Search results for: Structural Reliability
4270 Controlling Differential Settlement of Large Reservoir through Soil Structure Interaction Approach
Authors: Madhav Khadilkar
Abstract:
Construction of a large standby reservoir was required to provide secure water supply. The new reservoir was required to be constructed at the same location of an abandoned old open pond due to space constraints. Some investigations were carried out earlier to improvise and re-commission the existing pond. But due to a lack of quantified risk of settlement from voids in the underlying limestone, the shallow foundations were not found feasible. Since the reservoir was resting on hard strata for about three-quarter of plan area and one quarter was resting on soil underlying with limestone and considerably low subgrade modulus. Further investigations were carried out to ascertain the locations and extent of voids within the limestone. It was concluded that the risk due to lime dissolution was acceptably low, and the site was found geotechnically feasible. The hazard posed by limestone dissolution was addressed through the integrated structural and geotechnical analysis and design approach. Finite Element Analysis was carried out to quantify the stresses and differential settlement due to various probable loads and soil-structure interaction. Walls behaving as cantilever under operational loads were found undergoing in-plane bending and tensile forces due to soil-structure interaction. Sensitivity analysis for varying soil subgrade modulus was carried out to check the variation in the response of the structure and magnitude of stresses developed. The base slab was additionally checked for the loss of soil contact due to lime pocket formations at random locations. The expansion and contraction joints were planned to receive minimal additional forces due to differential settlement. The reservoir was designed to sustain the actions corresponding to allowable deformation limits per code, and geotechnical measures were proposed to achieve the soil parameters set in structural analysis.Keywords: differential settlement, limestone dissolution, reservoir, soil structure interaction
Procedia PDF Downloads 1624269 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 694268 Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks
Authors: Richard Tanaka, Ying Zhu
Abstract:
This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations.Keywords: distributed randomized algorithms, peer-to-peer networks, virtual container technology, resilient networks
Procedia PDF Downloads 2224267 Adaptive Online Object Tracking via Positive and Negative Models Matching
Authors: Shaomei Li, Yawen Wang, Chao Gao
Abstract:
To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.Keywords: object tracking, tracking drift, partial least squares analysis, positive and negative models matching
Procedia PDF Downloads 5374266 Shape Management Method of Large Structure Based on Octree Space Partitioning
Authors: Gichun Cha, Changgil Lee, Seunghee Park
Abstract:
The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)."Keywords: 3D scan data, octree space partitioning, shape management, structural health monitoring, terrestrial laser scanning
Procedia PDF Downloads 2984265 Examination of 12-14 Years Old Volleyball Players’ Body Image Levels
Authors: Dilek Yalız Solmaz, Gülsün Güven
Abstract:
The aim of this study is to examine the body image levels of 12-14 years old girls who are playing volleyball. The research group consists of 113 girls who are playing volleyball in Sakarya during the fall season of 2015-2016. Data was collected by means of the 'Body Image Questionnaire' which was originally developed by Secord and Jourard. The consequence of repeated analysis of the reliability of the scale was determined to as '.96'. This study employed statistical calculations as mean, standard deviation and t-test. According to results of this study, it was determined that the mean point of the volleyball players is 158.5 ± 25.1 (minimum=40; maximum=200) and it can be said that the volleyball players’ body image levels are high. There is a significant difference between the underweight (167.4 ± 20.7) and normal weight (151.4 ± 26.2) groups according to their Body Mass Index. Body image levels of underweight group were determined higher than normal weight group.Keywords: volleyball, players, body image, body image levels
Procedia PDF Downloads 2144264 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction
Authors: Bruce Wrightsman
Abstract:
Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.Keywords: wood building systems, material histories, monocoque systems, construction waste
Procedia PDF Downloads 814263 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole
Authors: Basavaraj R. Endigeri, S. G. Sarganachari
Abstract:
Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.Keywords: finite element method, optimization, stress concentration factor, auxiliary holes
Procedia PDF Downloads 4584262 Optimization of a Hybrid PV-Diesel Minigrid System: A Case Study of Vimtim-Mubi, Nigeria
Authors: Julius Agaka Yusufu, Tsutomu Dei, Hanif Ibrahim Awal
Abstract:
This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.Keywords: Vimtim-Nigeria, Homer, renewable energy, PV-diesel hybrid system
Procedia PDF Downloads 954261 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance
Authors: Xiaoyong He
Abstract:
The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.Keywords: graphene, metamaterials, terahertz, tunable
Procedia PDF Downloads 3474260 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor
Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee
Abstract:
Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.Keywords: accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test
Procedia PDF Downloads 6184259 Fuzzy Logic and Control Strategies on a Sump
Authors: Nasser Mohamed Ramli, Nurul Izzati Zulkifli
Abstract:
Sump can be defined as a reservoir which contains slurry; a mixture of solid and liquid or water, in it. Sump system is an unsteady process owing to the level response. Sump level shall be monitored carefully by using a good controller to avoid overflow. The current conventional controllers would not be able to solve problems with large time delay and nonlinearities, Fuzzy Logic controller is tested to prove its ability in solving the listed problems of slurry sump. Therefore, in order to justify the effectiveness and reliability of these controllers, simulation of the sump system was created by using MATLAB and the results were compared. According to the result obtained, instead of Proportional-Integral (PI) and Proportional-Integral and Derivative (PID), Fuzzy Logic controller showed the best result by offering quick response of 0.32 s for step input and 5 s for pulse generator, by producing small Integral Absolute Error (IAE) values that are 0.66 and 0.36 respectively.Keywords: fuzzy, sump, level, controller
Procedia PDF Downloads 2494258 Reduction Behavior of Medium Grade Manganese Ore from Karangnunggal during a Sintering Process in Methane Gas
Authors: H. Aripin, I. Made Joni, Edvin Priatna, Nundang Busaeri, Svilen Sabchevski
Abstract:
In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The ores were grinded using a jar mill to pass through a 150 mesh sieve. The effects of keeping it at a temperature of 1200 °C in methane gas on the structural properties have been studied. The material’s properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. It has been found that the ore contains MnO₂ as the main constituents at about 46.80 wt.%. It can be also observed that the ore particles are agglomerated forming dense grains with different texture and morphology. The irregular-shaped grains with dark contrast, the large brighter grains, and smaller grains with bright texture and smooth surfaces are associated with the presence of manganese, calcium, and quartz, respectively. From XRD patterns, MnO₂ is reduced to hausmannite (Mn₃O₄), manganosite (MnO) and manganese carbide (Mn₇C₃). At a temperature of 1200°C the keeping time does not have any effect on the formation of crystals and the crystalline phases remain almost unchanged in the time range from 15 to 90 minutes. An increase of the keeping time up to 45 minutes during the sintering process leads to an increase of the MnO concentration, while at 90 minutes, the concentration decreases. At longer keeping times the excess reaction of the methane gas and manganese oxide in the ore causes an increase of carbon deposition. As a result, it blocks the particle surface and then hinders the reduction process of manganese oxide. From FTIR spectrum allows one to explain that the appearance of C=O stretching mode arises from absorption of atmospheric methane and manganese oxide of the ore. The intensity of this band increases with increasing the keeping time, indicating an increase of carbon deposition on the surface of manganese oxide.Keywords: manganese, medium grade manganese ore, structural properties, keeping the temperature, carbon deposition
Procedia PDF Downloads 1594257 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils
Authors: Ákos Wolf, Richard P. Ray
Abstract:
Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soilsKeywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity
Procedia PDF Downloads 2494256 Analyzing Claude Debussy’s Piano Preludes by Focusing on His Recordings
Authors: Parham Bakhtiari
Abstract:
Between 1910 and 1912, Claude Debussy recorded twelve of his solo piano pieces. Although Debussy frequently provided advice to his students on performing while they followed the written notes when performing, his personal recordings are characterized by creative liberties and unique freedom interpretations. Debussy's use of numerous interpretive gestures in these recordings is fascinating and corresponds with the techniques utilized by French Baroque keyboard performers. This paper will situate Debussy's presentation in the Baroque musical approach. Initially, we will discuss the recording by analyzing Welte-Mignon's used technology to guarantee the reliability of these recordings. Then, we will find commonalities in the intricate performances of harpsichord musicians who played in the 1600s and 1700s and recordings of Debussy. Finally, by drawing comparisons, we will review the patterns by contrasting Debussy's execution with recordings of the same pieces from the latter half of the 20th century as striving for improved presentations while limiting artistic freedom.Keywords: music, Debussy, piano, performance, prelude
Procedia PDF Downloads 534255 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall
Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono
Abstract:
Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall
Procedia PDF Downloads 1934254 The Stability Analysis and New Torque Control Strategy of Direct-Driven PMSG Wind Turbines
Authors: Jun Liu, Feihang Zhou, Gungyi Wang
Abstract:
This paper expounds on the direct-driven PMSG wind power system control strategy, and analyses the stability conditions of the system. The direct-driven PMSG wind power system may generate the intense mechanical vibration, when wind speed changes dramatically. This paper proposes a new type of torque control strategy, which increases the system damping effectively, mitigates mechanical vibration of the system, and enhances the stability conditions of the system. The simulation results verify the reliability of the new torque control strategy.Keywords: damping, direct-driven PMSG wind power system, mechanical vibration, torque control
Procedia PDF Downloads 3394253 A Study of Food Waste Behaviours in Restaurants
Authors: Ching-Hsu Huang, Si-Qing Hong
Abstract:
The main purpose of this study is to understand the consumers’ perceptions and attitudes toward food waste in restaurants. The questionnaires were conducted as a research tool to collect data to understand consumers’ food waste behaviors and the most food wasted in terms of their preparation in the restaurant. The subjects were the consumers in the restaurants and asked to fill out the questionnaire, including social responsibility, attitude, behavioral intention and food waste behaviors. 89 questionnaires were collected and the data were analyzed by reliability, descriptive analysis, t-test and ANOVA. The five hypotheses were examined and the results showed there is a significant relationship between social responsibility and behavioral intention; social responsibility and attitude, attitude and behavioral intention. The suggestions and implications were addressed for restauranteurs and further research.Keywords: food waste behaviors (FWB), social responsibility, consumer attitude, behavioral intention, restaurants
Procedia PDF Downloads 1784252 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison
Authors: B. S. Abdelwahed, B. B. Belkassem
Abstract:
Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance
Procedia PDF Downloads 4694251 The Development of Speaking Using Folk Tales Based on Performance Activities for Early-Childhood Students
Authors: Ms Yaowaluck Ruampol
Abstract:
The research on the development of using folk tales based on performance activities aimed to (1) study the development of speaking skill for early-childhood students, (2) evaluate the development of speaking skill before and after speaking activities. Ten students of Kindergarten level 2, who have enrolled in the subject of the research for speaking development of semester 2 in 2013, were purposively selected as the research cohort. The research tools were lesson plans for speaking activities and pre-posttest for speaking development that were approved for content validity and reliability (IOC=.66-1.00,0.967). The research found that the development of speaking skill of the research samples before using performance activities on folk tales in developing speaking skill was in the normal high level. Additionally, the results revealed that the preschoolers after applying speaking skill on performance activities also imaginatively created their speaking skill.Keywords: speaking development, folk tales, performance activities, communication engineering
Procedia PDF Downloads 2974250 The Structural Alteration of DNA Native Structure of Staphylococcus aureus Bacteria by Designed Quinoxaline Small Molecules Result in Their Antibacterial Properties
Authors: Jeet Chakraborty, Sanjay Dutta
Abstract:
Antibiotic resistance by bacteria has proved to be a severe threat to mankind in recent times, and this fortifies an urgency to design and develop potent antibacterial small molecules/compounds with nonconventional mechanisms than the conventional ones. DNA carries the genetic signature of any organism, and bacteria maintain their genomic DNA inside the cell in a well-regulated compact form with the help of various nucleoid associated proteins like HU, HNS, etc. These proteins control various fundamental processes like gene expression, replication, etc., inside the cell. Alteration of the native DNA structure of bacteria can lead to severe consequences in cellular processes inside the bacterial cell that ultimately result in the death of the organism. The change in the global DNA structure by small molecules initiates a plethora of cellular responses that have not been very well investigated. Echinomycin and Triostin-A are biologically active Quinoxaline small molecules that typically consist of a quinoxaline chromophore attached with an octadepsipeptide ring. They bind to double-stranded DNA in a sequence-specific way and have high activity against a wide variety of bacteria, mainly against Gram-positive ones. To date, few synthetic quinoxaline scaffolds were synthesized, displaying antibacterial potential against a broad scale of pathogenic bacteria. QNOs (Quinoxaline N-oxides) are known to target DNA and instigate reactive oxygen species (ROS) production in bacteria, thereby exhibiting antibacterial properties. The divergent role of Quinoxaline small molecules in medicinal research qualifies them for the evaluation of their antimicrobial properties as a potential candidate. The previous study from our lab has given new insights on a 6-nitroquinoxaline derivative 1d as an intercalator of DNA, which induces conformational changes in DNA upon binding.7 The binding event observed was dependent on the presence of a crucial benzyl substituent on the quinoxaline moiety. This was associated with a large induced CD (ICD) appearing in a sigmoidal pattern upon the interaction of 1d with dsDNA. The induction of DNA superstructures by 1d at high Drug:DNA ratios was observed that ultimately led to DNA condensation. Eviction of invitro-assembled nucleosome upon treatment with a high dose of 1d was also observed. In this work, monoquinoxaline derivatives of 1d were synthesized by various modifications of the 1d scaffold. The set of synthesized 6-nitroquinoxaline derivatives along with 1d were all subjected to antibacterial evaluation across five different bacteria species. Among the compound set, 3a displayed potent antibacterial activity against Staphylococcus aureus bacteria. 3a was further subjected to various biophysical studies to check whether the DNA structural alteration potential was still intact. The biological response of S. aureus cells upon treatment with 3a was studied using various cell biology processes, which led to the conclusion that 3d can initiate DNA damage in the S. aureus cells. Finally, the potential of 3a in disrupting preformed S.aureus and S.epidermidis biofilms was also studied.Keywords: DNA structural change, antibacterial, intercalator, DNA superstructures, biofilms
Procedia PDF Downloads 1724249 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method
Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan
Abstract:
Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.Keywords: hotforging, engine valve, fracture, tooling
Procedia PDF Downloads 2824248 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier
Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim
Abstract:
There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.Keywords: data mining, document classifier, text mining, topic modeling
Procedia PDF Downloads 4074247 Channel That Can Be Used on Slope, Slide Prone and Seismic Areas, Swelling and Collapsing Soils
Authors: Sabir Tehrankhan Hasanov, Mir Movsum Anar Dadashev
Abstract:
The article provides a brief overview of irrigation systems and canals applied to slopes, landslide-prone, seismic areas, and swelling and collapsing soils. The contemporary construction of the canal used for irrigation, energy, and water supply purposes is described. In order to ensure the durability, longevity, and reliability of the channel, a damping mat made of cast material is created under its cover, and the top is covered with a waterproof screen. Dowels are placed on the bottom and sides of the channel, and the bottom dowel is riveted to the solid bedrock and connected with piles placed at certain distances. Drainage was placed next to the bottom dowel, an operation road was created on one side of the channel, and a berm road was created on the other side. A bathtub was built on the side of the road, and a forest-bush strip was built on its bank.Keywords: slope, channel, landslide, collapse, swell, soil, structure
Procedia PDF Downloads 924246 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties
Authors: Niharul Alam
Abstract:
The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis
Procedia PDF Downloads 4374245 Evaluating Psychologist Practice Competencies through Multisource Feedback: An International Research Design
Authors: Jac J. W. Andrews, James B. Hale
Abstract:
Effective practicing psychologists require ongoing skill development that is constructivist and recursive in nature, with mentor, colleague, co-worker, and patient feedback critical to successful acquisition and maintenance of professional competencies. This paper will provide an overview of the nature and scope of psychologist skill development through multisource feedback (MSF) or 360 degree evaluation, present a rationale for its use for assessing practicing psychologist performance, and advocate its use in psychology given the demonstrated model utility in other health professions. The paper will conclude that an international research design is needed to assess the feasibility, reliability, and validity of MSF system ratings intended to solicit feedback from mentors, colleagues, coworkers, and patients about psychologist competencies. If adopted, the MSF model could lead to enhanced skill development that fosters patient satisfaction within and across countries.Keywords: psychologist, multisource feedback, psychologist competency, professionalism
Procedia PDF Downloads 4504244 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys
Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit
Abstract:
Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction
Procedia PDF Downloads 2914243 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation
Authors: Carlos Riascos, Peter Thomson
Abstract:
Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy
Procedia PDF Downloads 3014242 Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm
Authors: Shafqat Ullah Khan, Ammar Nasir
Abstract:
Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB.Keywords: Planar antenna array, , Pelican optimisation Algorithm, , Faculty sensor, Antenna arrays
Procedia PDF Downloads 904241 Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis
Authors: Alexander A. Tokmakov
Abstract:
Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis.Keywords: bioinformatics analysis, cell-free protein synthesis, expression success, optimization, recombinant proteins
Procedia PDF Downloads 422