Search results for: hybrid reactor
497 Performance Improvement in a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics
Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami
Abstract:
Micro gas turbine (MGT) nowadays has a wide variety of applications from drones to hybrid electric vehicles. As microfabrication technology getting better, the size of MGT is getting smaller. Overall performance of MGT is dependent on the individual components. Each component’s performance is dependent and interrelated with another component. Therefore, careful consideration needs to be given to each and every individual component of MGT. In this study, the focus is on improving the performance of the compressor in order to improve the overall performance of MGT. Computational Fluid Dynamics (CFD) is being performed using the software FLUENT to analyze the design of a micro compressor. Operating parameters like mass flow rate and RPM, and design parameters like inner blade angle (IBA), outer blade angle (OBA), blade thickness and number of blades are varied to study its effect on the performance of the compressor. Pressure ratio is used as a tool to measure the performance of the compressor. Higher the pressure ratio, better the design is. In the study, target mass flow rate is 0.2 g/s and RPM to be less than or equal to 900,000. So far, a pressure ratio of above 3 has been achieved at 0.2 g/s mass flow rate with 5 rotor blades, 0.36 mm blade thickness, 94.25 degrees OBA and 10.46 degrees IBA. The design in this study differs from a regular centrifugal compressor used in conventional gas turbines such that compressor is designed keeping in mind ease of manufacturability. So, this study proposes a compressor design which has a good pressure ratio, and at the same time, it is easy to manufacture using current microfabrication technologies.Keywords: computational fluid dynamics, FLUENT microfabrication, RPM
Procedia PDF Downloads 162496 Micropollutant Carbamazepine: Its Occurrences, Toxicological Effects, and Possible Degradation Methods (Review)
Authors: Azad Khalid, Sifa Dogan
Abstract:
Because of its persistence in conventional treatment plants and broad prevalence in water bodies, the pharmaceutical chemical carbamazepine (CBZ) has been suggested as an anthropogenic marker to evaluate water quality. This study provides a thorough examination of the origins and occurrences of CBZ in water bodies, as well as the drug's toxicological effects and laws. Given CBZ's well-documented negative consequences on the human body when used medicinally, cautious monitoring in water is advised. CBZ residues in drinking water may enter embryos and newborns via intrauterine exposure or breast-feeding, causing congenital abnormalities and/or neurodevelopmental issues over time. The insufficiency of solo solutions was shown after an in-depth technical study of traditional and sophisticated treatment technologies. Nanofiltration and reverse osmosis membranes are more successful at removing CBZ than traditional activated sludge and membrane bioreactor techniques. Recent research has shown that severe chemical cleaning, which is essential to prevent membrane fouling, may lower long-term removal efficiency. Furthermore, despite the efficacy of activated carbon adsorption and advanced oxidation processes, a few issues such as chemical cost and activated carbon renewal must be carefully examined. Individual technology constraints lead to the benefits of combined and hybrid systems, namely the heterogeneous advanced oxidation process.Keywords: carbamazepine, occurrence, toxicity, conventical treatment, advanced oxidation process (AOPs)
Procedia PDF Downloads 96495 A Postcolonial View Analysis on the Structural Rationalism Influence in Indonesian Modern Architecture
Authors: Ryadi Adityavarman
Abstract:
The study is an analysis by using the postcolonial theoretical lens on the search for a distinctive architectural identity by architect Maclaine Pont in Indonesia in the early twentieth century. Influenced by progressive architectural thinking and enlightened humanism at the time, Pont applied the fundamental principles of Structural Rationalism by using a creative combination of traditional Indonesian architectural typology and innovative structural application. The interpretive design strategy also celebrated creative use of local building materials with sensible tropical climate design response. Moreover, his holistic architectural scheme, including inclusion of local custom of building construction, represents the notion of Gesamkunstwerk. By using such hybrid strategy, Maclaine Pont intended to preserve the essential cultural identity and vernacular architecture of the indigenous. The study will chronologically investigate the evolution of Structural Rationalism architecture philosophy of Viollet-le-Duc to Hendrik Berlage’s influential design thinking in the Dutch modern architecture, and subsequently to the Maclaine Pont’s innovative design in Indonesia. Consequently, the morphology analysis on his exemplary design works of ITB campus (1923) and Pohsarang Church (1936) is to understand the evolutionary influence of Structural Rationalism theory. The postmodern analysis method is to highlight the validity of Pont’s idea in the contemporary Indonesian architecture within the culture of globalism era.Keywords: Indonesian modern architecture, postcolonial, structural rationalism, critical regionalism
Procedia PDF Downloads 341494 Comparing Forecasting Performances of the Bass Diffusion Model and Time Series Methods for Sales of Electric Vehicles
Authors: Andreas Gohs, Reinhold Kosfeld
Abstract:
This study should be of interest for practitioners who want to predict precisely the sales numbers of vehicles equipped with an innovative propulsion technology as well as for researchers interested in applied (regional) time series analysis. The study is based on the numbers of new registrations of pure electric and hybrid cars. Methods of time series analysis like ARIMA are compared with the Bass Diffusion-model concerning their forecasting performances for new registrations in Germany at the national and federal state levels. Especially it is investigated if the additional information content from regional data increases the forecasting accuracy for the national level by adding predictions for the federal states. Results of parameters of the Bass Diffusion Model estimated for Germany and its sixteen federal states are reported. While the focus of this research is on the German market, estimation results are also provided for selected European and other countries. Concerning Bass-parameters and forecasting performances, we get very different results for Germany's federal states and the member states of the European Union. This corresponds to differences across the EU-member states in the adoption process of this innovative technology. Concerning the German market, the adoption is rather proceeded in southern Germany and stays behind in Eastern Germany except for Berlin.Keywords: bass diffusion model, electric vehicles, forecasting performance, market diffusion
Procedia PDF Downloads 169493 Historiography of Wood Construction in Portugal
Authors: João Gago dos Santos, Paulo Pereira Almeida
Abstract:
The present study intends to deepen and understand the reasons that led to the decline and disappearance of wooden construction systems in Portugal, for that reason, its use in history must be analyzed. It is observed that this material was an integral part of the construction systems in Europe and Portugal for centuries, and it is possible to conclude that its decline happens with the appearance of hybrid construction and later with the emergence and development of reinforced concrete technology. It is also verified that wood as a constructive element, and for that reason, an element of development had great importance in national construction, with its peak being the Pombaline period, after the 1755 earthquake. In this period, the great scarcity of materials in the metropolis led to the import wood from Brazil for the reconstruction of Lisbon. This period is linked to an accentuated exploitation of forests, resulting in laws and royal decrees aimed at protecting them, guaranteeing the continued existence of profitable forests, crucial to the reconstruction effort. The following period, with the gradual loss of memory of the catastrophe, resulted in a construction that was weakened structurally as a response to a time of real estate speculation and great urban expansion. This was the moment that precluded the inexistence of the use of wood in construction. At the beginning of the 20th century and in the 30s and 40s, with the appearance and development of reinforced concrete, it became part of the great structures of the state, and it is considered a versatile material capable of resolving issues throughout the national territory. It is at this point that the wood falls into disuse and practically disappears from the new works produced.Keywords: construction history, construction in portugal, construction systems, wood construction
Procedia PDF Downloads 124492 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms
Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov
Abstract:
The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems does not scale well on multi-CPU/multi-GPUs clusters. For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration instead of two for standard CG. The standard and pipelined CG methods need the vector entries generated by the current GPU and other GPUs for matrix-vector products. So the communication between GPUs becomes a major performance bottleneck on multi GPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using the pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP, and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.Keywords: conjugate gradient, GPU, parallel programming, pipelined algorithm
Procedia PDF Downloads 165491 Impressions of HyFlex in an Engineering Technology Program in an Undergraduate Urban Commuter Institution
Authors: Zory Marantz
Abstract:
Hybrid flexible (HyFlex) is a pedagogical methodology whereby an instructor delivers content in three modalities, i.e. live in-person (LIP), live online synchronous (LOS), and non-live online asynchronous (nLOaS). HyFlex is focused on providing the largest level of flexibility needed to achieve a cohesive environment across all modalities and incorporating four basic principles – learner’s choice, reusability, accessibility, and equivalency. Much literature has focused on the advantages of this methodology in providing students with the flexibility to choose their learning modality as best suits their schedules and learning styles. Initially geared toward graduate-level students, the concept has been applied to undergraduate studies, particularly during our national pedagogical response to the COVID19 pandemic. There is still little literature about the practicality and feasibility of HyFlex for hardware laboratory intensive engineering technology programs, particularly in dense, urban commuter institutions of higher learning. During a semester of engineering, a lab-based course was taught in the HyFlex modality, and students were asked to complete a survey about their experience. The data demonstrated that there is no single mode that is preferred by a majority of students and the usefulness of any modality is limited to how familiar the student and instructor are with the technology being applied. The technology is only as effective as our understanding and comfort with its functionality. For HyFlex to succeed in its implementation in an engineering technology environment within an urban commuter institution, faculty and students must be properly introduced to the technology being used.Keywords: education, HyFlex, technology, urban, commuter, pedagogy
Procedia PDF Downloads 95490 Effect of Water Addition on Catalytic Activity for CO2 Purification from Oxyfuel Combustion
Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin
Abstract:
Oxyfuel combustion is a promising method that enables to obtain a CO2 rich stream, with water vapor ( ̴10%), unburned components such as CO and NO, which must be cleaned before the use of CO2. Our objective is then the final treatment of CO and NO by catalysis. Three-way catalysts are well-developed material for simultaneous conversion of NO, CO and hydrocarbons. Pt and/or Rh ensure a quasi-complete removal of NOx, CO and HC and there is also a growing interest in partly replacing Pt with less-expensive Pd. The use of alumina and ceria as support ensures, respectively, the stabilization of such species in active state and discharging or storing oxygen to control the oxidation of CO and HC and the reduction of NOx. In this work, we will compare different metals (Pd, Rh and Pt) supported on Al2O3 and CeO2, for CO2 purification from oxyfuel combustion. The catalyst must reduce NO by CO in an oxidizing environment, in the presence of CO2 rich stream and resistant to water. In this study, Al2O3 and CeO2 were used as support materials of the catalysts. 1wt% M/Support where M = Pd, Rh or Pt catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2], rhodium [Rh(NO3)3] and platinum [Pt(NO2)2(NO3)2]. Materials were characterized by BET surface area, H2 chemisorption, and TEM. Catalytic activity was evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200 mL.min−1, with same GHSV (2.24x104 h-1). The catalytic performances of the samples were investigated with and without water. It shows that the total oxidation of CO occurred over the different materials. This study evidenced an important effect of the nature of the metals, supports and the presence or absence of H2O during the reduction of NO by CO in oxyfuel combustions conditions. Rh based catalysts show that the addition of water has a very positive influence especially on the Rh catalyst on CeO2. Pt based catalysts keep a good activity despite the addition of water on the both supports studied. For the NO reduction, addition of water act as a poison with Pd catalysts. The interesting results of Rh based catalysts with water can be explained by a production of hydrogen through the water gas shift reaction. The produced hydrogen acts as a more effective reductant than CO for NO removal. Furthermore, in TWCs, Rh is the main component responsible for NOx reduction due to its especially high activity for NO dissociation. Moreover, cerium oxide is a promotor for WGSR.Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis
Procedia PDF Downloads 182489 Design and Development of Permanent Magnet Quadrupoles for Low Energy High Intensity Proton Accelerator
Authors: Vikas Teotia, Sanjay Malhotra, Elina Mishra, Prashant Kumar, R. R. Singh, Priti Ukarde, P. P. Marathe, Y. S. Mayya
Abstract:
Bhabha Atomic Research Centre, Trombay is developing low energy high intensity Proton Accelerator (LEHIPA) as pre-injector for 1 GeV proton accelerator for accelerator driven sub-critical reactor system (ADSS). LEHIPA consists of RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linac) as major accelerating structures. DTL is RF resonator operating in TM010 mode and provides longitudinal E-field for acceleration of charged particles. The RF design of drift tubes of DTL was carried out to maximize the shunt impedance; this demands the diameter of drift tubes (DTs) to be as low as possible. The width of the DT is however determined by the particle β and trade-off between a transit time factor and effective accelerating voltage in the DT gap. The array of Drift Tubes inside DTL shields the accelerating particle from decelerating RF phase and provides transverse focusing to the charged particles which otherwise tends to diverge due to Columbic repulsions and due to transverse e-field at entry of DTs. The magnetic lenses housed inside DTS controls the transverse emittance of the beam. Quadrupole magnets are preferred over solenoid magnets due to relative high focusing strength of former over later. The availability of small volume inside DTs for housing magnetic quadrupoles has motivated the usage of permanent magnet quadrupoles rather than Electromagnetic Quadrupoles (EMQ). This provides another advantage as joule heating is avoided which would have added thermal loaded in the continuous cycle accelerator. The beam dynamics requires uniformity of integral magnetic gradient to be better than ±0.5% with the nominal value of 2.05 tesla. The paper describes the magnetic design of the PMQ using Sm2Co17 rare earth permanent magnets. The paper discusses the results of five pre-series prototype fabrications and qualification of their prototype permanent magnet quadrupoles and a full scale DT developed with embedded PMQs. The paper discusses the magnetic pole design for optimizing integral Gdl uniformity and the value of higher order multipoles. A novel but simple method of tuning the integral Gdl is discussed.Keywords: DTL, focusing, PMQ, proton, rate earth magnets
Procedia PDF Downloads 472488 Real-Time Pedestrian Detection Method Based on Improved YOLOv3
Authors: Jingting Luo, Yong Wang, Ying Wang
Abstract:
Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3
Procedia PDF Downloads 143487 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models
Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo
Abstract:
Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps
Procedia PDF Downloads 100486 Factors Affecting Employee Decision Making in an AI Environment
Authors: Yogesh C. Sharma, A. Seetharaman
Abstract:
The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision-making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation, and workplace motivation. Hybrid human-AI systems require the development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.Keywords: employee decision making, artificial intelligence (AI) environment, human trust, technology innovation, psychological safety
Procedia PDF Downloads 110485 Adaptive Strategies of Maize in Leaf Traits to N Deficiency
Authors: Panpan Fan, Bo Ming, Niels Anten, Jochem Evers, Yaoyao Li, Shaokun Li, Ruizhi xie
Abstract:
Nitrogen (N) utilization for crop production under N deficiency conditions is subject to a trade-off between maintaining specific leaf N content (SLN), important for radiation-use efficiency (RUE), versus maintaining leaf area (LA) development, important for light capture. This paper aims to explore how maize deals with this trade-off through responses in SLN, LA and their underlying traits during the vegetative and reproductive growth stages. In a ten-year N fertilization trial in Jilin province, Northeast China, three N fertilizer levels have been maintained: N-deficiency (N0), low N supply (N1), and high N supply (N2). We analyzed data from years 8 and 10 of this experiment for two common hybrids. Under N deficiency, maize plants maintained LA and decreased SLN during vegetative stages, while both LA and SLN decreased comparably during reproductive stages. Canopy-average specific leaf area (SLA) decreased sharply during vegetative stages and slightly during reproductive stages, mainly because senesced leaves in the lower canopy had a higher SLA. In the vegetative stage, maize maintained leaf area at low N by maintaining leaf biomass (albeit hence having N content/mass) and slightly increasing SLA. These responses to N deficiency were stronger in maize hybrid XY335 than in ZD958. We conclude the main strategy of maize to cope with low N is to maintain plant growth, mainly by increasing SLA throughout the plant during early growth. N was too limiting for either strategy to be followed during later growth stages.Keywords: leaf N content per unit leaf area, N deficiency, specific leaf area, maize strateg
Procedia PDF Downloads 94484 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer
Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs
Abstract:
Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC
Procedia PDF Downloads 362483 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN
Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo
Abstract:
This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.Keywords: PM2.5 forecast, machine learning, convLSTM, DNN
Procedia PDF Downloads 56482 An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production
Authors: Gabriel Sanjo Aruwajoye, E. B. Gueguim Kana
Abstract:
Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses.Keywords: feedstock pretreatment, cassava peels, fermentable sugar, response surface methodology
Procedia PDF Downloads 368481 Designing Supplier Partnership Success Factors in the Coal Mining Industry
Authors: Ahmad Afif, Teuku Yuri M. Zagloel
Abstract:
Sustainable supply chain management is a new pattern that has emerged recently in industry and companies. The procurement process is one of the key factors for efficiency in supply chain management practices. Partnership is one of the procurement strategies for strategic items. The success factors of the partnership must be determined to avoid things that endanger the financial and operational status of the company. The current supplier partnership research focuses on the selection of general criteria and sustainable supplier selection. Currently, there is still limited research on the success factors of supplier partnerships that focus on strategic items in the coal mining industry. Meanwhile, the procurement of coal mining has its own characteristics, and there are regulations related to the procurement of goods. Therefore, this research was conducted to determine the categories of goods that are included in the strategic items and to design the success factors of supplier partnerships. The main factors studied are general, financial, production, reputation, synergies, and sustainable. The research was conducted using the Kraljic method to determine the categories of goods that are included in the strategic items. To design a supplier partnership success factor using the Hybrid Multi Criteria Decision Making method. Integrated Fuzzy AHP-Fuzzy TOPSIS is used to determine the weight of the success factors of supplier partnerships and to rank suppliers on the factors used.Keywords: supplier, partnership, strategic item, success factors, and coal mining industry
Procedia PDF Downloads 131480 Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite
Authors: Rong Li, Brian D. Wirth, Bing Liu
Abstract:
Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors.Keywords: graphite damage cascade, molecular dynamics, cascade morphology, cascade distribution
Procedia PDF Downloads 155479 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks
Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE
Abstract:
Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network
Procedia PDF Downloads 122478 Systems Approach on Thermal Analysis of an Automatic Transmission
Authors: Sinsze Koo, Benjin Luo, Matthew Henry
Abstract:
In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.Keywords: thermal management, automatic transmission, hybrid, and systematic approach
Procedia PDF Downloads 379477 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices
Authors: Mirvat Shamseddine, Issam Lakkis
Abstract:
We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows
Procedia PDF Downloads 300476 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 210475 Synthesis and Tribological Properties of the Al-Cr-N/MoS₂ Self-Lubricating Coatings by Hybrid Magnetron Sputtering
Authors: Tie-Gang Wang, De-Qiang Meng, Yan-Mei Liu
Abstract:
Ternary AlCrN coatings were widely used to prolong cutting tool life because of their high hardness and excellent abrasion resistance. However, the friction between the workpiece and cutter surface was increased remarkably during machining difficult-to-cut materials (such as superalloy, titanium, etc.). As a result, a lot of cutting heat was generated and cutting tool life was shortened. In this work, an appropriate amount of solid lubricant MoS₂ was added into the AlCrN coating to reduce the friction between the tool and the workpiece. A series of Al-Cr-N/MoS₂ self-lubricating coatings with different MoS₂ contents were prepared by high power impulse magnetron sputtering (HiPIMS) and pulsed direct current magnetron sputtering (Pulsed DC) compound system. The MoS₂ content in the coatings was changed by adjusting the sputtering power of the MoS₂ target. The composition, structure and mechanical properties of the Al-Cr-N/MoS2 coatings were systematically evaluated by energy dispersive spectrometer, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, nano-indenter tester, scratch tester, and ball-on-disk tribometer. The results indicated the lubricant content played an important role in the coating properties. As the sputtering power of the MoS₂ target was 0.1 kW, the coating possessed the highest hardness 14.1GPa, the highest critical load 44.8 N, and the lowest wear rate 4.4×10−3μm2/N.Keywords: self-lubricating coating, Al-Cr-N/MoS₂ coating, wear rate, friction coefficient
Procedia PDF Downloads 135474 Consumers’ Preferences and Willingness to Pay for Tomato Attributes: Evidence from Pakistan
Authors: Jahangir Khan, Syed Attaullah Shah, Aditya R. Khanal
Abstract:
Vegetables are the most important component of a healthy diet; among them, tomatoes are the most purchased and consumed vegetable. Fresh and processed tomatoes are widely consumed in Pakistan and are regarded as premium products. Consumers have unique preferences regarding food choices when buying products in the market. This research paper investigates how consumers assess tomatoes and their willingness to pay for various tomato attributes while making food choices. Information on consumers’ behavior regarding food choices was collected from 1200 respondents through face-to-face interviews using a choice experiment design and an econometric evaluation of the random utility model. The data was gathered from three diverse climatic zones: Northern, Central, and Southern. The study examined consumers' WTP for tomato attributes such as production method, packaging, and variety type. The empirical results confirmed that respondents preferred organic tomatoes and were willing to pay a 65% price premium compared to the conventional method. Additionally, consumers were also willing to pay a 56% price premium for hybrid variety compared to local variety. Results of the research indicated that consumers were willing to pay a premium of 23% for labeled packaging. The findings of this research study provide useful information to stakeholders in the tomato supply chain to better align their products with consumers' preferences, ultimately enhancing market growth and consumers’ satisfaction.Keywords: choice experiment, consumers’ behavior, tomato attributes, willingness to pay
Procedia PDF Downloads 17473 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 34472 Biogas Potential of Deinking Sludge from Wastepaper Recycling Industry: Influence of Dewatering Degree and High Calcium Carbonate Content
Authors: Moses Kolade Ogun, Ina Korner
Abstract:
To improve on the sustainable resource management in the wastepaper recycling industry, studies into the valorization of wastes generated by the industry are necessary. The industry produces different residues, among which is the deinking sludge (DS). The DS is generated from the deinking process and constitutes a major fraction of the residues generated by the European pulp and paper industry. The traditional treatment of DS by incineration is capital intensive due to energy requirement for dewatering and the need for complementary fuel source due to DS low calorific value. This could be replaced by a biotechnological approach. This study, therefore, investigated the biogas potential of different DS streams (different dewatering degrees) and the influence of the high calcium carbonate content of DS on its biogas potential. Dewatered DS (solid fraction) sample from filter press and the filtrate (liquid fraction) were collected from a partner wastepaper recycling company in Germany. The solid fraction and the liquid fraction were mixed in proportion to realize DS with different water content (55–91% fresh mass). Spiked samples of DS using deionized water, cellulose and calcium carbonate were prepared to simulate DS with varying calcium carbonate content (0– 40% dry matter). Seeding sludge was collected from an existing biogas plant treating sewage sludge in Germany. Biogas potential was studied using a 1-liter batch test system under the mesophilic condition and ran for 21 days. Specific biogas potential in the range 133- 230 NL/kg-organic dry matter was observed for DS samples investigated. It was found out that an increase in the liquid fraction leads to an increase in the specific biogas potential and a reduction in the absolute biogas potential (NL-biogas/ fresh mass). By comparing the absolute biogas potential curve and the specific biogas potential curve, an optimal dewatering degree corresponding to a water content of about 70% fresh mass was identified. This degree of dewatering is a compromise when factors such as biogas yield, reactor size, energy required for dewatering and operation cost are considered. No inhibitory influence was observed in the biogas potential of DS due to the reported high calcium carbonate content of DS. This study confirms that DS is a potential bioresource for biogas production. Further optimization such as nitrogen supplementation due to DS high C/N ratio can increase biogas yield.Keywords: biogas, calcium carbonate, deinking sludge, dewatering, water content
Procedia PDF Downloads 188471 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon
Abstract:
Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.Keywords: decentralized systems, distributed generation, microgrids, renewable energy
Procedia PDF Downloads 136470 The Experience of Community-based Tourism in Yunguilla, Ecuador and Its Social-Cultural Impact
Authors: York Neudel
Abstract:
The phenomenon of tourism has been considered as tool to overcome cultural frontiers, to comprehend the other and to cope with mutual mistrust and suspicion. Well, that has been a myth, at least when it comes to mass-tourism. Other approaches, like community-based tourism, still are based on the idea of embracing the other in order to help or to understand the cultural difference. In 1997, two American NGOs incentivized a tourism-project in a community in the highlands of Ecuador, in order to protect the cloud forest from destructive exploitation of its own inhabitants. Nineteen years after that, I analyze in this investigation the interactions between the Ecuadorian hosts in the mestizo-community of Yunguilla and the foreign tourist in the quest for “authentic life” in the Ecuadorian cloud forest. As a sort of “contemporary pilgrim” the traveller tries to find authenticity in other times and places far away from their everyday life in Europe or North America. Therefore, tourists are guided by stereotypes and expectations that are produced by the touristic industry. The host, on the other hand, has to negotiate this pre-established imaginary. That generates a kind of theatre-play with front- and backstage in organic gardens, little fabrics and even private housing, since this alternative project offers to share the private space of the host with the tourist in the setting the community-based tourism. In order to protect their privacy, the community creates new hybrid spaces that oscillate between front- and backstages that culminates in a game of hide and seek – a phenomenon that promises interesting frictions for an anthropological case-study.Keywords: Tourism, Authenticity, Community-based tourism, Ecuador, Yunguilla
Procedia PDF Downloads 285469 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch
Authors: M. Talebzadegan, S. Bina, I. Riazi
Abstract:
The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.Keywords: Solar energy, Heat Demand, Renewable , Pollution
Procedia PDF Downloads 252468 Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete
Authors: Erjola Reufi, Thomas Beer
Abstract:
Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study.Keywords: fiber reinforced concrete(FRC), polypropylene fiber, resonance, ultrasonic pulse velocity, steel fiber
Procedia PDF Downloads 302