Search results for: accelerated failure time model
30431 Mechanism of Sinkhole Development on Water-Bearing Soft Ground Tunneling
Authors: H. J. Kim, K. H. Kim, N. H. Park, K. T. Nam, Y. H. Jung, T. H. Kim, J. H. Shin
Abstract:
Underground excavations in an urban area can cause various geotechnical problems such as ground loss and lowering of groundwater level. When the ground loss becomes uncontrollably large, sinkholes can be developed to the ground surface. A sinkhole is commonly known as the natural phenomenon associated with lime rock areas. However, sinkholes in urban areas due to pressurized sewers and/or tunneling are also frequently reported. In this study, mechanism of a sinkhole developed at the site ‘A’ where a tunneling work underwent is investigated. The sinkhole occurred in the sand strata with the high level of groundwater when excavating a tunnel of which diameter is 3.6 m. The sinkhole was progressed in two steps. The first step began with the local failure around the tunnel face followed by tons of groundwater inflow, and the second step was triggered by the TBM (Tunnel Boring Machine) chamber opening which led to the progressive general failure. The possibility of the sinkhole was evaluated by using Limit Equilibrium Method (LEM), and critical height was evaluated by the empirical stability chart. It is found that the lowering of the face pressure and inflow of groundwater into the tunnel face turned to be the main reason for the sinkhole.Keywords: limit equilibrium method, sinkhole, stability chart, tunneling
Procedia PDF Downloads 25130430 Jejunostomy and Protective Ileostomy in a Patient with Massive Necrotizing Enterocolitis: A Case Report
Authors: Rafael Ricieri, Rogerio Barros
Abstract:
Objective: This study is to report a case of massive necrotizing enterocolitis in a six-month-old patient, requiring ileostomy and protective jejunostomy as a damage control measure in the first exploratory laparotomy surgery in massive enterocolitis without a previous diagnosis. Methods: This study is a case report of success in making and closing a protective jejunostomy. However, the low number of publications on this staged and risky measure of surgical resolution encouraged the team to study the indication and especially the correct time for closing the patient's protective jejunostomy. The main study instrument will be the six-month-old patient's medical record. Results: Based on the observation of the case described, it was observed that the time for the closure of the described procedure (protective jejunostomy) varies according to the level of compromise of the health status of your patient and of an individual of each person. Early closure, or failure to close, can lead to a favorable problem for the patient since several problems can result from this closure, such as new intestinal perforations, hydroelectrolyte disturbances. Despite the risk of new perforations, we suggest closing the protective jejunostomy around the 14th day of the procedure, thus keeping the patient on broad-spectrum antibiotic therapy and absolute fasting, thus reducing the chances of new intestinal perforations. Associated with the closure of the jejunostomy, a gastric tube for decompression is necessary, and care in an intensive care unit and electrolyte replacement is necessary to maintain the stability of the case.Keywords: jejunostomy, ileostomy, enterocolitis, pediatric surgery, gastric surgery
Procedia PDF Downloads 8430429 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 15230428 Erosion Modeling of Surface Water Systems for Long Term Simulations
Authors: Devika Nair, Sean Bellairs, Ken Evans
Abstract:
Flow and erosion modeling provides an avenue for simulating the fine suspended sediment in surface water systems like streams and creeks. Fine suspended sediment is highly mobile, and many contaminants that may have been released by any sort of catchment disturbance attach themselves to these sediments. Therefore, a knowledge of fine suspended sediment transport is important in assessing contaminant transport. The CAESAR-Lisflood Landform Evolution Model, which includes a hydrologic model (TOPMODEL) and a hydraulic model (Lisflood), is being used to assess the sediment movement in tropical streams on account of a disturbance in the catchment of the creek and to determine the dynamics of sediment quantity in the creek through the years by simulating the model for future years. The accuracy of future simulations depends on the calibration and validation of the model to the past and present events. Calibration and validation of the model involve finding a combination of parameters of the model, which, when applied and simulated, gives model outputs similar to those observed for the real site scenario for corresponding input data. Calibrating the sediment output of the CAESAR-Lisflood model at the catchment level and using it for studying the equilibrium conditions of the landform is an area yet to be explored. Therefore, the aim of the study was to calibrate the CAESAR-Lisflood model and then validate it so that it could be run for future simulations to study how the landform evolves over time. To achieve this, the model was run for a rainfall event with a set of parameters, plus discharge and sediment data for the input point of the catchment, to analyze how similar the model output would behave when compared with the discharge and sediment data for the output point of the catchment. The model parameters were then adjusted until the model closely approximated the real site values of the catchment. It was then validated by running the model for a different set of events and checking that the model gave similar results to the real site values. The outcomes demonstrated that while the model can be calibrated to a greater extent for hydrology (discharge output) throughout the year, the sediment output calibration may be slightly improved by having the ability to change parameters to take into account the seasonal vegetation growth during the start and end of the wet season. This study is important to assess hydrology and sediment movement in seasonal biomes. The understanding of sediment-associated metal dispersion processes in rivers can be used in a practical way to help river basin managers more effectively control and remediate catchments affected by present and historical metal mining.Keywords: erosion modelling, fine suspended sediments, hydrology, surface water systems
Procedia PDF Downloads 8430427 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads
Authors: Aaron Aboshio
Abstract:
Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.Keywords: bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction
Procedia PDF Downloads 30230426 Impact of Depreciation Technique on Taxable Income and Financial Performance of Quoted Consumer Goods Company in Nigeria
Authors: Ibrahim Ali, Adamu Danlami Ahmed
Abstract:
This study examines the impact of depreciation on taxable income and financial performance of consumer goods companies quoted on the Nigerian stock exchange. The study adopts ex-post factor research design. Data were collected using a secondary source. The findings of the study suggest that, method of depreciation adopted in any organization influence the taxable profit. Depreciation techniques can either be: depressive, accelerative and linear depreciation. It was also recommended that consumer goods should adjust their method of depreciation to make sure an appropriate method is adopted. This will go a long way to revitalize their taxable profit.Keywords: accelerated, linear, depressive, depreciation
Procedia PDF Downloads 28530425 Finite Difference Modelling of Temperature Distribution around Fire Generated Heat Source in an Enclosure
Authors: A. A. Dare, E. U. Iniegbedion
Abstract:
Industrial furnaces generally involve enclosures of fire typically initiated by the combustion of gases. The fire leads to temperature distribution inside the enclosure. A proper understanding of the temperature and velocity distribution within the enclosure is often required for optimal design and use of the furnace. This study was therefore directed at numerical modeling of temperature distribution inside an enclosure as typical in a furnace. A mathematical model was developed from the conservation of mass, momentum and energy. The stream function-vorticity formulation of the governing equations was solved by an alternating direction implicit (ADI) finite difference technique. The finite difference formulation obtained were then developed into a computer code. This was used to determine the temperature, velocities, stream function and vorticity. The effect of the wall heat conduction was also considered, by assuming a one-dimensional heat flow through the wall. The computer code (MATLAB program) developed was used for the determination of the aforementioned variables. The results obtained showed that the transient temperature distribution assumed a uniform profile which becomes more chaotic with increasing time. The vertical velocity showed increasing turbulent behavior with time, while the horizontal velocity assumed decreasing laminar behavior with time. All of these behaviours were equally reported in the literature. The developed model has provided understanding of heat transfer process in an industrial furnace.Keywords: heat source, modelling, enclosure, furnace
Procedia PDF Downloads 25530424 Stability Analysis of Rabies Model with Vaccination Effect and Culling in Dogs
Authors: Eti Dwi Wiraningsih, Folashade Agusto, Lina Aryati, Syamsuddin Toaha, Suzanne Lenhart, Widodo, Willy Govaerts
Abstract:
This paper considers a deterministic model for the transmission dynamics of rabies virus in the wild dogs-domestic dogs-human zoonotic cycle. The effect of vaccination and culling in dogs is considered on the model, then the stability was analysed to get basic reproduction number. We use the next generation matrix method and Routh-Hurwitz test to analyze the stability of the Disease-Free Equilibrium and Endemic Equilibrium of this model.Keywords: stability analysis, rabies model, vaccination effect, culling in dogs
Procedia PDF Downloads 62930423 Removal of Vanadium from Industrial Effluents by Natural Ion Exchanger
Authors: Shashikant R. Kuchekar, Haribhau R. Aher, Priti M. Dhage
Abstract:
The removal vanadium from aqueous solution using natural exchanger was investigated. The effects of pH, contact time and exchanger dose were studied at ambient temperature (25 0C ± 2 0C). The equilibrium process was described by the Langmuir isotherm model with adsorption capacity for vanadium. The natural exchanger i.e. tamarindus seeds powder was treated with formaldehyde and sulpuric acid to increase the adsorptivity of metals. The maximum exchange level was attained as 80.1% at pH 3 with exchanger dose 5 g and contact time 60 min. Method is applied for removal of vanadium from industrial effluents.Keywords: industrial effluent, natural ion exchange, Tamarindous indica, vanadium
Procedia PDF Downloads 25130422 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors
Authors: Galatee Levadoux, Trevor Benson, Chris Worrall
Abstract:
With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades
Procedia PDF Downloads 16630421 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 12530420 Heavy Metal Contamination in Sediments of North East Coast of Tamilnadu by EDXRF Technique
Authors: R. Ravisankar, Tholkappian A. Chandrasekaran, Y. Raghu, K. K. Satapathy, M. V. R. Prasad, K. V. Kanagasabapathy
Abstract:
The coastal areas of Tamilnadu are assuming greater importance owing to increasing human population, urbanization and accelerated industrial activities. sIn the present study, sediment samples are collected along the east coast of Tamilnadu for assessment of heavy metal pollution. The concentration of 13 selected heavy metals such as Mg, Al, Si, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn determined by Energy dispersive X-ray fluorescence (EDXRF) technique. In order to describe the pollution status, Contamination factor and pollution load index are calculated and reported. This result suggests that sources of metal contamination were mainly attributed to natural inputs from surrounding environments.Keywords: sediments, heavy metals, EDXRF, pollution contamination factors
Procedia PDF Downloads 34030419 Density Based Traffic System Using Pic Microcontroller
Authors: Tatipamula Samiksha Goud, .A.Naveena, M.sresta
Abstract:
Traffic congestion is a major issue in many cities throughout the world, particularly in urban areas, and it is past time to switch from a fixed timer mode to an automated system. The current traffic signalling system is a fixed-time system that is inefficient if one lane is more functional than the others. A structure for an intelligent traffic control system is being designed to address this issue. When traffic density is higher on one side of a junction, the signal's green time is extended in comparison to the regular time. This study suggests a technique in which the signal's time duration is assigned based on the amount of traffic present at the time. Infrared sensors can be used to do this.Keywords: infrared sensors, micro-controllers, LEDs, oscillators
Procedia PDF Downloads 14230418 Bianchi Type- I Viscous Fluid Cosmological Models with Stiff Matter and Time Dependent Λ- Term
Authors: Rajendra Kumar Dubey
Abstract:
Einstein’s field equations with variable cosmological term Λ are considered in the presence of viscous fluid for Bianchi type I space time. Exact solutions of Einstein’s field equations are obtained by assuming cosmological term Λ Proportional to (R is a scale factor and m is constant). We observed that the shear viscosity is found to be responsible for faster removal of initial anisotropy in the universe. The physical significance of the cosmological models has also been discussed.Keywords: bianchi type, I cosmological model, viscous fluid, cosmological constant Λ
Procedia PDF Downloads 52830417 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE
Authors: Lakrim Abderrazak, Tahri Driss
Abstract:
This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.
Procedia PDF Downloads 58030416 An In-Depth Study on the Experience of Novice Teachers
Authors: Tsafi Timor
Abstract:
The research focuses on the exploration of the unique journey that novice teachers experience in their first year of teaching, among graduates of re-training programs into teaching. The study explores the experiences of success and failure and the factors that underpin positive experiences, as well as the journey (process) of this year with reference to the comparison between novice teachers and new immigrants. The content analysis that was adopted in the study was conducted on texts that were written by the teachers and detailed their first year of teaching. The findings indicate that experiences of success are featured by personal satisfaction, constant need of feedback, high motivation in challenging situations, and emotions. Failure experiences are featured by frustration, helplessness, sense of humiliation, feeling of rejection, and lack of efficacy. Factors that promote and inhibit positive experiences relate to personal, personality, professional and organizational levels. Most teachers reported feeling like new immigrants, and demonstrated different models of the process of the first year of teaching. Further research is recommended on the factors that promote and inhibit positive experiences, and on 'The Missing Link' of the relationship between Teacher Education Programs and the practices in schools.Keywords: first-year teaching, novice teachers, school practice, teacher education programs
Procedia PDF Downloads 29130415 Control Algorithm for Home Automation Systems
Authors: Marek Długosz, Paweł Skruch
Abstract:
One of purposes of home automation systems is to provide appropriate comfort to the users by suitable air temperature control and stabilization inside the rooms. The control of temperature level is not a simple task and the basic difficulty results from the fact that accurate parameters of the object of control, that is a building, remain unknown. Whereas the structure of the model is known, the identification of model parameters is a difficult task. In this paper, a control algorithm allowing the present temperature to be reached inside the building within the specified time without the need to know accurate parameters of the building itself is presented.Keywords: control, home automation system, wireless networking, automation engineering
Procedia PDF Downloads 61830414 A Hybrid Traffic Model for Smoothing Traffic Near Merges
Authors: Shiri Elisheva Decktor, Sharon Hornstein
Abstract:
Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).Keywords: highway merges, traffic modeling, SUMO, driving policy
Procedia PDF Downloads 10630413 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique
Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello
Abstract:
The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation
Procedia PDF Downloads 19930412 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model
Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero
Abstract:
Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods
Procedia PDF Downloads 2330411 Effectiveness of Intraoperative Heparinization in Neonatal and Pediatric Patients with Congenital Heart Diseases: Focus in Heparin Resistance
Authors: Karakhalis N. B.
Abstract:
This study aimed to determine the prevalence of heparin resistance among cardiac surgical pediatric and neonatal patients and identify associated risk factors. Materials and Methods: The study included 306 pediatric and neonatal patients undergoing on-pump cardiac surgery. Patients whose activated clotting time (ACT) targets were achieved after the first administration of heparin formed the 1st group (n=280); the 2nd group (n=26) included patients with heparin resistance. The initial assessment of the haemostasiological profile included determining the PT, aPPT, FG, AT III activity, and INR. Intraoperative control of heparinization was carried out with a definition of ACT using a kaolin activator. A weight-associated protocol at the rate of 300 U/kg with target values of ACT >480 sec was used for intraoperative heparinization. Results: The heparin resistance was verified in 8.5% of patients included in the study. Repeated heparin administration at the maximum dose of≥600 U/kg is required in 80.77% of cases. Despite additional heparinization, 19.23% of patients had FFP infusion. There was reduced antithrombin activity in the heparin resistance group (p=0.01). Most patients with heparin resistance (57.7%) were pretreated with low molecular weight heparins during the preoperative period. Conclusion: Determining the initial level of antithrombin activity can predict the risk of developing heparin resistance. The factor analysis verified hidden risk factors for heparin resistance to the heparin pretreatment, chronic hypoxia, and chronic heart failure.Keywords: congenital heart disease, heparin, antithrombin, activated clotting time, heparin resistance
Procedia PDF Downloads 8230410 On Hyperbolic Gompertz Growth Model (HGGM)
Authors: S. O. Oyamakin, A. U. Chukwu,
Abstract:
We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz
Procedia PDF Downloads 44130409 Kalman Filter Gain Elimination in Linear Estimation
Authors: Nicholas D. Assimakis
Abstract:
In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.Keywords: discrete time, estimation, Kalman filter, Kalman filter gain
Procedia PDF Downloads 19530408 Mobile Augmented Reality for Collaboration in Operation
Authors: Chong-Yang Qiao
Abstract:
Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.Keywords: mobile augmented reality, remote collaboration, user experience, cognition model
Procedia PDF Downloads 19730407 A Predictive Model of Supply and Demand in the State of Jalisco, Mexico
Authors: M. Gil, R. Montalvo
Abstract:
Business Intelligence (BI) has become a major source of competitive advantages for firms around the world. BI has been defined as the process of data visualization and reporting for understanding what happened and what is happening. Moreover, BI has been studied for its predictive capabilities in the context of trade and financial transactions. The current literature has identified that BI permits managers to identify market trends, understand customer relations, and predict demand for their products and services. This last capability of BI has been of special concern to academics. Specifically, due to its power to build predictive models adaptable to specific time horizons and geographical regions. However, the current literature of BI focuses on predicting specific markets and industries because the impact of such predictive models was relevant to specific industries or organizations. Currently, the existing literature has not developed a predictive model of BI that takes into consideration the whole economy of a geographical area. This paper seeks to create a predictive model of BI that would show the bigger picture of a geographical area. This paper uses a data set from the Secretary of Economic Development of the state of Jalisco, Mexico. Such data set includes data from all the commercial transactions that occurred in the state in the last years. By analyzing such data set, it will be possible to generate a BI model that predicts supply and demand from specific industries around the state of Jalisco. This research has at least three contributions. Firstly, a methodological contribution to the BI literature by generating the predictive supply and demand model. Secondly, a theoretical contribution to BI current understanding. The model presented in this paper incorporates the whole picture of the economic field instead of focusing on a specific industry. Lastly, a practical contribution might be relevant to local governments that seek to improve their economic performance by implementing BI in their policy planning.Keywords: business intelligence, predictive model, supply and demand, Mexico
Procedia PDF Downloads 12330406 Damage Identification in Reinforced Concrete Beams Using Modal Parameters and Their Formulation
Authors: Ali Al-Ghalib, Fouad Mohammad
Abstract:
The identification of damage in reinforced concrete structures subjected to incremental cracking performance exploiting vibration data is recognized as a challenging topic in the published and heavily cited literature. Therefore, this paper attempts to shine light on the extent of dynamic methods when applied to reinforced concrete beams simulated with various scenarios of defects. For this purpose, three different reinforced concrete beams are tested through the course of the study. The three beams are loaded statically to failure in incremental successive load cycles and later rehabilitated. After each static load stage, the beams are tested under free-free support condition using experimental modal analysis. The beams were all of the same length and cross-sectional area (2.0x0.14x0.09)m, but they were different in concrete compressive strength and the type of damage presented. The experimental modal parameters as damage identification parameters were showed computationally expensive, time consuming and require substantial inputs and considerable expertise. Nonetheless, they were proved plausible for the condition monitoring of the current case study as well as structural changes in the course of progressive loads. It was accentuated that a satisfactory localization and quantification for structural changes (Level 2 and Level 3 of damage identification problem) can only be achieved reasonably through considering frequencies and mode shapes of a system in a proper analytical model. A convenient post analysis process for various datasets of vibration measurements for the three beams is conducted in order to extract, check and correlate the basic modal parameters; namely, natural frequency, modal damping and mode shapes. The results of the extracted modal parameters and their combination are utilized and discussed in this research as quantification parameters.Keywords: experimental modal analysis, damage identification, structural health monitoring, reinforced concrete beam
Procedia PDF Downloads 26330405 Bi-Criteria Vehicle Routing Problem for Possibility Environment
Authors: Bezhan Ghvaberidze
Abstract:
A multiple criteria optimization approach for the solution of the Fuzzy Vehicle Routing Problem (FVRP) is proposed. For the possibility environment the levels of movements between customers are calculated by the constructed simulation interactive algorithm. The first criterion of the bi-criteria optimization problem - minimization of the expectation of total fuzzy travel time on closed routes is constructed for the FVRP. A new, second criterion – maximization of feasibility of movement on the closed routes is constructed by the Choquet finite averaging operator. The FVRP is reduced to the bi-criteria partitioning problem for the so called “promising” routes which were selected from the all admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in the real-time computing. For the numerical solution of the bi-criteria partitioning problem the -constraint approach is used. An exact algorithm is implemented based on D. Knuth’s Dancing Links technique and the algorithm DLX. The Main objective was to present the new approach for FVRP, when there are some difficulties while moving on the roads. This approach is called FVRP for extreme conditions (FVRP-EC) on the roads. Also, the aim of this paper was to construct the solving model of the constructed FVRP. Results are illustrated on the numerical example where all Pareto-optimal solutions are found. Also, an approach for more complex model FVRP with time windows was developed. A numerical example is presented in which optimal routes are constructed for extreme conditions on the roads.Keywords: combinatorial optimization, Fuzzy Vehicle routing problem, multiple objective programming, possibility theory
Procedia PDF Downloads 48530404 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang
Abstract:
Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI
Procedia PDF Downloads 26830403 An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved
Authors: Tiexin Wang, Sebastien Truptil, Frederick Benaben
Abstract:
Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way.Keywords: automatic model transformation, granularity issue, model-driven engineering, semantic and syntactic comparisons
Procedia PDF Downloads 39430402 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 554