Search results for: chemical industry process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22052

Search results for: chemical industry process

20132 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
20131 Marketing in the Fashion Industry and Its Critical Success Factors: The Case of Fashion Dealers in Ghana

Authors: Kumalbeo Paul Kamani

Abstract:

Marketing plays a very important role in the success of any firm since it represents the means through which a firm can reach its customers and also promotes its products and services. In fact, marketing aids the firm in identifying customers who the business can competitively serve, and tailoring product offerings, prices, distribution, promotional efforts, and services towards those customers. Unfortunately, in many firms, marketing has been reduced to merely advertisement. For effective marketing, firms must go beyond this often-limited function of advertisement. In the fashion industry in particular, marketing faces challenges due to its peculiar characteristics. Previous research for instance affirms the idiosyncrasy and peculiarities that differentiate the fashion industry from other industrial areas. It has been documented that the fashion industry is characterized seasonal intensity, short product life cycles, the difficulty of competitive differentiation, and long time for companies to reach financial stability. These factors are noted to pose obstacles to the fashion entrepreneur’s endeavours and can be the reasons that explain their low survival rates. In recent times, the fashion industry has been described as a market that is accessible market, has low entry barriers, both in terms of needed capital and skills which have all accounted for the burgeoning nature of startups. Yet as already stated, marketing is particularly challenging in the industry. In particular, areas such as marketing, branding, growth, project planning, financial and relationship management might represent challenges for the fashion entrepreneur but that have not been properly addressed by previous research. It is therefore important to assess marketing strategies of fashion firms and the factors influencing their success. This study generally sought to examine marketing strategies of fashion dealers in Ghana and their critical success factors. The study employed the quantitative survey research approach. A total of 120 fashion dealers were sampled. Questionnaires were used as instrument of data collection. Data collected was analysed using quantitative techniques including descriptive statistics and Relative Importance Index. The study revealed that the marketing strategies used by fashion apparels are text messages using mobile phones, referrals, social media marketing, and direct marketing. Results again show that the factors influencing fashion marketing effectiveness are strategic management, marketing mix (product, price, promotion etc), branding and business development. Policy implications are finally outlined. The study recommends among others that there is a need for the top management executive to craft and adopt marketing strategies that enable that are compatible with the fashion trends and the needs of the customers. This will improve customer satisfaction and hence boost market penetration. The study further recommends that the fashion industry in Ghana should seek to ensure that fashion apparels accommodate the diversity and the cultural setting of different customers to meet their unique needs.

Keywords: marketing, fashion, industry, success factors

Procedia PDF Downloads 41
20130 Effect of Heat Treatment on the Microstructural Evolution in Weld Region of X70 Pipeline Steel

Authors: K. Digheche, K. Saadi, Z. Boumerzoug

Abstract:

Welding is one of the most important technological processes used in many branches of industry such as industrial engineering, shipbuilding, pipeline fabrication among others. Generally, welding is the preferred joining method and most common steels are weldable. This investigation is a contribution to scientific work of welding of low carbon steel. This work presents the results of the isothermal heat treatment effect at 200, 400 and 600 °C on microstructural evolution in weld region of X70 pipeline steel. The welding process has been realized in three passes by industrial arc welding. We have found that the heat treatments cause grain growth reaction.

Keywords: heat treatments, low carbon steel, microstructures, welding

Procedia PDF Downloads 460
20129 Modeling, Analysis, and Optimization of Process Parameters of Metal Spinning

Authors: B. Ravi Kumar, S. Gajanana, K. Hemachandra Reddy, K. Udayani

Abstract:

Physically into various derived shapes and sizes under the effect of externally applied forces. The spinning process is an advanced plastic working technology and is frequently used for manufacturing axisymmetric shapes. Over the last few decades, Sheet metal spinning has developed significantly and spun products have widely used in various industries. Nowadays the process has been expanded to new horizons in industries, since tendency to use minimum tool and equipment costs and also using lower forces with the output of excellent surface quality and good mechanical properties. The automation of the process is of greater importance, due to its wider applications like decorative household goods, rocket nose cones, gas cylinders, etc. This paper aims to gain insight into the conventional spinning process by employing experimental and numerical methods. The present work proposes an approach for optimizing process parameters are mandrel speed (rpm), roller nose radius (mm), thickness of the sheet (mm). Forming force, surface roughness and strain are the responses.in spinning of Aluminum (2024-T3) using DOE-Response Surface Methodology (RSM) and Analysis of variance (ANOVA). The FEA software is used for modeling and analysis. The process parameters considered in the experimentation.

Keywords: FEA, RSM, process parameters, sheet metal spinning

Procedia PDF Downloads 319
20128 Wet Processing of Algae for Protein and Carbohydrate Recovery as Co-Product of Algal Oil

Authors: Sahil Kumar, Rajaram Ghadge, Ramesh Bhujade

Abstract:

Historically, lipid extraction from dried algal biomass remained a focus area of the algal research. It has been realized over the past few years that the lipid-centric approach and conversion technologies that require dry algal biomass have several challenges. Algal culture in cultivation systems contains more than 99% water, with algal concentrations of just a few hundred milligrams per liter ( < 0.05 wt%), which makes harvesting and drying energy intensive. Drying the algal biomass followed by extraction also entails the loss of water and nutrients. In view of these challenges, focus has shifted toward developing processes that will enable oil production from wet algal biomass without drying. Hydrothermal liquefaction (HTL), an emerging technology, is a thermo-chemical conversion process that converts wet biomass to oil and gas using water as a solvent at high temperature and high pressure. HTL processes wet algal slurry containing more than 80% water and significantly reduces the adverse cost impact owing to drying the algal biomass. HTL, being inherently feedstock agnostic, i.e., can convert carbohydrates and proteins also to fuels and recovers water and nutrients. It is most effective with low-lipid (10--30%) algal biomass, and bio-crude yield is two to four times higher than the lipid content in the feedstock. In the early 2010s, research remained focused on increasing the oil yield by optimizing the process conditions of HTL. However, various techno-economic studies showed that simply converting algal biomass to only oil does not make economic sense, particularly in view of low crude oil prices. Making the best use of every component of algae is a key for economic viability of algal to oil process. On investigation of HTL reactions at the molecular level, it has been observed that sequential HTL has the potential to recover value-added products along with biocrude and improve the overall economics of the process. This potential of sequential HTL makes it a most promising technology for converting wet waste to wealth. In this presentation, we will share our experience on the techno-economic and engineering aspects of sequential HTL for conversion of algal biomass to algal bio-oil and co-products.

Keywords: algae, biomass, lipid, protein

Procedia PDF Downloads 214
20127 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects

Authors: Muhammad Abu Bakar Tariq

Abstract:

Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.

Keywords: building information modeling, clash detection, construction project success, visualization

Procedia PDF Downloads 259
20126 Evaluation of Microbial Community, Biochemical and Physiological Properties of Korean Black Raspberry (Rubus coreanus Miquel) Vinegar Manufacturing Process

Authors: Nho-Eul Song, Sang-Ho Baik

Abstract:

Fermentation characteristics of black raspberry vinegar by using static cultures without any additives were has been investigated to establish of vinegar manufacturing conditions and improve the quality of vinegar by optimization the vinegar manufacturing process. The two vinegar manufacturing conditions were prepared; one-step fermentation condition only using mother vinegar that prepared naturally occurring black raspberry vinegar without starter yeast for alcohol fermentation (traditional method) and two-step fermentation condition using commercial wine yeast and mother vinegar for acetic acid fermentation. Approximately 12% ethanol was produced after 35 days fermentation with log 7.6 CFU/mL of yeast population in one-step fermentation, resulting sugar reduction from 14 to 6oBrix whereas in two-step fermentation, ethanol concentration was reached up to 8% after 27 days with continuous increasing yeast until log 7.0 CFU/mL. In addition, yeast and ethanol were decreased after day 60 accompanied with proliferation of acetic acid bacteria (log 5.8 CFU/mL) and titratable acidity; 4.4% in traditional method and 6% in two-step fermentation method. DGGE analysis showed that S. cerevisiae was detected until 77 days of traditional fermentation and gradually changed to AAB, Acetobacter pasteurianus, as dominant species and Komagataeibacter xylinus at the end of the fermentation. However, S. cerevisiae and A. pasteurianus was dominant in two-step fermentation process. The prepared two-step fermentation showed enhanced total polyphenol and flavonoid content significantly resulting in higher radical scavenging activity. Our studies firstly revealed the microbial community change with chemical change and demonstrated a suitable fermentation system for black raspberry vinegar by the static surface method.

Keywords: bacteria, black raspberry, vinegar fermentation, yeast

Procedia PDF Downloads 450
20125 Enhance Biogas Production by Enzymatic Pre-Treatment from Palm Oil Mill Effluent (POME)

Authors: M. S. Tajul Islam, Md. Zahangir Alam

Abstract:

To enhance biogas production through anaerobic digestion, the application of various type of pre-treatment method has some limitations in terms of sustainable environmental management. Many studies on pretreatments especially chemical and physical processes are carried out to evaluate the anaerobic digestion for enhanced biogas production. Among the pretreatment methods acid and alkali pre-treatments gained the highest importance. Previous studies have showed that although acid and alkali pretreatment has significant effect on degradation of biomass, these methods have some negative impact on environment due to their hazard in nature while enzymatic pre-treatment is environmentally friendly. One of the constrains to use of enzyme in pretreatment process for biogas production is high cost which is currently focused to reduce cost through fermentation of waste-based media. As such palm oil mill effluent (POME) as an abundant resource generated during palm oil processing at mill is being used a potential fermentation media for enzyme production. This low cost of enzyme could be an alternative to biogas pretreatment process. This review is to focus direct application of enzyme as enzymatic pre-treatment on POME to enhanced production of biogas.

Keywords: POME, enzymatic pre-treatment, biogas, lignocellulosic biomass, anaerobic digestion

Procedia PDF Downloads 550
20124 Design Aspects for Developing a Microfluidics Diagnostics Device Used for Low-Cost Water Quality Monitoring

Authors: Wenyu Guo, Malachy O’Rourke, Mark Bowkett, Michael Gilchrist

Abstract:

Many devices for real-time monitoring of surface water have been developed in the past few years to provide early warning of pollutions and so to decrease the risk of environmental pollution efficiently. One of the most common methodologies used in the detection system is a colorimetric process, in which a container with fixed volume is filled with target ions and reagents to combine a colorimetric dye. The colorimetric ions can sensitively absorb a specific-wavelength radiation beam, and its absorbance rate is proportional to the concentration of the fully developed product, indicating the concentration of target nutrients in the pre-mixed water samples. In order to achieve precise and rapid detection effect, channels with dimensions in the order of micrometers, i.e., microfluidic systems have been developed and introduced into these diagnostics studies. Microfluidics technology largely reduces the surface to volume ratios and decrease the samples/reagents consumption significantly. However, species transport in such miniaturized channels is limited by the low Reynolds numbers in the regimes. Thus, the flow is extremely laminar state, and diffusion is the dominant mass transport process all over the regimes of the microfluidic channels. The objective of this present work has been to analyse the mixing effect and chemistry kinetics in a stop-flow microfluidic device measuring Nitride concentrations in fresh water samples. In order to improve the temporal resolution of the Nitride microfluidic sensor, we have used computational fluid dynamics to investigate the influence that the effectiveness of the mixing process between the sample and reagent within a microfluidic device exerts on the time to completion of the resulting chemical reaction. This computational approach has been complemented by physical experiments. The kinetics of the Griess reaction involving the conversion of sulphanilic acid to a diazonium salt by reaction with nitrite in acidic solution is set in the Laminar Finite-rate chemical reaction in the model. Initially, a methodology was developed to assess the degree of mixing of the sample and reagent within the device. This enabled different designs of the mixing channel to be compared, such as straight, square wave and serpentine geometries. Thereafter, the time to completion of the Griess reaction within a straight mixing channel device was modeled and the reaction time validated with experimental data. Further simulations have been done to compare the reaction time to effective mixing within straight, square wave and serpentine geometries. Results show that square wave channels can significantly improve the mixing effect and provides a low standard deviations of the concentrations of nitride and reagent, while for straight channel microfluidic patterns the corresponding values are 2-3 orders of magnitude greater, and consequently are less efficiently mixed. This has allowed us to design novel channel patterns of micro-mixers with more effective mixing that can be used to detect and monitor levels of nutrients present in water samples, in particular, Nitride. Future generations of water quality monitoring and diagnostic devices will easily exploit this technology.

Keywords: nitride detection, computational fluid dynamics, chemical kinetics, mixing effect

Procedia PDF Downloads 202
20123 Recovery of Hydrogen Converter Efficiency Affected by Poisoning of Catalyst with Increasing of Temperature

Authors: Enayat Enayati, Reza Behtash

Abstract:

The purpose of the H2 removal system is to reduce a content of hydrogen and other combustibles in the CO2 feed owing to avoid developing a possible explosive condition in the synthesis. In order to reduce the possibility of forming an explosive gas mixture in the synthesis as much as possible, the hydrogen percent in the fresh CO2, will be removed in hydrogen converter. Therefore the partly compressed CO2/Air mixture is led through Hydrogen converter (Reactor) where the H2, present in the CO2, is reduced by catalytic combustion to values less than 50 ppm (vol). According the following exothermic chemical reaction: 2H2 + O2 → 2H2O + Heat. The catalyst in hydrogen converter consist of platinum on a aluminum oxide carrier. Low catalyst activity maybe due to catalyst poisoning. This will result in an increase of the hydrogen content in the CO2 to the synthesis. It is advised to shut down the plant when the outlet of hydrogen converter increased above 100 ppm, to prevent undesirable gas composition in the plant. Replacement of catalyst will be time exhausting and costly so as to prevent this, we increase the inlet temperature of hydrogen converter according to following Arrhenius' equation: K=K0e (-E_a/RT) K is rate constant of a chemical reaction where K0 is the pre-exponential factor, E_a is the activation energy, and R is the universal gas constant. Increment of inlet temperature of hydrogen converter caused to increase the rate constant of chemical reaction and so declining the amount of hydrogen from 125 ppm to 70 ppm.

Keywords: catalyst, converter, poisoning, temperature

Procedia PDF Downloads 819
20122 Exploring the Unintended Consequences of Loyalty programs in the Gambling Sector

Authors: Violet Justine Mtonga, Cecilia Diaz

Abstract:

this paper explores the prevalence of loyalty programs in the UK gambling industry and their association with unintended consequences and harm amongst program members. The use of loyalty programs within the UK gambling industry has risen significantly with over 40 million cards in circulation. Some research suggests that as of 2013-2014, nearly 95% of UK consumers have at least one loyalty card with 78% being members of two or more programs, and the average household possesses ‘22 loyalty programs’, nearly half of which tend to be used actively. The core design of loyalty programs is to create a relational ‘win-win’ approach where value is jointly created between the parties involved through repetitive engagement. However, main concern about the diffusion of gambling organisations’ loyalty programs amongst consumers, might be the use by the organisations within the gambling industry to over influence customer engagement and potentially cause unintended harm. To help understand the complex phenomena of the diffusions and adaptation of the use of loyalty programs in the gambling industry, and the potential unintended outcomes, this study is theoretically underpinned by the social exchange theory of relationships entrenched in the processes of social exchanges of resources, rewards, and costs for long-term interactions and mutual benefits. Qualitative data were collected via in-depth interviews from 14 customers and 12 employees within the UK land-based gambling firms. Data were analysed using a combination of thematic and clustering analysis to help reveal and discover the emerging themes regarding the use of loyalty cards for gambling companies and exploration of subgroups within the sample. The study’s results indicate that there are different unintended consequences and harm of loyalty program engagement and usage such as maladaptive gambling behaviours, risk of compulsiveness, and loyalty programs promoting gambling from home. Furthermore, there is a strong indication of a rite of passage among loyalty program members. There is also strong evidence to support other unfavorable behaviors such as amplified gambling habits and risk-taking practices. Additionally, in pursuit of rewards, loyalty program incentives effectuate overconsumption and heighten expenditure. Overall, the primary findings of this study show that loyalty programs in the gambling industry should be designed with an ethical perspective and practice.

Keywords: gambling, loyalty programs, social exchange theory, unintended harm

Procedia PDF Downloads 89
20121 Toxic Ingredients Contained in Our Cosmetics

Authors: El Alia Boularas, H. Bekkar, H. Larachi, H. Rezk-kallah

Abstract:

Introduction: Notwithstanding cosmetics are used in life every day, these products are not all innocuous and harmless, as they may contain ingredients responsible for allergic reactions and, possibly, for other health problems. Additionally, environmental pollution should be taken into account. Thus, it is time to investigate what is ‘hidden behind beauty’. Aims: 1.To investigate prevalence of 13 chemical ingredients in cosmetics being object of concern, which the Algerians use regularly. 2.To know the profile of questioned consumers and describe their opinion on cosmetics. Methods: The survey was carried out in year 2013 over a period of 3 months, among Algerian Internet users having an e-mail address or a Facebook account.The study investigated 13 chemical agents showing health and environmental problems, selected after analysis of the recent studies published on the subject, the lists of national and international regulatory references on chemical hazards, and querying the database Skin Deep presented by the Environmental Working Group. Results: 300 people distributed all over the Algerian territory participated in the survey, providing information about 731 cosmetics; 86% aged from 20 to 39 years, with a sex ratio=0,27. A percentage of 43% of the analyzed cosmetics contained at least one of the 13 toxic ingredients. The targeted ingredient that has been most frequently reported was ‘perfume’ followed by parabens and PEG.85% of the participants declared that cosmetics ‘can contain toxic substances’, 27% asserted that they verify regularly the list of ingredients when they buy cosmetics, 61% said that they try to avoid the toxic ingredients, among whom 24 % were more vigilant on the presence of parabens, 95% were in favour of the strengthening of the Algerian laws on cosmetics. Conclusion: The results of the survey provide the indication of a widespread presence of toxic chemical ingredients in personal care products that Algerians use daily.

Keywords: Algerians consumers, cosmetics, survey, toxic ingredients

Procedia PDF Downloads 277
20120 Software User Experience Enhancement through User-Centered Design and Co-design Approach

Authors: Shan Wang, Fahad Alhathal, Hari Subramanian

Abstract:

User-centered design skills play an important role in crafting a positive and intuitive user experience for software applications. Embracing a user-centric design approach involves understanding the needs, preferences, and behaviors of the end-users throughout the design process. This mindset not only enhances the usability of the software but also fosters a deeper connection between the digital product and its users. This paper encompasses a 6-month knowledge exchange collaboration project between an academic institution and an external industry in 2023 in the UK; it aims to improve the user experience of a digital platform utilized for a knowledge management tool, to understand users' preferences for features, identify sources of frustration, and pinpoint areas for enhancement. This research conducted one of the most effective methods to implement user-centered design through co-design workshops for testing user onboarding experiences that involve the active participation of users in the design process. More specifically, in January 2023, we organized eight co-design workshops with a diverse group of 11 individuals. Throughout these co-design workshops, we accumulated a total of 11 hours of qualitative data in both video and audio formats. Subsequently, we conducted an analysis of user journeys, identifying common issues and potential areas for improvement within three insights. This analysis was pivotal in guiding the knowledge management software in prioritizing feature enhancements and design improvements. Employing a user-centered design thinking process, we developed a series of graphic design solutions in collaboration with the software management tool company. These solutions were targeted at refining onboarding user experiences, workplace interfaces, and interactive design. Some of these design solutions were translated into tangible interfaces for the knowledge management tool. By actively involving users in the design process and valuing their input, developers can create products that are not only functional but also resonate with the end-users, ultimately leading to greater success in the competitive software landscape. In conclusion, this paper not only contributes insights into designing onboarding user experiences for software within a co-design approach but also presents key theories on leveraging the user-centered design process in software design to enhance overall user experiences.

Keywords: user experiences design, user centered design, co-design approach, knowledge management tool

Procedia PDF Downloads 8
20119 The Effect of TQM Implementation on Bahrain Industrial Performance

Authors: Bader Al-Mannai, Saad Sulieman, Yaser Al-Alawi

Abstract:

Research studies worldwide undoubtedly demonstrated that the implementation of Total Quality Management (TQM) program can improve organizations competitive abilities and provide strategic quality advances. However, limited empirical studies and research are directed to measure the effectiveness of TQM implementation on the industrial and manufacturing organizations performance. Accordingly, this paper is aimed at discussing “the degree of TQM implementation in Bahrain industries and its effect on their performance”. The paper will present the measurement indicators and success factors that were used to assess the degree of TQM implementation in Bahrain industry, and the main performance indicators that were affected by TQM implementation. The adopted research methodology in this study was a survey that was based on self-completion questionnaire. The sample population represented the industrial and manufacturing organizations in Bahrain. The study led to the identification of the operational and strategic measurement indicators and success factors that assist organizations in realizing successful TQM implementation and performance improvement. Furthermore, the research analysis confirmed a positive and significant relationship between the examined performance indicators in Bahrain industry and TQM implementation. In conclusion the investigation of the relationship revealed that the implementation of TQM program has resulted into remarkable improvements on workforce, sales performance, and quality performance indicators in Bahrain industry.

Keywords: performance indicators, success factors, TQM implementation, Bahrain

Procedia PDF Downloads 552
20118 Exploring Environmental, Social, and Governance (ESG) Standards for Space Exploration

Authors: Rachael Sullivan, Joshua Berman

Abstract:

The number of satellites orbiting earth are in the thousands now. Commercial launches are increasing, and civilians are venturing into the outer reaches of the atmosphere. As the space industry continues to grow and evolve, so too will the demand on resources, the disparities amongst socio-economic groups, and space company governance standards. Outside of just ensuring that space operations are compliant with government regulations, export controls, and international sanctions, companies should also keep in mind the impact their operations will have on society and the environment. Those looking to expand their operations into outer space should remain mindful of both the opportunities and challenges that they could encounter along the way. From commercial launches promoting civilian space travel—like the recent launches from Blue Origin, Virgin Galactic, and Space X—to regulatory and policy shifts, the commercial landscape beyond the Earth's atmosphere is evolving. But practices will also have to become sustainable. Through a review and analysis of space industry trends, international government regulations, and empirical data, this research explores how Environmental, Social, and Governance (ESG) reporting and investing will manifest within a fast-changing space industry.Institutions, regulators, investors, and employees are increasingly relying on ESG. Those working in the space industry will be no exception. Companies (or investors) that are already engaging or plan to engage in space operations should consider 1) environmental standards and objectives when tackling space debris and space mining, 2) social standards and objectives when considering how such practices may impact access and opportunities for different socioeconomic groups to the benefits of space exploration, and 3) how decision-making and governing boards will function ethically, equitably, and sustainably as we chart new paths and encounter novel challenges in outer space.

Keywords: climate, environment, ESG, law, outer space, regulation

Procedia PDF Downloads 151
20117 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method

Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha

Abstract:

In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.

Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency

Procedia PDF Downloads 152
20116 Review of Capitalization of Construction Industry on Sustainable Risk Management in Nigeria

Authors: Nnadi Ezekiel Ejiofor

Abstract:

The construction industry plays a decisive role in the healthy development of any nation. Not only large but even small construction projects contribute to a country’s economic growth. There is a need for good management to ensure successful delivery and sustainability because of the plethora of risks that have resulted in low-profit margins for contractors, cost and schedule overruns, poor quality delivery, and abandoned projects. This research reviewed Capitalization on Sustainable Risk Management. Questionnaires and oral interviews conducted were utilized as means of data collection. One hundred and ninety-eight (198) large construction firms in Nigeria form the population of this study. 15 (fifteen) companies that emanated from merger and acquisition were used for the study. The instruments used for data collection were a researcher-developed structured questionnaire based on a five-point rating scale, interviews, focus group discussion, and secondary sources (bill of quantities and stock and exchange commission). The instrument was validated by two experts in the field. The reliability of the instrument was established by applying the split-half method. Kendall’s coefficient of concordance was used to test the data, and a degree of agreement was obtained. Data were subjected to descriptive statistics and analyzed using analysis of variance, t-test, and SPSS. The identified impacts of capitalization were an increase in turnover (24.5%), improvement in the image (24.5%), risk reduction (20%), business expansion (17.3%), and geographical spread (13.6%). The study strongly advocates the inclusion of risk management evaluation as part of the construction procurement process.

Keywords: capitalization, project delivery, risks, risk management, sustainability

Procedia PDF Downloads 59
20115 Engineering Topology of Construction Ecology in Urban Environments: Suez Canal Economic Zone

Authors: Moustafa Osman Mohammed

Abstract:

Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). Construction ecology approach feedback energy from resources flows between biotic and abiotic in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.

Keywords: construction ecology, industrial ecology, urban topology, environmental planning

Procedia PDF Downloads 130
20114 The Development of the Quality Management Processes for the Building and Environment of the Basic Education Schools

Authors: Suppara Charoenpoom

Abstract:

The objectives of this research was to design and develop a quality management of the school buildings and environment. A quantitative and qualitative mixed research methodology was used. The population sample included 14 directors of primary schools. Two research tools were used. The first research tool included an in-depth interview and questionnaire. The second research tool included the Quality Business Process and Quality Work Procedure, and a Key Performance Indicator of each activity. The statistics included mean and standard deviation. The findings for the development of a quality management process of buildings and environment administration of the basic schools consisted of one quality business process (QBP) and seven quality work processes (QWP). The result from the experts’ evaluation revealed that the process and implementation of quality management of the school buildings and environment has passed the inspection process with consensus. This implies that the process of quality management of the school buildings and environment is suitable for implementation. Moreover, the level of agreement in the feasibility of the implementation of this plan had the mean in the range of 0.64-1.00 which suggests the design of the new plan is acceptable.

Keywords: process, building, environment, management

Procedia PDF Downloads 239
20113 A Review on Aviation Emissions and Their Role in Climate Change Scenarios

Authors: J. Niemisto, A. Nissinen, S. Soimakallio

Abstract:

Aviation causes carbon dioxide (CO2) emissions and other climate forcers which increase the contribution of aviation on climate change. Aviation industry and number of air travellers are constantly increasing. Aviation industry has an ambitious goal to strongly cut net CO2 emissions. Modern fleet, alternative jet fuels technologies and route optimisation are important technological tools in the emission reduction. Faster approaches are needed as well. Emission trade systems, voluntary carbon offset compensation schemes and taxation are already in operation. Global scenarios of aviation industry and its greenhouse gas emissions and other climate forcers are discussed in this review study based on literature and other published data. The focus is on the aviation in Nordic countries, but also European and global situation are considered. Different emission reduction technologies and compensation modes are examined. In addition, the role of aviation in a single passenger’s (a Finnish consumer) annual carbon footprint is analysed and a comparison of available emission calculators and carbon offset systems is performed. Long-haul fights have a significant role in a single consumer´s and company´s carbon footprint, but remarkable change in global emission level would need a huge change in attitudes towards flying.

Keywords: aviation, climate change, emissions, environment

Procedia PDF Downloads 211
20112 Applying the CA Systems in Education Process

Authors: A. Javorova, M. Matusova, K. Velisek

Abstract:

The article summarizes the experience of laboratory technical subjects teaching methodologies using a number of software products. The main aim is to modernize the teaching process in accordance with the requirements of today - based on information technology. Increasing of the study attractiveness and effectiveness is due to the introduction of CA technologies in the learning process. This paper discussed the areas where individual CA system used. Environment using CA systems are briefly presented in each chapter.

Keywords: education, CA systems, simulation, technology

Procedia PDF Downloads 396
20111 Effect of Steam Explosion of Crop Residues on Chemical Compositions and Efficient Energy Values

Authors: Xin Wu, Yongfeng Zhao, Qingxiang Meng

Abstract:

In China, quite low proportion of crop residues were used as feedstuff because of its poor palatability and low digestibility. Steam explosion is a physical and chemical feed processing technology which has great potential to improve sapidity and digestibility of crop residues. To investigate the effect of the steam explosion on chemical compositions and efficient energy values, crop residues (rice straw, wheat straw and maize stover) were processed by steam explosion (steam temperature 120-230°C, steam pressure 2-26kg/cm², 40min). Steam-exploded crop residues were regarded as treatment groups and untreated ones as control groups, nutritive compositions were analyzed and effective energy values were calculated by prediction model in INRA (1988, 2010) for both groups. Results indicated that the interaction between treatment and variety has a significant effect on chemical compositions of crop residues. Steam explosion treatment of crop residues decreased neutral detergent fiber (NDF) significantly (P < 0.01), and compared with untreated material, NDF content of rice straw, wheat straw, and maize stover lowered 21.46%, 32.11%, 28.34% respectively. Acid detergent lignin (ADL) of crop residues increased significantly after the steam explosion (P < 0.05). The content of crude protein (CP), ether extract (EE) and Ash increased significantly after steam explosion (P < 0.05). Moreover, predicted effective energy values of each steam-exploded residue were higher than that of untreated ones. The digestible energy (DE), metabolizable energy (ME), net energy for maintenance (NEm) and net energy for gain (NEg)of steam-exploded rice straw were 3.06, 2.48, 1.48and 0.29 MJ/kg respectively and increased 46.21%, 46.25%, 49.56% and 110.92% compared with untreated ones(P < 0.05). Correspondingly, the energy values of steam-exploded wheat straw were 2.18, 1.76, 1.03 and 0.15 MJ/kg, which were 261.78%, 261.29%, 274.59% and 1014.69% greater than that of wheat straw (P < 0.05). The above predicted energy values of steam exploded maize stover were 5.28, 4.30, 2.67 and 0.82 MJ/kg and raised 109.58%, 107.71%, 122.57% and 332.64% compared with the raw material(P < 0.05). In conclusion, steam explosion treatment could significantly decrease NDF content, increase ADL, CP, EE, Ash content and effective energy values of crop residues. The effect of steam explosion was much more obvious for wheat straw than the other two kinds of residues under the same condition.

Keywords: chemical compositions, crop residues, efficient energy values, steam explosion

Procedia PDF Downloads 250
20110 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 470
20109 Transition from Linear to Circular Economy in Gypsum in India

Authors: Shanti Swaroop Gupta, Bibekananda Mohapatra, S. K. Chaturvedi, Anand Bohra

Abstract:

For sustainable development in India, there is an urgent need to follow the principles of industrial symbiosis in the industrial processes, under which the scraps, wastes, or by‐products of one industry can become the raw materials for another. This will not only help in reducing the dependence on natural resources but also help in gaining economic advantage to the industry. Gypsum is one such area in India, where the linear economy model of by-product gypsum utilization has resulted in unutilized legacy phosphogypsum stock of 64.65 million tonnes (mt) at phosphoric acid plants in 2020-21. In the future, this unutilized gypsum stock will increase further due to the expected generation of Flue Gas Desulphurization (FGD) gypsum in huge quantities from thermal power plants. Therefore, it is essential to transit from the linear to circular economy in Gypsum in India, which will result in huge environmental as well as ecological benefits. Gypsum is required in many sectors like Construction (Cement industry, gypsum boards, glass fiber reinforced gypsum panels, gypsum plaster, fly ash lime bricks, floor screeds, road construction), agriculture, in the manufacture of Plaster of Paris, pottery, ceramic industry, water treatment processes, manufacture of ammonium sulphate, paints, textiles, etc. The challenges faced in areas of quality, policy, logistics, lack of infrastructure, promotion, etc., for complete utilization of by-product gypsum have been discussed. The untapped potential of by-product gypsum utilization in various sectors like the use of gypsum in agriculture for sodic soil reclamation, utilization of legacy stock in cement industry on mission mode, improvement in quality of by-product gypsum by standardization and usage in building materials industry has been identified. Based on the measures required to tackle the various challenges and utilization of the untapped potential of gypsum, a comprehensive action plan for the transition from linear to the circular economy in gypsum in India has been formulated. The strategies and policy measures required to implement the action plan to achieve a circular economy in Gypsum have been recommended for various government departments. It is estimated that the focused implementation of the proposed action plan would result in a significant decrease in unutilized gypsum legacy stock in the next five years and it would cease to exist by 2027-28 if the proposed action plan is effectively implemented.

Keywords: circular economy, FGD gypsum, India, phosphogypsum

Procedia PDF Downloads 268
20108 Readiness of Iran’s Insurance Industry Salesforce to Accept Changing to Become Islamic Personal Financial Planners

Authors: Pedram Saadati, Zahra Nazari

Abstract:

Today, the role and importance of financial technology businesses in Iran have increased significantly. Although, in Iran, there is no Islamic or non-Islamic personal financial planning field of study in the universities or educational centers, the profession of personal financial planning is not defined, and there is no software introduced in this regard for advisors or consumers. The largest sales network of financial services in Iran belongs to the insurance industry, and there is an untapped market for international companies in Iran that can contribute to 130 thousand representatives in the insurance industry and 28 million families by providing training and personal financial advisory software. To the best of the author's knowledge, despite the lack of previous internal studies in this field, the present study investigates the level of readiness of the salesforce of the insurance industry to accept this career and its technology. The statistical population of the research is made up of managers, insurance sales representatives, assistants and heads of sales departments of insurance companies. An 18-minute video was prepared that introduced and taught the job of Islamic personal financial planning and explained its difference from its non-Islamic model. This video was provided to the respondents. The data collection tool was a research-made questionnaire. To investigate the factors affecting technology acceptance and job change, independent T descriptive statistics and Pearson correlation were used, and Friedman's test was used to rank the effective factors. The results indicate the mental perception and very positive attitude of the insurance industry activists towards the usefulness of this job and its technology, and the studied sample confirmed the intention of training in this knowledge. Based on research results, the change in the customer's attitude towards the insurance advisor and the possibility of increasing income are considered as the reasons for accepting. However, Restrictions on using investment opportunities due to Islamic financial services laws and the uncertainty of the position of the central insurance in this regard are considered as the most important obstacles.

Keywords: fintech, insurance, personal financial planning, wealth management

Procedia PDF Downloads 49
20107 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques

Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri

Abstract:

Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.

Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior

Procedia PDF Downloads 307
20106 Mercury Contamination of Wetland Caused by Wastewater from Chlor-Alkali Industry

Authors: Mitsuo Yoshida

Abstract:

A significant mercury contamination of soil/sediment was unveiled by an environmental monitoring program in a wetland along La Plata River, west to Montevideo City, Uruguay. The mercury contamination was caused by industrial wastewater discharged from a chlor-alkali plant using a mercury-cell process. The contamination level is above 60 mg/kg in soil/sediment. Most of mercury (Hg) in the environment is inorganic, but some fractions are converted by bacteria to methylmercury (MeHg), a toxic organic compound. MeHg biologically accumulates through a food-chain and become serious public health risk. In order to clarify the contaminated part for countermeasure operation, an intervention value of mercury contamination of sediment/soil was defined as 15 mg/kg (total Hg) by the authority. According to the intervention value, mercury contaminated area in the La Plata site is approximately 48,280 m² and estimated total volume of contaminated sediments/soils was around 18,750 m³. The countermeasures to contaminated zone were proposed in two stages; (i) mitigation of risks for public health and (ii) site remediation. The first stage is an installation of fens and net around the contamination zone, for mitigating risks of exposure, inhalation, and intake. The food chain among wetland-river ecosystem was also interrupted by the installation of net and fens. The state of mercury contamination in La Plata site and plan of countermeasure was disclosed to local people and the public, and consensus on setting off-limit area was successfully achieved. Mass media also contribute to share the information on the contamination site. The cost for countermeasures was borne by the industry under the polluter-pay-principle.

Keywords: chlor-alkali plant, mercury contamination, polluter pay principle, Uruguay, wetland

Procedia PDF Downloads 137
20105 Laser Powder Bed Fusion Awareness for Engineering Students in France and Qatar

Authors: Hiba Naccache, Rima Hleiss

Abstract:

Additive manufacturing AM or 3D printing is one of the pillars of Industry 4.0. Compared to traditional manufacturing, AM provides a prototype before production in order to optimize the design and avoid the stock market and uses strictly necessary material which can be recyclable, for the benefit of leaning towards local production, saving money, time and resources. Different types of AM exist and it has a broad range of applications across several industries like aerospace, automotive, medicine, education and else. The Laser Powder Bed Fusion (LPBF) is a metal AM technique that uses a laser to liquefy metal powder, layer by layer, to build a three-dimensional (3D) object. In industry 4.0 and aligned with the numbers 9 (Industry, Innovation and Infrastructure) and 12 (Responsible Production and Consumption) of the Sustainable Development Goals of the UNESCO 2030 Agenda, the AM’s manufacturers committed to minimizing the environmental impact by being sustainable in every production. The LPBF has several environmental advantages, like reduced waste production, lower energy consumption, and greater flexibility in creating components with lightweight and complex geometries. However, LPBF also have environmental drawbacks, like energy consumption, gas consumption and emissions. It is critical to recognize the environmental impacts of LPBF in order to mitigate them. To increase awareness and promote sustainable practices regarding LPBF, the researchers use the Elaboration Likelihood Model (ELM) theory where people from multiple universities in France and Qatar process information in two ways: peripherally and centrally. The peripheral campaigns use superficial cues to get attention, and the central campaigns provide clear and concise information. The authors created a seminar including a video showing LPBF production and a website with educational resources. The data is collected using questionnaire to test attitude about the public awareness before and after the seminar. The results reflected a great shift on the awareness toward LPBF and its impact on the environment. With no presence of similar research, to our best knowledge, this study will add to the literature on the sustainability of the LPBF production technique.

Keywords: additive manufacturing, laser powder bed fusion, elaboration likelihood model theory, sustainable development goals, education-awareness, France, Qatar, specific energy consumption, environmental impact, lightweight components

Procedia PDF Downloads 88
20104 Economic Impact and Benefits of Integrating Augmented Reality Technology in the Healthcare Industry: A Systematic Review

Authors: Brenda Thean I. Lim, Safurah Jaafar

Abstract:

Augmented reality (AR) in the healthcare industry has been gaining popularity in recent years, principally in areas of medical education, patient care and digital health solutions. One of the drivers in deciding to invest in AR technology is the potential economic benefits it could bring for patients and healthcare providers, including the pharmaceutical and medical technology sectors. Works of literature have shown that the benefits and impact of AR technologies have left trails of achievements in improving medical education and patient health outcomes. However, little has been published on the economic impact of AR in healthcare, a very resource-intensive industry. This systematic review was performed on studies focused on the benefits and impact of AR in healthcare to appraise if they meet the founded quality criteria so as to identify relevant publications for an in-depth analysis of the economic impact assessment. The literature search was conducted using multiple databases such as PubMed, Cochrane, Science Direct and Nature. Inclusion criteria include research papers on AR implementation in healthcare, from education to diagnosis and treatment. Only papers written in English language were selected. Studies on AR prototypes were excluded. Although there were many articles that have addressed the benefits of AR in the healthcare industry in the area of medical education, treatment and diagnosis and dental medicine, there were very few publications that identified the specific economic impact of technology within the healthcare industry. There were 13 publications included in the analysis based on the inclusion criteria. Out of the 13 studies, none comprised a systematically comprehensive cost impact evaluation. An outline of the cost-effectiveness and cost-benefit framework was made based on an AR article from another industry as a reference. This systematic review found that while the advancements of AR technology is growing rapidly and industries are starting to adopt them into respective sectors, the technology and its advancements in healthcare were still in their early stages. There are still plenty of room for further advancements and integration of AR into different sectors within the healthcare industry. Future studies will require more comprehensive economic analyses and costing evaluations to enable economic decisions for or against implementing AR technology in healthcare. This systematic review concluded that the current literature lacked detailed examination and conduct of economic impact and benefit analyses. Recommendations for future research would be to include details of the initial investment and operational costs for the AR infrastructure in healthcare settings while comparing the intervention to its conventional counterparts or alternatives so as to provide a comprehensive comparison on impact, benefit and cost differences.

Keywords: augmented reality, benefit, economic impact, healthcare, patient care

Procedia PDF Downloads 207
20103 Leveraging Engineering Education and Industrial Training: Learning from a Case Study

Authors: Li Wang

Abstract:

The explosive of technology advances has opened up many avenues of career options for engineering graduates. Hence, how relevant their learning at university is very much dependent on their actual jobs. Bridging the gap between education and industrial practice is important, but it also becomes evident how both engineering education and industrial training can be leveraged at the same time and balance between what students should grasp at university and what they can be continuously trained at the working environment. Through a case study of developing a commercial product, this paper presents the required level of depth of technical knowledge and skills for some typical engineering jobs (for mechanical/materials engineering). It highlights the necessary collaboration for industry, university, and accreditation bodies to work together to nurture the next generation of engineers.

Keywords: leverage, collaboration, career, industry, engineering education

Procedia PDF Downloads 97