, and can flourish in sterile fields; therefore buckwheat plants are widely used for the phytoremediation process.The aim of this study were to evaluate the phytoremediation capacity of the high-yielding plant Buckwheat (Fagopyrum esculentum) in soils contaminated with Cd and Zn. The soils were applied to differrent doses cd(0-12.5-25-50-100 mg Cd kg−1 soil in the form of 3CdSO4.8H2O ) and Zn (0-10-30 mg Zn kg−1 soil in the form of ZnSO4.7H2O) and incubated about 60 days. Later buckwheat seeds were sown and grown for three mounth under greenhouse conditions. The test plants were irrigated by using pure water after the planting process. Buckwheat seeds (Gunes and Aktas species) were taken from Bahri Dagdas International Agricultural Research. After harvest, Cd and Zn concentrations of plant biomass and grain, yield and translocation factors (TFs) for Cd and Cd were determined. Cadmium accumulation in biomass and grain significantly increased in dose-dependent manner. Long term field trials are required to further investigate the potential of buckwheat to reclaimed the soil. But this could be undertaken in conjunction with actual remediation schemes. However, the differences in element accumulation among the genotypes were affected more by the properties of genotypes than by the soil properties. Gunes genotype accumulated higher lead than Aktas genotypes.

Keywords: buckwheat, cadmium, phytoremediation, zinc

Procedia PDF Downloads 418
7102 Effect of Nitrogen and/or Bio-Fertilizer on the Yield, Total Flavonoids, Carbohydrate Contents, Essential Oil Quantity and Constituents of Dill Plants

Authors: Mohammed S. Aly, Abou-Zeid N. El-Shahat, Nabila Y. Naguib, Huussie A. Said-Al Ahl, Atef M. Zakaria, Mohamed A. Abou Dahab

Abstract:

This study was conducted during two successive seasons of 2000/2001 and 2001/2002 to evaluate the response of Anethum graveolens L. plants to nitrogen fertilizer with or without bio-fertilizer on fruits yield, total flavonoids and carbohydrates content, essential oil yield and constituents. Results cleared that the treatment of 60 Kg N/feddan without and with bio-fertilizer gave the highest umbels number per plant through the two seasons and these increments were significant in comparison with control plants. Meanwhile, fruits weight (g/plant) showed significant increase with the treatments of nitrogen fertilizers alone and combined with bio-fertilizers compared with control plants in the first and second season. Maximum increments were resulted with the previous treatment (60 Kg N/fed). Fruits yield (Kg/fed) revealed the same trend of fruits weight (g/plant). Total flavonoids contents were significantly increased with all of used treatments. Maximum increase was noticed with bio-fertilizers combined with 60 Kg N/fed during two seasons. Total carbohydrate contents showed significant increase with applied nitrogen fertilizers treatments as alone, meanwhile total carbohydrate contents were increased non-significantly with the other used treatments during the two seasons in comparison with control plants content. The treatment of bio-fertilizer and in most of nitrogen fertilizer levels significantly increased essential oil percentage, content and yield. The treatment of 60 Kg N/fed with or without bio-fertilizer gave the best values. All identified compounds were observed in the essential oil of all treatments. The major compounds were limonene, carvone and dillapiole. The most effective fertilization on limonene content was 40 Kg N/fed and/or bio-fertilizers. Meanwhile 20 Kg N/fed with or without bio-fertilizers increased carvone, but most of fertilization treatments except those of bio-fertlizers and 40 Kg N/fed increased dillapiole content.

Keywords: carbohydrates, dill, essential oil, fertilizer, flavonoids

Procedia PDF Downloads 419
7101 Acclimation of in vitro-Propagated Apple Plantlets as Affected by Light Intensity

Authors: Guem-Jae Chung, Jin-Hui Lee, Myung-Min Oh

Abstract:

Environmental control of in vitro-propagated apple plantlets is required for successful acclimation to ex vitro due to its low survival rate. This study aimed to determine the proper lighting condition for ex vitro acclimation of the apple plantlets in plant factories. In vitro-propagated M9 apple plantlets treated with pre-acclimatization for 1 week were exposed to following light treatments for additional 6 weeks; 60 μmol·m⁻²·s⁻¹ (A), 100 μmol·m⁻²·s⁻¹ (B), 140 μmol·m⁻²·s⁻¹ (C), 180 μmol·m⁻²·s⁻¹ (D), 60 μmol·m⁻²·s⁻¹ → 100 μmol·m⁻²·s⁻¹ at 2 weeks (E) or 4 weeks (F), 60 μmol·m⁻²·s⁻¹ → 100 μmol·m⁻²·s⁻¹ at 2 weeks → 140 μmol·m⁻²·s⁻¹ at 4 weeks (G) and 60 μmol·m⁻²·s⁻¹ → 140 μmol·m⁻²·s⁻¹ at 4 weeks (H). Shoot height, total leaf area, soil-plant analysis development (SPAD) value, root length, fresh and dry weights of shoots and roots were measured every 2 weeks after transplanting. In addition, the photosynthetic rate was measured at 5 weeks after transplanting. At 6 weeks after transplanting, shoot height of B was significantly higher than the other treatments. SPAD value, total leaf area and root length of B and F were relatively higher than the other treatments. Root fresh weights of B, D, F, and G were relatively higher than those in the other treatments. D induced the highest value in shoot fresh weight probably due to stem hardening, but it also resulted in shoot damage in the early stage of acclimation. Photosynthetic rate at 5 weeks after the transplanting was significantly increased as the light intensity increased. These results suggest that 100 μmol·m⁻²·s⁻¹ for 6 weeks (B) or gradually increased treatment from 60 μmol·m⁻²·s⁻¹ to 140 μmol·m⁻²·s⁻¹ at 2 weeks interval (F) were the proper lighting conditions for successful acclimation of in vitro-propagated apple plantlets. Acknowledgment: This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (315003051SB020).

Keywords: acclimation, in vitro-propagated apple plantlets, light intensity, plant factory

Procedia PDF Downloads 133
7100 Failure Mode Effect and Criticality Analysis Based Maintenance Planning through Traditional and Multi-Criteria Decision Making Approach for Aluminium Wire Rolling Mill Plant

Authors: Nilesh Pancholi, Mangal Bhatt

Abstract:

This paper highlights comparative results of traditional FMECA and multi-factor decision-making approach based on “Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)” for aluminum wire rolling mill plant. The suggested study is carried out to overcome the limitations of FMECA by assigning the scores against each failure modes in crisp values to evaluate the criticalities of the failure modes without uncertainty. The primary findings of the paper are that sudden impact on the rolls seems to be most critical failure cause and high contact stresses due to rolling & sliding action of mesh to be least critical failure cause. It is suggested to modify the current control practices with proper maintenance strategy based on achieved maintainability criticality index (MCI). The outcome of the study will be helpful in deriving optimized maintenance plan to maximize the performance of continuous process industry.

Keywords: reliability, maintenance, FMECA, TOPSIS, process industry

Procedia PDF Downloads 278
7099 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 150
7098 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 103
7097 Detecting Hate Speech And Cyberbullying Using Natural Language Processing

Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão

Abstract:

Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.

Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning

Procedia PDF Downloads 228
7096 Phytoextraction of Heavy Metals in a Contaminated Site in Assam, India Using Indian Pennywort and Fenugreek: An Experimental Study

Authors: Chinumani Choudhury

Abstract:

Heavy metal contamination is an alarming problem, which poses a serious risk to human health and the surrounding geology. Soils get contaminated with heavy metals due to the un-regularized industrial discharge of the toxic metal-rich effluents. Under such a condition, the remediation of the contaminated sites becomes imperative for a sustainable, safe, and healthy environment. Phytoextraction, which involves the removal of heavy metals from the soil through root absorption and uptake, is a viable remediation technique, which ensures extraction of the toxic inorganic compound available in the soil even at low concentrations. The soil present in the Silghat Region of Assam, India, is mostly contaminated with Zinc (Zn) and Lead (Pb), having concentrations as high as to cause a serious environmental problem if proper measures are not taken. In the present study, an extensive experimental study was carried out to understand the effectiveness of two commonly planted trees in Assam, namely, i) Indian Pennywort and ii) Fenugreek, in the removal of heavy metals from the contaminated soil. The basic characterization of the soil in the contaminated site of the Silghat region was performed and the field concentration of Zn and Pb was recorded. Various long-term laboratory pot tests were carried out by sowing the seeds of Indian Pennywort and Fenugreek in a soil, which was spiked, with a very high dosage of Zn and Pb. The tests were carried out for different concentration of a particular heavy metal and the individual effectiveness in the absorption of the heavy metal by the plants were studied. The concentration of the soil was monitored regularly to assess the rate of depletion and the simultaneous uptake of the heavy metal from the soil to the plant. The amount of heavy metal uptake by the plant was also quantified by analyzing the plant sample at the end of the testing period. Finally, the study throws light on the applicability of the studied plants in the field for effective remediation of the contaminated sites of Assam.

Keywords: phytoextraction, heavy-metals, Indian pennywort, fenugreek

Procedia PDF Downloads 120
7095 Control of Helminthosporiosis in Oryza sativa Varieties Treated with 24-Epibrassinolide

Authors: Kuate Tueguem William Norbert, Ngoh Dooh Jules Patrice, Kone Sangou Abdou Nourou, Mboussi Serge Bertrand, Chewachang Godwill Mih, Essome Sale Charles, Djuissi Tohoto Doriane, Ambang Zachee

Abstract:

The objectives of this study were to evaluate the effects of foliar application of 24-epibrassinolide (EBR) on the development of rice helminthosporiosis caused by Bipolaris oryzae and its influence on the improvement of growth parameters and induction of the synthesis of defense substances in the rice plants. The experimental asset up involved a multifactorial split-plot with two varieties (NERICA 3 and local variety KAMKOU) and five treatments (T0: control, T1: EBR, T2: BANKO PLUS (fungicide), T3: NPK (chemical fertilizer), T4: mixture: NPK + BANKO PLUS + EBR) with three repetitions. Agro-morphological and epidemiological parameters, as well as substances for plant resistance, were evaluated over two growing seasons. The application of the EBR induced significant growth of the rice plants for the 2015 and 2016 growing seasons on the two varieties tested compared to the T0 treatment. At 74 days after sowing (DAS), NERICA 3 showed plant heights of 58.9 ± 5.4; 83.1 ± 10.4; 86.01 ± 9.4; 69.4 ± 11.1 and 87.12 ± 7.4 cm at T0; T1; T2; T3, and T4, respectively. Plant height for the variety KAMKOU varied from 87,12 ± 8,1; 88.1 ± 8.1 and 92.02 ± 6.3 cm in T1, T2, and T3 to 74.1 ± 8.6 and 74.21 ± 11.4 cm in T0 and T3. In accordance with the low rate of expansion of helminthosporiosis in experimental plots, EBR (T1) significantly reduced the development of the disease with severities of 0.0; 1.29, and 2.04%, respectively at 78; 92, and 111 DAS on the variety NERICA 3 compared with1; 3.15 and 3.79% in the control T0. The reduction of disease development/severity as a result of the application of EBR is due to the induction of acquired resistance of rice varieties through increased phenol (13.73 eqAG/mg/PMF) and total protein (117.89 eqBSA/mg/PMF) in the T1 treatment against 5.37 eqAG/mg/PMF and 104.97 eqBSA/mg/PMF in T0 for the NERICA 3 variety. Similarly, on the KAMKOU variety, 148.53 eqBSA/mg/PMF were protein and 6.10 eqAG/mg/PMF of phenol in T1. In summary, the results show the significant effect of EBR on plant growth, yield, synthesis of secondary metabolites and defense proteins, and disease resistance. The EBR significantly reduced losses of rice grains by causing an average gain of about 1.55 t/ha compared to the control and 1.00 t/ha compared to the NPK-based treatment for the two varieties studied. Further, the enzymatic activities of PPOs, POXs, and PR2s were higher in leaves from treated EBR-based plants. These results show that 24-epibrassinolide can be used in the control of helminthosporiosis of rice to reduce disease and increase yields.

Keywords: Oryza sativa, 24-epibrassinolide, helminthosporiosis, secondary metabolites, PR proteins, acquired resistance

Procedia PDF Downloads 188
7094 Genetic Variability and Principal Component Analysis in Eggplant (Solanum melongena)

Authors: M. R. Naroui Rad, A. Ghalandarzehi, J. A. Koohpayegani

Abstract:

Nine advanced cultivars and lines were planted in transplant trays on March, 2013. In mid-April 2014, nine cultivars and lines were taken from the seedling trays and were evaluated and compared in an experiment in form of a completely randomized block design with three replications at the Agricultural Research Station, Zahak. The results of the analysis of variance showed that there was a significant difference between the studied cultivars in terms of average fruit weight, fruit length, fruit diameter, ratio of fruit length to its diameter, the relative number of seeds per fruit, and each plant yield. The total yield of Sohrab and Y6 line with and an average of 41.9 and 36.7 t/ ha allocated the highest yield respectively to themselves. The results of simple correlation between the analyzed traits showed the final yield was affected by the average fruit weight due to direct and indirect effects of fruit weight and plant yield on the final yield. The genotypic and heritability values were high for fruit weight, fruit length and number of seed per fruit. The first two principal components accounted for 81.6% of the total variation among the characters describing genotypes.

Keywords: eggplant, principal component, variation, path analysis

Procedia PDF Downloads 232
7093 Phytochemical Exploration of Plectranthus stocksii Hook. F. for Antioxidant and Cytotoxic Properties

Authors: Kasipandi Muniyandi, Parimelazhagan Thangaraj

Abstract:

Plants are important prospective wealth of a country, combination of local health care information about a specific plant together with data published by several groups of scientists, can help in deciding whether it should be considered acceptable for medicinal use. In the developed countries, too, plant-derived drugs may be of importance. The wide variety of ailments that are being treated with Plectranthus is an indication of the medicinal value of the genus. A number of species are not toxic and so may be taken orally, whilst others are used topically on the skin or as enemas. This study was designed to evaluate the different properties of Plectranthus stocksii and the aerial parts were collected and extracted with petroleum ether, chloroform, ethyl acetate, acetone and methanol by Soxhlet apparatus and finally macerated with hot water. The quantification assays revealed that, leaf methanol extract showed higher total phenolic (415.41 mg GAE/ g extract) and tannin (177.53 mg GAE/ g extract) contents whereas leaf ethyl acetate exhibited higher flavonoids (777.11 mg RE/ g extract) content. The antioxidant efficiency of the extracts was analyzed by various radical scavenging assays. Among the different antioxidant assays, leaf ethyl acetate extract showed higher free radical scavenging activities against DPPH (IC50 = 3.46 µg/mL), ABTS (27417.65 µM TE/ g extract), FRAP (152.17 mM Fe(II)E/ mg extract) NO• radical (21.46%) and Superoxide radical (IC50 = 24.16 µg/mL) assays. All the parts P. stocksii extracts showed significant protection against OH• induced DNA damage at 50 µg concentration. The HPLC analysis of leaf ethyl acetate extract revealed the presence of Quercetin (30.29 µg/mg of extract) was the major compound. Anticancer activity of leaf ethyl acetate extract showed better IC50 values were 48.87 and 36.08 µg/ mL against MCF-7 and Caco-2 respectively. From this study, P. stocksii can act as a potent antioxidant and cytotoxic antimicrobial agent. The scope for drug development from this plant is endless and there is undoubtedly a call for further research in pharmaceutical industries.

Keywords: antioxidant, cytotoxicity, phenolics, plectranthus stocksii

Procedia PDF Downloads 383
7092 Effects of Rice Plant Extracts and Phenolic Allelochemicals on Seedling Growth of Radish

Authors: Mohammad Shamim Hasan Mandal, Phu Minh, Do Tan Khang, Phung Thi Tuyen, Tran Dang Xuan

Abstract:

Rice (Oryza sativa L.) is one of the major crops of Vietnam which has more than thousands of varieties. Many of the local varieties have greater potentiality but they are in danger of extinct. Rice plant contains many secondary metabolites that are allelopathic to other plants. Seven rice varieties were cultivated in the field condition at Hiroshima University, Japan; stems and leaves from each variety were collected later, they were extracted with methanol, hexane, ethyl acetate, butanol, and water. Total phenolic content and total flavonoid contents were high in ethyl acetate extracts. DPPH antioxidant assay results showed that the ethyl acetate extracts had the higher IC50 value. Therefore, the ethyl acetate extracts were selected for laboratory experimentation through petri dish assay. Results showed that the two-local variety Re nuoc and Nan chon completely inhibited the germination of radish seedlings. Further laboratory bioassay and field experimentation will be conducted to validate the laboratory bioassay findings.

Keywords: allelopathy, bioassay, Oryza sativa, Raphanus sativus

Procedia PDF Downloads 361
7091 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 108
7090 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 113
7089 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 267
7088 Sustainable Development of Adsorption Solar Cooling Machine

Authors: N. Allouache, W. Elgahri, A. Gahfif, M. Belmedani

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are a good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs, such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber, that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space, and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 78
7087 Medicinal Plants Used by Moroccan People in the Management of Diabetes and Hypertension

Authors: Alami Ilyass, Kharchoufa Loubna, Alachouri Mostafa

Abstract:

Cardiovascular disease (CDV) remains the major cause of morbidity; mortality and disability throughout the world. The ethnopharmcological and ethnobotanical studies are the paramount importance to set a high value on phytogenetic resources and to address health problems of some communities; especially poor peoples. Our work presents an analysis of published data from studies, that have been undertaken, in Morocco, by different seeker teams in separately areas during the last decades. Objectives: Evaluate and identify medicinal plants used for cardiovascular treatment by Moroccan people. Methodology: All these studies have the same approaches ; they were conducted by interviewing people suffering from diabetes. We use Factorial Analysis (FA) and principal Components analysis (PCA) to analyse the aggregated data from the different studies. Results: globally; 95 plants species were listed; all these plant were used empirically by Moroccan society for treating cardiovascular problems. These plants were divided in to 42 families and 87 genus. The lamiaceae; asteraceae; Apiaceae and poaceae are the botanical families with high number of plant species. Coclusion: Traditional medecine has been widely used for treatment of cardiovascular problems and it has been recognized as an interesting alternative to conventional medicine.

Keywords: cardiovascular, ethnobotanical, medicinal plants, Morocco

Procedia PDF Downloads 239
7086 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning

Authors: Pinzhe Zhao

Abstract:

This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.

Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity

Procedia PDF Downloads 20