Search results for: heterogeneous networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3477

Search results for: heterogeneous networks

1557 The Iraqi Fibre-to-the-Home Networks, Problems, Challenges, and Solutions along with Less Expense

Authors: Hasanein Hasan, Mohammed Al-Taie, Basil Shanshool, Khalaf Abd-Ali

Abstract:

This approach aims to deal with establishing and operating Iraqi Fibre-To-The-Home (FTTH) projects. The problems they suffer from are organized sabotage, vandalism, accidental damage and poor planning. It provides practical solutions that deal with the aforementioned problems. These solutions consist of both technical and financial clarifications that ensure the achievement of the FTTH network’s stability for the purpose of equipping citizens, private sector companies, and governmental institutions with services, data transmission, the Internet, and other services. They aim to solve problems and obstacles accompanying the operation and maintenance of FTTH projects implemented by the Informatics and Telecommunications Public Company (ITPC)/ Iraqi Ministry of Communications (MoC). This approach takes the FTTH network of AlMaalif-AlMuaslat districts/ Baghdad-Iraq as a case study.

Keywords: CCTV, FTTH, ITPC, MoC, NVR, PTZ

Procedia PDF Downloads 84
1556 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 58
1555 E-Business Role in the Development of the Economy of Sultanate of Oman

Authors: Mairaj Salim, Asma Zaheer

Abstract:

Oman has accomplished as much or more than its fellow Gulf monarchies, despite starting from scratch considerably later, having less oil income to utilize, dealing with a larger and more rugged geography, and resolving a bitter civil war along the way. Of course, Oman's progress in the past 30-plus years has not been without problems and missteps, but the balance is squarely on the positive side of the ledger. Oil has been the driving force of the Omani economy since Oman began commercial production in 1967. The oil industry supports the country’s high standard of living and is primarily responsible for its modern and expansive infrastructure, including electrical utilities, telephone services, roads, public education and medical services. In addition to extensive oil reserves, Oman also has substantial natural gas reserves, which are expected to play a leading role in the Omani economy in the Twenty-first Century. To reduce the country’s dependence on oil revenues, the government is restructuring the economy by directing investment to non-oil activities. Since the 21st century IT has changed the performing tasks. To manage the affairs for the benefits of organizations and economy, the Omani government has adopted E-Business technologies for the development. E-Business is important because it allows • Transformation of old economy relationships (vertical/linear relationships) to new economy relationships characterized by end-to-end relationship management solutions (integrated or extended relationships) • Facilitation and organization of networks, small firms depend on ‘partner’ firms for supplies and product distribution to meet customer demands • SMEs to outsource back-end process or cost centers enabling the SME to focus on their core competence • ICT to connect, manage and integrate processes internally and externally • SMEs to join networks and enter new markets, through shortened supply chains to increase market share, customers and suppliers • SMEs to take up the benefits of e-business to reduce costs, increase customer satisfaction, improve client referral and attract quality partners • New business models of collaboration for SMEs to increase their skill base • SMEs to enter virtual trading arena and increase their market reach A national strategy for the advancement of information and communication technology (ICT) has been worked out, mainly to introduce e-government, e-commerce, and a digital society. An information technology complex KOM (Knowledge Oasis Muscat) had been established, consisting of section for information technology, incubator services, a shopping center of technology software and hardware, ICT colleges, E-Government services and other relevant services. So, all these efforts play a vital role in the development of Oman economy.

Keywords: ICT, ITA, CRM, SCM, ERP, KOM, SMEs, e-commerce and e-business

Procedia PDF Downloads 252
1554 Governing External Innovation: Lessons from Apple’s iOS and Google’s Android

Authors: Amir Mohagheghzadeh, Solaleh Salimi, Ramin Tafazzoli

Abstract:

Ecosystem and networks plays significant roles in product innovation. External innovation within developing firms can bring a wide range of advantages for a firm in a competitive market. Using external innovation can be mentioned as one of the most significant concepts regarding the firm’s transition phase into openness. Derivative concepts such as open or shared platform and app stores are the main result of this thinking within the firms. However, adopting this concept and leverage the defined advantages of external innovation should be aligned with other strategies and policies of a firm. Consequently, one of the key aspects that have been raised while using external innovation is how to govern external innovation within a developing firm. This paper describes the frameworks that two pioneer companies in mobile operating system development have used in order to control and govern external innovation through platform.

Keywords: external innovation, open innovation, governance, governance mechanisms, innovation, Apple, iOS, Google, Android

Procedia PDF Downloads 517
1553 Humins: From Industrial By-Product to High Value Polymers

Authors: Pierluigi Tosi, Ed de Jong, Gerard van Klink, Luc Vincent, Alice Mija

Abstract:

During the last decades renewable and low-cost resources have attracted increasingly interest. Carbohydrates can be derived by lignocellulosic biomasses, which is an attractive option since they represent the most abundant carbon source available in nature. Carbohydrates can be converted in a plethora of industrially relevant compounds, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), within acid catalyzed dehydration of sugars with mineral acids. Unfortunately, these acid catalyzed conversions suffer of the unavoidable formation of highly viscous heterogeneous poly-disperse carbon based materials known as humins. This black colored low value by-product is made by a complex mixture of macromolecules built by covalent random condensations of the several compounds present during the acid catalyzed conversion. Humins molecular structure is still under investigation but seems based on furanic rings network linked by aliphatic chains and decorated by several reactive moieties (ketones, aldehydes, hydroxyls, …). Despite decades of research, currently there is no way to avoid humins formation. The key parameter for enhance the economic viability of carbohydrate conversion processes is, therefore, increasing the economic value of the humins by-product. Herein are presented new humins based polymeric materials that can be prepared starting from the raw by-product by thermal treatment, without any step of purification or pretreatment. Humins foams can be produced with the control of reaction key parameters, obtaining polymeric porous materials with designed porosity, density, thermal and electrical conductivity, chemical and electrical stability, carbon amount and mechanical properties. Physico chemical properties can be enhanced by modifications on the starting raw material or adding different species during the polymerization. A comparisons on the properties of different compositions will be presented, along with tested applications. The authors gratefully acknowledge the European Community for financial support through Marie-Curie H2020-MSCA-ITN-2015 "HUGS" Project.

Keywords: by-product, humins, polymers, valorization

Procedia PDF Downloads 143
1552 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets

Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.

Keywords: cooling speed, gravity, homogenous cooling, jet impingement

Procedia PDF Downloads 123
1551 Urban Design as a Tool in Disaster Resilience and Urban Hazard Mitigation: Case of Cochin, Kerala, India

Authors: Vinu Elias Jacob, Manoj Kumar Kini

Abstract:

Disasters of all types are occurring more frequently and are becoming more costly than ever due to various manmade factors including climate change. A better utilisation of the concept of governance and management within disaster risk reduction is inevitable and of utmost importance. There is a need to explore the role of pre- and post-disaster public policies. The role of urban planning/design in shaping the opportunities of households, individuals and collectively the settlements for achieving recovery has to be explored. Governance strategies that can better support the integration of disaster risk reduction and management has to be examined. The main aim is to thereby build the resilience of individuals and communities and thus, the states too. Resilience is a term that is usually linked to the fields of disaster management and mitigation, but today has become an integral part of planning and design of cities. Disaster resilience broadly describes the ability of an individual or community to 'bounce back' from disaster impacts, through improved mitigation, preparedness, response, and recovery. The growing population of the world has resulted in the inflow and use of resources, creating a pressure on the various natural systems and inequity in the distribution of resources. This makes cities vulnerable to multiple attacks by both natural and man-made disasters. Each urban area needs elaborate studies and study based strategies to proceed in the discussed direction. Cochin in Kerala is the fastest and largest growing city with a population of more than 26 lakhs. The main concern that has been looked into in this paper is making cities resilient by designing a framework of strategies based on urban design principles for an immediate response system especially focussing on the city of Cochin, Kerala, India. The paper discusses, understanding the spatial transformations due to disasters and the role of spatial planning in the context of significant disasters. The paper also aims in developing a model taking into consideration of various factors such as land use, open spaces, transportation networks, physical and social infrastructure, building design, and density and ecology that can be implemented in any city of any context. Guidelines are made for the smooth evacuation of people through hassle-free transport networks, protecting vulnerable areas in the city, providing adequate open spaces for shelters and gatherings, making available basic amenities to affected population within reachable distance, etc. by using the tool of urban design. Strategies at the city level and neighbourhood level have been developed with inferences from vulnerability analysis and case studies.

Keywords: disaster management, resilience, spatial planning, spatial transformations

Procedia PDF Downloads 297
1550 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices

Procedia PDF Downloads 55
1549 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 112
1548 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels

Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche

Abstract:

This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.

Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization

Procedia PDF Downloads 498
1547 Mapping the Digital Landscape: An Analysis of Party Differences between Conventional and Digital Policy Positions

Authors: Daniel Schwarz, Jan Fivaz, Alessia Neuroni

Abstract:

Although digitization is a buzzword in almost every election campaign, the political parties leave voters largely in the dark about their specific positions on digital issues. In the run-up to the 2019 elections in Switzerland, the ‘Digitization Monitor’ project (DMP) was launched in order to change this situation. Within the framework of the DMP, all 4,736 candidates were surveyed about their digital policy positions and values. The DMP is designed as a digital policy supplement to the existing ‘smartvote’ voting advice application. This enabled a direct comparison of the digital policy attitudes according to the DMP with the topics of the ‘smartvote’ questionnaire which are comprehensive in content but mainly related to conventional policy areas. This paper’s main research goal is to analyze and visualize possible differences between conventional and digital policy areas in terms of response patterns between and within political parties. The analysis is based on dimensionality reduction methods (multidimensional scaling and principal component analysis) for the visualization of inter-party differences, and on standard deviation as a measure of variation for the evaluation of intra-party unity. The results reveal that digital issues show a lower degree of inter-party polarization compared to conventional policy areas. Thus, the parties have more common ground in issues on digitization than in conventional policy areas. In contrast, the study reveals a mixed picture regarding intra-party unity. Homogeneous parties show a lower degree of unity in digitization issues whereas parties with heterogeneous positions in conventional areas have more united positions in digital areas. All things considered, the findings are encouraging as less polarized conditions apply to the debate on digital development compared to conventional politics. For the future, it would be desirable if in further countries similar projects to the DMP could emerge to broaden the basis for conclusions.

Keywords: comparison of political issue dimensions, digital awareness of candidates, digital policy space, party positions on digital issues

Procedia PDF Downloads 189
1546 A Sociocybernetics Data Analysis Using Causality in Tourism Networks

Authors: M. Lloret-Climent, J. Nescolarde-Selva

Abstract:

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Keywords: attractor, invariant set, tourist flows, orbits, social responsibility, tourism, tourist variables

Procedia PDF Downloads 509
1545 Feasibility Assessment of High-Temperature Superconducting AC Cable Lines Implementation in Megacities

Authors: Andrey Kashcheev, Victor Sytnikov, Mikhail Dubinin, Elena Filipeva, Dmitriy Sorokin

Abstract:

Various variants of technical solutions aimed at improving the reliability of power supply to consumers of 110 kV substation are considered. For each technical solution, the results of calculation and analysis of electrical modes and short-circuit currents in the electrical network are presented. The estimation of electric energy consumption for losses within the boundaries of substation reconstruction was carried out in accordance with the methodology for determining the standards of technological losses of electricity during its transmission through electric networks. The assessment of the technical and economic feasibility of the use of HTS CL compared with the complex reconstruction of the 110 kV substation was carried out. It is shown that the use of high-temperature superconducting AC cable lines is a possible alternative to traditional technical solutions used in the reconstruction of substations.

Keywords: superconductivity, cable lines, superconducting cable, AC cable, feasibility

Procedia PDF Downloads 99
1544 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System

Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek

Abstract:

Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.

Keywords: mesh network, RFID, wireless sensor network, zigbee

Procedia PDF Downloads 462
1543 Open Innovation in SMEs: A Multiple Case Study of Collaboration between Start-ups and Craft Enterprises

Authors: Carl-Philipp Valentin Beichert, Marcel Seger

Abstract:

Digital transformation and climate change require small and medium-sized enterprises (SME) to rethink their way of doing business. Inter-firm collaboration is recognized as helpful means of promoting innovation and competitiveness. In this context, collaborations with start-ups offer valuable opportunities through their innovative products, services, and business models. SMEs, and in particular German craft enterprises, play an important role in the country’s society and economy. Companies in this heterogeneous economic sector have unique characteristics and are limited in their ability to innovate due to their small size and lack of resources. Collaborating with start-ups could help to overcome these shortcomings. To investigate how collaborations emerge and what factors are decisive to successfully drive collaboration, we apply an explorative, qualitative research design. A sample of ten case studies was selected, with the collaboration between a start-up and a craft enterprise forming the unit of analysis. Semi-structured interviews with 20 company representatives allow for a two-sided perspective on the respective collaboration. The interview data is enriched by publicly available data and three expert interviews. As a result, objectives, initiation practices, applied collaboration types, barriers, as well as key success factors could be identified. The results indicate a three-phase collaboration process comprising an initiation, concept, and partner phase (ICP). The ICP framework proposed accordingly highlights the success factors (personal fit, communication, expertise, structure, network) for craft enterprises and start-ups for each collaboration phase. The role of a mediator in the start-up company, with strong expertise in the respective craft sector, is considered an important lever for overcoming barriers such as cultural and communication differences. The ICP framework thus provides promising directions for further research and can help practitioners establish successful collaborations.

Keywords: open innovation, SME, craft businesses, startup collaboration, qualitative research

Procedia PDF Downloads 97
1542 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: cellular automata, neural cellular automata, deep learning, classification

Procedia PDF Downloads 199
1541 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text

Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman

Abstract:

The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.

Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks

Procedia PDF Downloads 263
1540 Off-Topic Text Detection System Using a Hybrid Model

Authors: Usama Shahid

Abstract:

Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.

Keywords: off topic, text detection, eco state network, machine learning

Procedia PDF Downloads 88
1539 Research on Low interfacial Tension Viscoelastic Fluid Oil Displacement System in Unconventional Reservoir

Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang

Abstract:

Unconventional oil reservoirs have the characteristics of strong heterogeneity and poor injectability, and traditional chemical flooding technology is not effective in such reservoirs; polymer flooding in the production of heavy oil reservoirs is difficult to handle produced fluid and easy to block oil wells, etc. Therefore, a viscoelastic fluid flooding system with good adaptability, low interfacial tension, plugging, and diverting capabilities was studied. The viscosity, viscoelasticity, surface/interfacial activity, wettability, emulsification, and oil displacement performance of the anionic Gemini surfactant flooding system were studied, and the adaptability of the system to the reservoir environment was evaluated. The oil displacement effect of the system in low-permeability and high-permeability (heavy oil) reservoirs was investigated, and the mechanism of the system to enhance water flooding recovery was discussed. The results show that the system has temperature resistance and viscosity increasing performance (65℃, 4.12mPa•s), shear resistance and viscoelasticity; at a lower concentration (0.5%), the oil-water interfacial tension can be reduced to ultra-low (10-3mN/m); has good emulsifying ability for heavy oil, and is easy to break demulsification (4.5min); has good adaptability to reservoirs with high salinity (30000mg/L). Oil flooding experiments show that this system can increase the water flooding recovery rate of low-permeability homogeneous and heterogeneous cores by 13% and 15%, respectively, and can increase the water-flooding recovery rate of high-permeability heavy oil reservoirs by 40%. The anionic Gemini surfactant flooding system studied in this paper is a viscoelastic fluid, has good emulsifying and oil washing ability, can effectively improve sweep efficiency, reduce injection pressure, and has broad application in unconventional reservoirs to enhance oil recovery prospect.

Keywords: oil displacement system, recovery factor, rheology, interfacial activity, environmental adaptability

Procedia PDF Downloads 125
1538 Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm

Authors: K. Roushanger, A. Soleymanzadeh

Abstract:

Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs.

Keywords: discharge coefficient, genetic expression programming, trapezoidal weir

Procedia PDF Downloads 388
1537 Modelling Social Influence and Cultural Variation in Global Low-Carbon Vehicle Transitions

Authors: Hazel Pettifor, Charlie Wilson, David Mccollum, Oreane Edelenbosch

Abstract:

Vehicle purchase is a technology adoption decision that will strongly influence future energy and emission outcomes. Global integrated assessment models (IAMs) provide valuable insights into the medium and long terms effects of socio-economic development, technological change and climate policy. In this paper we present a unique and transparent approach for improving the behavioural representation of these models by incorporating social influence effects to more accurately represent consumer choice. This work draws together strong conceptual thinking and robust empirical evidence to introduce heterogeneous and interconnected consumers who vary in their aversion to new technologies. Focussing on vehicle choice, we conduct novel empirical research to parameterise consumer risk aversion and how this is shaped by social and cultural influences. We find robust evidence for social influence effects, and variation between countries as a function of cultural differences. We then formulate an approach to modelling social influence which is implementable in both simulation and optimisation-type models. We use two global integrated assessment models (IMAGE and MESSAGE) to analyse four scenarios that introduce social influence and cultural differences between regions. These scenarios allow us to explore the interactions between consumer preferences and social influence. We find that incorporating social influence effects into global models accelerates the early deployment of electric vehicles and stimulates more widespread deployment across adopter groups. Incorporating cultural variation leads to significant differences in deployment between culturally divergent regions such as the USA and China. Our analysis significantly extends the ability of global integrated assessment models to provide policy-relevant analysis grounded in real-world processes.

Keywords: behavioural realism, electric vehicles, social influence, vehicle choice

Procedia PDF Downloads 188
1536 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)

Authors: Stephan Treuke

Abstract:

The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.

Keywords: economic mobility, neighborhood effects, Salvador, segregation

Procedia PDF Downloads 280
1535 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network

Procedia PDF Downloads 132
1534 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing

Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako

Abstract:

Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.

Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration

Procedia PDF Downloads 276
1533 Nanotechnolgy for Energy Harvesting Applications

Authors: Eiman Nour

Abstract:

The rising interest in harvesting power is because of the capabilities application of expanding self-powered systems based on nanostructures. Using renewable and self-powered sources is necessary for the growth of green electronics and could be of the capability to wireless sensor networks. The ambient mechanical power is among the ample sources for various power harvesting device configurations that are published. In this work, we design and fabricate a paper-based nanogenerator (NG) utilizing piezoelectric zinc oxide (ZnO) nanowires (NWs) grown hydrothermally on a paper substrate. The fabricated NG can harvest ambient mechanical energy from various kinds of human motions, such as handwriting. The fabricated NG from a single ZnO NWs/PVDF-TrFE NG has been used firstly as handwriting-driven NG. The mechanical pressure applied on the paper platform while handwriting is harvested by the NG to deliver electrical energy; depending on the mode of handwriting, a maximum harvested voltage of 4.8 V was obtained.

Keywords: nanostructure, zinc oxide, nanogenerator, energy harvesting

Procedia PDF Downloads 65
1532 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 163
1531 Automatic Measurement of Garment Sizes Using Deep Learning

Authors: Maulik Parmar, Sumeet Sandhu

Abstract:

The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.

Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints

Procedia PDF Downloads 313
1530 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio

Authors: Danilo López, Edwin Rivas, Fernando Pedraza

Abstract:

Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.

Keywords: ANFIS, cognitive radio, prediction primary user, RNA

Procedia PDF Downloads 422
1529 Joubert Syndrome and Related Disorders: A Single Center Experience

Authors: Ali Al Orf, Khawaja Bilal Waheed

Abstract:

Background and objective: Joubert syndrome (JS) is a rare, autosomal-recessive condition. Early recognition is important for management and counseling. Magnetic resonance imaging (MRI) can help in diagnosis. Therefore, we sought to evaluate clinical presentation and MRI findings in Joubert syndrome and related disorders. Method: A retrospective review of genetically proven cases of Joubert syndromes and related disorders was reviewed for their clinical presentation, demographic information, and magnetic resonance imaging findings in a period of the last 10 years. Two radiologists documented magnetic resonance imaging (MRI) findings. The presence of hypoplasia of the cerebellar vermis with hypoplasia of the superior cerebellar peduncle resembling the “Molar Tooth Sign” in the mid-brain was documented. Genetic testing results were collected to label genes linked to the diagnoses. Results: Out of 12 genetically proven JS cases, most were females (9/12), and nearly all presented with hypotonia, ataxia, developmental delay, intellectual impairment, and speech disorders. 5/12 children presented at age of 1 or below. The molar tooth sign was seen in 10/12 cases. Two cases were associated with other brain findings. Most of the cases were found associated with consanguineous marriage Conclusion and discussion: The molar tooth sign is a frequent and reliable sign of JS and related disorders. Genes related to defective cilia result in malfunctioning in the retina, renal tubule, and neural cell migration, thus producing heterogeneous syndrome complexes known as “ciliopathies.” Other ciliopathies like Senior-Loken syndrome, Bardet Biedl syndrome, and isolated nephronophthisis must be considered as the differential diagnosis of JS. The main imaging findings are the partial or complete absence of the cerebellar vermis, hypoplastic cerebellar peduncles (giving MTS), and (bat-wing appearance) fourth ventricular deformity. LimitationsSingle-center, small sample size, and retrospective nature of the study were a few of the study limitations.

Keywords: Joubart syndrome, magnetic resonance imaging, molar tooth sign, hypotonia

Procedia PDF Downloads 95
1528 Evaluation of Interaction Between Fans and Celebrities in New Media

Authors: Mohadese Motahari

Abstract:

In general, we consider the phenomenon of "fandism" or extreme fandom to be an aspect of fandom for a person, a group, or a collection, which leads to extreme support for them. So, for example, we consider a fan or a "fanatic" (which literally means a "fanatical person") to be a person who is extremely interested in a certain topic or topics and has a special passion and fascination for that issue. It may also be beyond the scope of logic and normal behavior of the society. With the expansion of the media and the advancement of technology, the phenomenon of fandom also underwent many changes and not only became more intense, but a large economy was also formed alongside it, and it is becoming more and more important every day. This economy, which emerged from the past with the formation of the first media, has now taken a different form with the development of media and social networks, as well as the change in the interaction between celebrities and audiences. Earning huge amounts of money with special methods in every social network and every media is achieved through fans and fandoms. In this article, we have studied the relationship between fans and famous people with reference to the economic debates surrounding it.

Keywords: fandism, famous people, social media, new media

Procedia PDF Downloads 91