Search results for: neural smith predictor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2439

Search results for: neural smith predictor

549 Virtual Metrology for Copper Clad Laminate Manufacturing

Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho

Abstract:

In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.

Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology

Procedia PDF Downloads 350
548 Shades of Violence – Risks of Male Violence Exposure for Mental and Somatic-Disorders and Risk-Taking Behavior: A Prevalence Study

Authors: Dana Cassandra Winkler, Delia Leiding, Rene Bergs, Franziska Kaiser, Ramona Kirchhart, Ute Habel

Abstract:

Background: Violence is a multidimensional phenomenon, affecting people of every age, socio-economic status and gender. Nevertheless, most studies primarily focus on men perpetrating women. Aim of the present study is to identify the likelihood of mental and somatic disorders and risk-taking behavior in male violence affected. In addition, the relationship between age of violence experience and the risk for health-related problems was analyzed. Method: On the basis of current evidence, a questionnaire was developed focusing on demographic background, health status, risk-taking behavior, and active and passive violence exposure. In total, 5221 males (Mean: 56,1 years, SD: 17,6) were consulted. To account for the time of violence experience in an efficient way, age clusters ‘0-12 years’, ‘13-20 years’, ‘21-35 years’, ‘36-65 years’ and ‘over 65 years’ were defined. A binary logistic regression was calculated to reveal differences in violence-affected and non-violence affected males regarding health and risk-taking factors. Males who experienced violence on a daily/ almost daily basis vs. males who reported violence occurrence once/ several times a month/ year were compared with respect to health factors and risk-taking behavior. Data of males, who indicated active and passive violence exposure, were analyzed by a chi²-analysis, to investigate a possible relation between the age of victimization and violence perpetration. Findings: Results imply that general violence experience, independent of active and passive violence exposure increases the likelihood in favor of somatic-, psychosomatic- and mental disorders as well as risk-taking behavior in males. Experiencing violence on a daily or almost daily basis in childhood and adolescence may serve as a predictor for increased health problems and risk-taking behavior. Furthermore, the violence experience and perpetration occur significantly within the same age cluster. This underlines the importance of a near-term intervention to minimize the risk, that victims become perpetrators later. Conclusion: The present study reveals predictors concerning health risk factors as well as risk-taking behavior in males with violence exposure. The results of this study may underscore the benefit of intervention and regular health care approaches in violence-affected males and underline the importance of acknowledging the overlap of violence experience and perpetration for further research.

Keywords: health disease, male, mental health, prevalence, risk-taking behavior, violence

Procedia PDF Downloads 212
547 The Practical Application of Sensory Awareness in Developing Healthy Communication, Emotional Regulation, and Emotional Introspection

Authors: Node Smith

Abstract:

Developmental psychology has long focused on modeling consciousness, often neglecting practical application and clinical utility. This paper aims to bridge this gap by exploring the practical application of physical and sensory tracking and awareness in fostering essential skills for conscious development. Higher conscious development requires practical skills such as self-agency, the ability to hold multiple perspectives, and genuine altruism. These are not personality characteristics but areas of skillfulness that address many cultural deficiencies impacting our world. They are intertwined with individual as well as collective conscious development. Physical, sensory tracking and awareness are crucial for developing these skills and offer the added benefit of cultivating healthy communication, emotional regulation, and introspection. Unlike skills such as throwing a baseball, which can be developed through practice or innate ability, the ability to introspect, track physical sensations, and observe oneself objectively is essential for advancing consciousness. Lacking these skills leads to cultural and individual anxiety, helplessness, and a lack of agency, manifesting as blame-shifting and irresponsibility. The inability to hold multiple perspectives stifles altruism, as genuine consideration for a global community requires accepting other perspectives without conditions. Physical and sensory tracking enhances self-awareness by grounding individuals in their bodily experiences. This grounding is critical for emotional regulation, allowing individuals to identify and process emotions in real-time, preventing overwhelm and fostering balance. Techniques like mindfulness meditation and body scan exercises attune individuals to their physical sensations, providing insights into their emotional states. Sensory awareness also facilitates healthy communication by fostering empathy and active listening. When individuals are in tune with their physical sensations, they become more present in interactions, picking up on subtle cues and responding thoughtfully. This presence reduces misunderstandings and conflicts, promoting more effective communication. The ability to introspect and observe oneself objectively is key to emotional introspection. This skill allows individuals to reflect on their thoughts, feelings, and behaviors, identify patterns, recognize areas for growth, and make conscious choices aligned with their values and goals. In conclusion, physical and sensory tracking and awareness are vital for developing the skills necessary for higher consciousness development. By fostering self-agency, emotional regulation, and the ability to hold multiple perspectives, these practices contribute to healthier communication, deeper emotional introspection, and a more altruistic and connected global community. Integrating these practices into developmental psychology and therapeutic interventions holds significant promise for both individual and societal transformation.

Keywords: conscious development, emotional introspection, emotional regulation, self-agency, stages of development

Procedia PDF Downloads 45
546 Patients in Opioid Maintenance Programs: Psychological Features that Predict Abstinence

Authors: Janaina Pereira, Barbara Gonzalez, Valentina Chitas, Teresa Molina

Abstract:

Intro: The positive impact of opioid maintenance programs on the health of heroin addicts, and on public health in general, has been widely recognized, namely on the prevalence reduction of infectious diseases as HIV, and on the social reintegration of this population. Nevertheless, a part of patients in these programs cannot remain heroin abstinent, or has relapses, during the treatment. Method: Thus, this cross-sectional research aims at analyzing the relation between a set of psychological and psychosocial variables, which have been associated with the onset of heroin use, and assess if they are also associated with absence of abstinence in participants in an opioid maintenance program. A total of 62 patients, aged between 26 and 58 years old (M= 40.87, DP= 7.39) with a time in opioid maintenance program between 1 and 10 years (M= 5.42, DP= 3.05), 77.4% male and 22.6% female, participated in this research. To assess the criterion variable (heroin use) we used the mean value of positive results in urine tests during the participation in the program, weighted according to the number of months in program. The predictor variables were the coping strategies, the dispositional sensation seeking, and the existence of Posttraumatic stress disorder (PTSD). Results: The results showed that only 33.87% of the patients were totally abstinent of heroin use since the beginning of the program, and the absence of abstinence, as the number of positive heroin tests, was primarily predicted by less proactive coping, and secondarily by a higher level of sensation seeking. 16.13% of the sample fulfilled diagnosis criteria for PTSD, and 67.74 % had at least one traumatic experience throughout their lives. The total of PTSD symptoms had a positive correlation with the number of physical health problems, and with the lack of professional occupation. These results have several implications for the clinical practice in this field, and we suggest the promotion of proactive coping strategies should integrate these opioid maintenance programs, as they represent the tendency to face future events as challenges and opportunities, being positively related to positive results on several fields. The early identification of PTSD in the participants, before entering the opioid maintenance programs, would be important as it is related to negative features that hinder social reintegration, Finally, to identify individuals with a sensation seeking profile would be relevant, not only because they face a higher risk of relapse, but also because the therapeutical approaches should not ignore this dispositional feature in the alternatives they propose to the patients.

Keywords: opioid maintenance programs, proactive coping, PTSD, sensation seeking

Procedia PDF Downloads 128
545 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 326
544 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm

Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu

Abstract:

Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.

Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model

Procedia PDF Downloads 202
543 The Use of Venous Glucose, Serum Lactate and Base Deficit as Biochemical Predictors of Mortality in Polytraumatized Patients: Acomparative with Trauma and Injury Severity Score and Acute Physiology and Chronic Health Evalution IV

Authors: Osama Moustafa Zayed

Abstract:

Aim of the work: To evaluate the effectiveness of venous glucose, levels of serum lactate and base deficit in polytraumatized patients as simple parameters to predict the mortality in these patients. Compared to the predictive value of Trauma and injury severity (TRISS) and Acute Physiology And Chronic Health Evaluation IV (APACHE IV). Introduction: Trauma is a serious global health problem, accounting for approximately one in 10 deaths worldwide. Trauma accounts for 5 million deaths per year. Prediction of mortality in trauma patients is an important part of trauma care. Several trauma scores have been devised to predict injury severity and risk of mortality. The trauma and injury severity score (TRISS) was most common used. Regardless of the accuracy of trauma scores, is based on an anatomical description of every injury and cannot be assigned to the patients until a full diagnostic procedure has been performed. So we hypothesized that alterations in admission glucose, lactate levels and base deficit would be an early and easy rapid predictor of mortality. Patient and Method: a comparative cross-sectional study. 282 Polytraumatized patients attended to the Emergency Department(ED) of the Suez Canal university Hospital constituted. The period from 1/1/2012 to 1/4/2013 was included. Results: We found that the best cut off value of TRISS probability of survival score for prediction of mortality among poly-traumatized patients is = 90, with 77% sensitivity and 89% specificity using area under the ROC curve (0.89) at (95%CI). APACHE IV demonstrated 67% sensitivity and 95% specificity at 95% CI at cut off point 99. The best cutoff value of Random Blood Sugar (RBS) for prediction of mortality was>140 mg/dl, with 89%, sensitivity, 49% specificity. The best cut off value of base deficit for prediction of mortality was less than -5.6 with 64% sensitivity, 93% specificity. The best cutoff point of lactate for prediction of mortality was > 2.6 mmol/L with 92%, sensitivity, 42% specificity. Conclusion: According to our results from all evaluated predictors of mortality (laboratory and scores) and mortality based on the estimated cutoff values using ROC curves analysis, the highest risk of mortality was found using a cutoff value of 90 in TRISS score while with laboratory parameters the highest risk of mortality was with serum lactate > 2.6 . Although that all of the three parameter are accurate in predicting mortality in poly-traumatized patients and near with each other, as in serum lactate the area under the curve 0.82, in BD 0.79 and 0.77 in RBS.

Keywords: APACHE IV, emergency department, polytraumatized patients, serum lactate

Procedia PDF Downloads 295
542 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 73
541 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 502
540 Social Participation and Associated Life Satisfaction among Older Adults in India: Moderating Role of Marital Status and Living Arrangements

Authors: Varsha Pandurang Nagargoje, K. S. James

Abstract:

Background: Social participation is considered as one of the central components of successful and healthy aging. This study aimed to examine the moderating role of marital status and living arrangement in the relationship between social participation and life satisfaction and other potential factors associated with life satisfaction of Indian older adults. Method: For analyses, the nationally representative study sample of 31,464 adults aged ≥60 years old was extracted from the Longitudinal Ageing Study in India (LASI) wave 1, 2017-18. Descriptive statistics and bivariate analysis have been performed to determine the proportion of life satisfaction. The first set of multivariable linear regression analyses examined Diener’s Satisfaction with Life Scale and its association with various predictor variables, including social participation, marital status, living arrangements, socio-demographic, economic, and health-related variables. Further, the second and third sets of regression investigated the moderating role of marital status and living arrangements respectively in the association of social participation and level of life satisfaction among Indian older adults. Results: Overall, the proportion of life satisfaction among older men was relatively higher than women counterparts in most background characteristics. Regression results stressed the importance of older adults’ involvement in social participation [β = 0.39, p < 0.05], being in marital union [β = 0.68, p < 0.001] and co-residential living arrangements either only with spouse [β = 1.73, p < 0.001] or with other family members [β = 2.18, p < 0.001] for the improvement of life satisfaction. Results also showed that some factors were significant for life satisfaction: in particular, increased age, having a higher level of educational status, MPCE quintile, and caste category. Higher risk of life dissatisfaction found among Indian older adults who were exposed to vulnerabilities like consuming tobacco, poor self-rated health, having difficulty in performing ADL and IADL were of major concern. The interaction effect of social participation with marital status or with living arrangements explained that currently married older individuals, and those older adults who were either co-residing with their spouse only or with other family members irrespective of their involvement in social participation remained an important modifiable factor for life satisfaction. Conclusion: It would be crucial for policymakers and practitioners to advocate social policy programs and service delivery oriented towards meaningful social connections, especially for those Indian older adults who were staying alone or currently not in the marital union to enhance their overall life satisfaction.

Keywords: Indian, older adults, social participation, life satisfaction, marital status, living arrangement

Procedia PDF Downloads 130
539 The Findings EEG-LORETA about Epilepsy

Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi

Abstract:

Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides a very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations، Intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review The findings EEG- LORETA about epilepsy.

Keywords: epilepsy, EEG, EEG-LORETA

Procedia PDF Downloads 545
538 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 82
537 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms

Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama

Abstract:

Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.

Keywords: machine learning, ChatGPT, education, learning, implications

Procedia PDF Downloads 232
536 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine

Procedia PDF Downloads 308
535 Personality Moderates the Relation Between Mother´s Emotional Intelligence and Young Children´s Emotion Situation Knowledge

Authors: Natalia Alonso-Alberca, Ana I. Vergara

Abstract:

From the very first years of their life, children are confronted with situations in which they need to deal with emotions. The family provides the first emotional experiences, and it is in the family context that children usually take their first steps towards acquiring emotion knowledge. Parents play a key role in this important task, helping their children develop emotional skills that they will need in challenging situations throughout their lives. Specifically, mothers are models imitated by their children. They create specific spatial and temporal contexts in which children learn about emotions, their causes, consequences, and complexity. This occurs not only through what mothers say or do directly to the child. Rather, it occurs, to a large extent, through the example that they set using their own emotional skills. The aim of the current study was to analyze how maternal abilities to perceive and to manage emotions influence children’s emotion knowledge, specifically, their emotion situation knowledge, taking into account the role played by the mother’s personality, the time spent together, and controlling the effect of age, sex and the child’s verbal abilities. Participants were 153 children from 4 schools in Spain, and their mothers. Children (41.8% girls)age range was 35 - 72 months. Mothers (N = 140) age (M = 38.7; R = 27-49). Twelve mothers had more than one child participating in the study. Main variables were the child´s emotion situation knowledge (ESK), measured by the Emotion Matching Task (EMT), and receptive language, using the Picture Vocabulary Test. Also, their mothers´ Emotional Intelligence (EI), through the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT) and personality, with The Big Five Inventory were analyzed. The results showed that the predictive power of maternal emotional skills on ESK was moderated by the mother’s personality, affecting both the direction and size of the relationships detected: low neuroticism and low openness to experience lead to a positive influence of maternal EI on children’s ESK, while high levels in these personality dimensions resulted in a negative influence on child´s ESK. The time that the mother and the child spend together was revealed as a positive predictor of this EK, while it did not moderate the influence of the mother's EI on child’s ESK. In light of the results, we can infer that maternal EI is linked to children’s emotional skills, though high level of maternal EI does not necessarily predict a greater degree of emotionknowledge in children, which seems rather to depend on specific personality profiles. The results of the current study indicate that a good level of maternal EI does not guarantee that children will learn the emotional skills that foster prosocial adaptation. Rather, EI must be accompanied by certain psychological characteristics (personality traits in this case).

Keywords: emotional intelligence, emotion situation knowledge, mothers, personality, young children

Procedia PDF Downloads 134
534 Forecasting the Sea Level Change in Strait of Hormuz

Authors: Hamid Goharnejad, Amir Hossein Eghbali

Abstract:

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting

Procedia PDF Downloads 271
533 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.

Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC

Procedia PDF Downloads 405
532 The Role of Named Entity Recognition for Information Extraction

Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov

Abstract:

Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.

Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area

Procedia PDF Downloads 81
531 Deepnic, A Method to Transform Each Variable into Image for Deep Learning

Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.

Abstract:

Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.

Keywords: tabular data, deep learning, perfect trees, NICS

Procedia PDF Downloads 90
530 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis

Procedia PDF Downloads 380
529 Online Yoga Asana Trainer Using Deep Learning

Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam

Abstract:

Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.

Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN

Procedia PDF Downloads 240
528 Investigating the Relationship between Iranian EFL Teachers' Motivation, Creativity and Job Stress

Authors: Mehrab Karimian

Abstract:

This study investigates the intricate relationships among Iranian EFL teachers’ motivation, creativity, and job stress in Shiraz and Fasa institutes. The primary aim is to explore these links using quantitative methods, providing a comprehensive understanding of how these factors interact within the educational context. The research employed convenient sampling, gathering data from 101 EFL teachers through three specific questionnaires: the Motivation to Teach Questionnaire, Teacher Creativity Questionnaire, and Job Stress Questionnaire. The methodology involved rigorous statistical analyses, including Pearson correlation and multiple regression, to interpret the collected data. The findings revealed positive relationships between motivation and creativity, as well as between motivation and job stress. However, no significant link was observed between creativity and job stress. Notably, creativity emerged as a strong predictor of motivation, highlighting its crucial role in the motivational dynamics of EFL teachers. The theoretical importance of this study lies in its contribution to understanding how motivation can influence both creativity and job stress among EFL teachers. By emphasizing the complex interplay of these factors, the study provides valuable insights that can inform future research and educational practices. The data collection process was thorough, utilizing well-established questionnaires to ensure the reliability and validity of the findings. Statistical analyses such as Pearson correlation and multiple regression were employed to interpret the relationships between motivation, creativity, and job stress. These analyses provided a detailed understanding of how these variables interact, offering a nuanced view of the motivational and stress dynamics in the teaching profession. The study addressed key questions regarding the influence of motivation on creativity and job stress, underscoring the predictive power of creativity on motivation. The conclusion drawn from the study suggests that motivated EFL teachers may experience higher levels of job stress. This finding highlights the need for targeted interventions to support teacher well-being and maintain their motivation. Such interventions could include professional development programs, stress management workshops, and creative teaching strategies to help teachers manage stress while fostering their motivation and creativity. Reviewers have commended the study for its contribution to the field, particularly in revealing the intricate dynamics between motivation, creativity, and job stress in EFL teachers. They recommend enhancing the methodology by considering potential confounding variables and incorporating qualitative approaches to complement the quantitative findings. These suggestions aim to provide a more comprehensive understanding of the factors influencing EFL teachers’ motivation, creativity, and job stress.

Keywords: creativity, Job stress, gender, years of teaching experience

Procedia PDF Downloads 16
527 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan

Authors: Li Li, Kai-Hsuan Chu

Abstract:

It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.

Keywords: real estate price, least-square, grey correlation, macroeconomics

Procedia PDF Downloads 198
526 Human Action Recognition Using Wavelets of Derived Beta Distributions

Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel

Abstract:

In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.

Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet

Procedia PDF Downloads 411
525 Subjective Time as a Marker of the Present Consciousness

Authors: Anastasiya Paltarzhitskaya

Abstract:

Subjective time plays an important role in consciousness processes and self-awareness at the moment. The concept of intrinsic neural timescales (INT) explains the difference in perceiving various time intervals. The capacity to experience the present builds on the fundamental properties of temporal cognition. The challenge that both philosophy and neuroscience try to answer is how the brain differentiates the present from the past and future. In our work, we analyze papers which describe mechanisms involved in the perception of ‘present’ and ‘non-present’, i.e., future and past moments. Taking into account that we perceive time intervals even during rest or relaxation, we suppose that the default-mode network activity can code time features, including the present moment. We can compare some results of time perceptual studies, where brain activity was shown in states with different flows of time, including resting states and during “mental time travel”. According to the concept of mental traveling, we employ a range of scenarios which demand episodic memory. However, some papers show that the hippocampal region does not activate during time traveling. It is a controversial result that is further complicated by the phenomenological aspect that includes a holistic set of information about the individual’s past and future.

Keywords: temporal consciousness, time perception, memory, present

Procedia PDF Downloads 76
524 Effects of Foreign-language Learning on Bilinguals' Production in Both Their Languages

Authors: Natalia Kartushina

Abstract:

Foreign (second) language (L2) learning is highly promoted in modern society. Students are encouraged to study abroad (SA) to achieve the most effective learning outcomes. However, L2 learning has side effects for native language (L1) production, as L1 sounds might show a drift from the L1 norms towards those of the L2, and this, even after a short period of L2 learning. L1 assimilatory drift has been attributed to a strong perceptual association between similar L1 and L2 sounds in the mind of L2 leaners; thus, a change in the production of an L2 target leads to the change in the production of the related L1 sound. However, nowadays, it is quite common that speakers acquire two languages from birth, as, for example, it is the case for many bilingual communities (e.g., Basque and Spanish in the Basque Country). Yet, it remains to be established how FL learning affects native production in individuals who have two native languages, i.e., in simultaneous or very early bilinguals. Does FL learning (here a third language, L3) affect bilinguals’ both languages or only one? What factors determine which of the bilinguals’ languages is more susceptible to change? The current study examines the effects of L3 (English) learning on the production of vowels in the two native languages of simultaneous Spanish-Basque bilingual adolescents enrolled into the Erasmus SA English program. Ten bilingual speakers read five Spanish and Basque consonant-vowel-consonant-vowel words two months before their SA and the next day after their arrival back to Spain. Each word contained the target vowel in the stressed syllable and was repeated five times. Acoustic analyses measuring vowel openness (F1) and backness (F2) were performed. Two possible outcomes were considered. First, we predicted that L3 learning would affect the production of only one language and this would be the language that would be used the most in contact with English during the SA period. This prediction stems from the results of recent studies showing that early bilinguals have separate phonological systems for each of their languages; and that late FL learner (as it is the case of our participants), who tend to use their L1 in language-mixing contexts, have more L2-accented L1 speech. The second possibility stated that L3 learning would affect both of the bilinguals’ languages in line with the studies showing that bilinguals’ L1 and L2 phonologies interact and constantly co-influence each other. The results revealed that speakers who used both languages equally often (balanced users) showed an F1 drift in both languages toward the F1 of the English vowel space. Unbalanced speakers, however, showed a drift only in the less used language. The results are discussed in light of recent studies suggesting that the amount of language use is a strong predictor of the authenticity in speech production with less language use leading to more foreign-accented speech and, eventually, to language attrition.

Keywords: language-contact, multilingualism, phonetic drift, bilinguals' production

Procedia PDF Downloads 109
523 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation

Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana

Abstract:

This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.

Keywords: brain computer interface (BCI), gait trainer, spinal cord injury (SCI), neurorehabilitation

Procedia PDF Downloads 161
522 Walking Cadence to Attain a Minimum of Moderate Aerobic Intensity in People at Risk of Cardiovascular Diseases

Authors: Fagner O. Serrano, Danielle R. Bouchard, Todd A. Duhame

Abstract:

Walking cadence (steps/min) is an effective way to prescribe exercise so an individual can reach a moderate intensity, which is recommended to optimize health benefits. To our knowledge, there is no study on the required walking cadence to reach a moderate intensity for people that present chronic conditions or risk factors for chronic conditions such as Cardiovascular Diseases (CVD). The objectives of this study were: 1- to identify the walking cadence needed for people at risk of CVD to a reach moderate intensity, and 2- to develop and test an equation using clinical variables to help professionals working with individuals at risk of CVD to estimate the walking cadence needed to reach moderate intensity. Ninety-one people presenting a minimum of two risk factors for CVD completed a medically supervised graded exercise test to assess maximum oxygen consumption at the first visit. The last visit consisted of recording walking cadence using a foot pod Garmin FR-60 and a Polar heart rate monitor, aiming to get participants to reach 40% of their maximal oxygen consumption using a portable metabolic cart on an indoor flat surface. The equation to predict the walking cadence needed to reach moderate intensity in this sample was developed as follows: The sample was randomly split in half and the equation was developed with one half of the participants, and validated using the other half. Body mass index, height, stride length, leg height, body weight, fitness level (VO2max), and self-selected cadence (over 200 meters) were measured using objective measured. Mean walking cadence to reach moderate intensity for people age 64.3 ± 10.3 years old at risk of CVD was 115.8  10.3 steps per minute. Body mass index, height, body weight, fitness level, and self-selected cadence were associated with walking cadence at moderate intensity when evaluated in bivariate analyses (r ranging from 0.22 to 0.52; all P values ≤0.05). Using linear regression analysis including all clinical variables associated in the bivariate analyses, body weight was the significant predictor of walking cadence for reaching a moderate intensity (ß=0.24; P=.018) explaining 13% of walking cadence to reach moderate intensity. The regression model created was Y = 134.4-0.24 X body weight (kg).Our findings suggest that people presenting two or more risk factors for CVD are reaching moderate intensity while walking at a cadence above the one officially recommended (116 steps per minute vs. 100 steps per minute) for healthy adults.

Keywords: cardiovascular disease, moderate intensity, older adults, walking cadence

Procedia PDF Downloads 443
521 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 20
520 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization

Procedia PDF Downloads 301