Search results for: machine modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4562

Search results for: machine modelling

2672 Principal Well-Being at Hong Kong: A Quantitative Investigation

Authors: Junjun Chen, Yingxiu Li

Abstract:

The occupational well-being of school principals has played a vital role in the pursuit of individual and school wellness and success. However, principals’ well-being worldwide is under increasing threat because of the challenging and complex nature of their work and growing demands for school standardisation and accountability. Pressure is particularly acute in the post-pandemicfuture as principals attempt to deal with the impact of the pandemic on top of more regular demands. This is particularly true in Hong Kong, as school principals are increasingly wedged between unparalleled political, social, and academic responsibilities. Recognizing the semantic breadth of well-being, scholars have not determined a single, mutually agreeable definition but agreed that the concept of well-being has multiple dimensions across various disciplines. The multidimensional approach promises more precise assessments of the relationships between well-being and other concepts than the ‘affect-only’ approach or other single domains for capturing the essence of principal well-being. The multiple-dimension well-being concept is adopted in this project to understand principal well-being in this study. This study aimed to understand the situation of principal well-being and its influential drivers with a sample of 670 principals from Hong Kong and Mainland China. An online survey was sent to the participants after the breakout of COVID-19 by the researchers. All participants were well informed about the purposes and procedure of the project and the confidentiality of the data prior to filling in the questionnaire. Confirmatory factor analysis and structural equation modelling performed with Mplus were employed to deal with the dataset. The data analysis procedure involved the following three steps. First, the descriptive statistics (e.g., mean and standard deviation) were calculated. Second, confirmatory factor analysis (CFA) was used to trim principal well-being measurement performed with maximum likelihood estimation. Third, structural equation modelling (SEM) was employed to test the influential factors of principal well-being. The results of this study indicated that the overall of principal well-being were above the average mean score. The highest ranking in this study given by the principals was to their psychological and social well-being (M = 5.21). This was followed by spiritual (M = 5.14; SD = .77), cognitive (M = 5.14; SD = .77), emotional (M = 4.96; SD = .79), and physical well-being (M = 3.15; SD = .73). Participants ranked their physical well-being the lowest. Moreover, professional autonomy, supervisor and collegial support, school physical conditions, professional networking, and social media have showed a significant impact on principal well-being. The findings of this study will potentially enhance not only principal well-being, but also the functioning of an individual principal and a school without sacrificing principal well-being for quality education in the process. This will eventually move one step forward for a new future - a wellness society advocated by OECD. Importantly, well-being is an inside job that begins with choosing to have wellness, whilst supports to become a wellness principal are also imperative.

Keywords: well-being, school principals, quantitative, influential factors

Procedia PDF Downloads 83
2671 Mitigation of Size Effects in Woven Fabric Composites Using Finite Element Analysis Approach

Authors: Azeez Shaik, Yagnik Kalariya, Amit Salvi

Abstract:

High-performance requirements and emission norms were forcing the automobile industry to opt for lightweight materials which improve the fuel efficiency and absorb energy during crash applications. In such scenario, the woven fabric composites are providing better energy absorption compared to metals. Woven fabric composites have a repetitive unit cell (RUC) and the mechanical properties of these materials are highly dependent on RUC. This work investigates the importance of detailed modelling of the RUC, the size effects associated and the mitigation techniques to avoid them using Finite element analysis approach.

Keywords: repetitive unit cell, representative volume element, size effects, cohesive zone, finite element analysis

Procedia PDF Downloads 255
2670 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach

Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton

Abstract:

Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.

Keywords: competition, growth, model, thinning

Procedia PDF Downloads 128
2669 Risk Assessment of Flood Defences by Utilising Condition Grade Based Probabilistic Approach

Authors: M. Bahari Mehrabani, Hua-Peng Chen

Abstract:

Management and maintenance of coastal defence structures during the expected life cycle have become a real challenge for decision makers and engineers. Accurate evaluation of the current condition and future performance of flood defence structures is essential for effective practical maintenance strategies on the basis of available field inspection data. Moreover, as coastal defence structures age, it becomes more challenging to implement maintenance and management plans to avoid structural failure. Therefore, condition inspection data are essential for assessing damage and forecasting deterioration of ageing flood defence structures in order to keep the structures in an acceptable condition. The inspection data for flood defence structures are often collected using discrete visual condition rating schemes. In order to evaluate future condition of the structure, a probabilistic deterioration model needs to be utilised. However, existing deterioration models may not provide a reliable prediction of performance deterioration for a long period due to uncertainties. To tackle the limitation, a time-dependent condition-based model associated with a transition probability needs to be developed on the basis of condition grade scheme for flood defences. This paper presents a probabilistic method for predicting future performance deterioration of coastal flood defence structures based on condition grading inspection data and deterioration curves estimated by expert judgement. In condition-based deterioration modelling, the main task is to estimate transition probability matrices. The deterioration process of the structure related to the transition states is modelled according to Markov chain process, and a reliability-based approach is used to estimate the probability of structural failure. Visual inspection data according to the United Kingdom Condition Assessment Manual are used to obtain the initial condition grade curve of the coastal flood defences. The initial curves then modified in order to develop transition probabilities through non-linear regression based optimisation algorithms. The Monte Carlo simulations are then used to evaluate the future performance of the structure on the basis of the estimated transition probabilities. Finally, a case study is given to demonstrate the applicability of the proposed method under no-maintenance and medium-maintenance scenarios. Results show that the proposed method can provide an effective predictive model for various situations in terms of available condition grading data. The proposed model also provides useful information on time-dependent probability of failure in coastal flood defences.

Keywords: condition grading, flood defense, performance assessment, stochastic deterioration modelling

Procedia PDF Downloads 233
2668 Design and Development of Chassis Made of Composite Material

Authors: P. Ravinder Reddy, Chaitanya Vishal Nalli, B. Tulja Lal, Anusha Kankanala

Abstract:

The chassis frame of an automobile with different sections have been considered for different loads. The orthotropic materials are selected to get the stability by varying fiber angle, fiber thickness, laminates, fiber properties, matrix properties and elastic ratios. The geometric model of chassis frame is carried out with parametric modelling approach. The analysis of chassis frame is carried out with ANSYS FEA software. The static and dynamic analysis of chassis frame is carried out by varying geometric parameters, orthotropic properties, materials and various sections. The static and dynamic response is discussed in detail in different sections.

Keywords: chassis frame, dynamic response, geometric model, orthotropic materials

Procedia PDF Downloads 333
2667 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 84
2666 An Empirical Analysis of Euthanasia Issues in Taiwan

Authors: Wen-Shai Hung

Abstract:

This paper examines the factors influencing euthanasia issues in Taiwan. The data used is from the 2015 Survey Research on Attitudes towards the Death Penalty and Related Values in Taiwan, which focused on knowledge, attitudes towards the death penalty, and the concepts of social, political, and law values. The sample ages are from 21 to 94. The method used is probit modelling for examining the influences on euthanasia issues in Taiwan. The main empirical results find that older people, persons with higher educational attainment, those who favour abolition of the death penalty and do not oppose divorce, abortion, same-sex relationships, and putting down homeless’ cats or dogs are more likely to approve of the use of euthanasia to end their lives. In contrast, Mainlanders, people who support the death penalty and favour long-term prison sentences are less likely to support the use of euthanasia.

Keywords: euthanasia, homosexual, death penalty, and probit model

Procedia PDF Downloads 377
2665 Reading and Writing Memories in Artificial and Human Reasoning

Authors: Ian O'Loughlin

Abstract:

Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.

Keywords: artificial reasoning, human memory, machine learning, neural networks

Procedia PDF Downloads 271
2664 Numerical Investigation of the Flow Characteristics inside the Scrubber Unit

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope.

Keywords: concentration of water droplets, evaporation rate, scrubber, water sprayer

Procedia PDF Downloads 217
2663 Fault Diagnosis in Induction Motor

Authors: Kirti Gosavi, Anita Bhole

Abstract:

The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.

Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor

Procedia PDF Downloads 633
2662 Application of Semantic Technologies in Rapid Reconfiguration of Factory Systems

Authors: J. Zhang, K. Agyapong-Kodua

Abstract:

Digital factory based on visual design and simulation has emerged as a mainstream to reduce digital development life cycle. Some basic industrial systems are being integrated via semantic modelling, and products (P) matching process (P)-resource (R) requirements are designed to fulfill current customer demands. Nevertheless, product design is still limited to fixed product models and known knowledge of product engineers. Therefore, this paper presents a rapid reconfiguration method based on semantic technologies with PPR ontologies to reuse known and unknown knowledge. In order to avoid the influence of big data, our system uses a cloud manufactory and distributed database to improve the efficiency of querying meeting PPR requirements.

Keywords: semantic technologies, factory system, digital factory, cloud manufactory

Procedia PDF Downloads 487
2661 The Experimental and Numerical Analysis of TRIP Steel Wire Drawing Processes Drawn with Different Partial Reductions

Authors: Sylwia Wiewiorowska, Zbigniew Muskalski

Abstract:

The strain intensity and redundant strains, dependent in multistage TRIP wire drawing processes from values used single partial reductions, should influence on the intensity of transformation the retained austenite into martensite and thereby on mechanical properties of drawn wires. The numerical analysis of drawing processes with use of Drawing 2D programme, for steel wires made from TRIP steel with 0,29 % has been shown in the work. The change of strain intensity Ԑc and the values of redundant strain Ԑxy, has been determined for particular draws in dependence of used single partial reductions.

Keywords: steel wire, TRIP steel, drawing processes, fem modelling

Procedia PDF Downloads 597
2660 From User's Requirements to UML Class Diagram

Authors: Zeineb Ben Azzouz, Wahiba Ben Abdessalem Karaa

Abstract:

The automated extraction of UML class diagram from natural language requirements is a highly challenging task. Many approaches, frameworks and tools have been presented in this field. Nonetheless, the experiments of these tools have shown that there is no approach that can work best all the time. In this context, we propose a new accurate approach to facilitate the automatic mapping from textual requirements to UML class diagram. Our new approach integrates the best properties of statistical Natural Language Processing (NLP) techniques to reduce ambiguity when analysing natural language requirements text. In addition, our approach follows the best practices defined by conceptual modelling experts to determine some patterns indispensable for the extraction of basic elements and concepts of the class diagram. Once the relevant information of class diagram is captured, a XMI document is generated and imported with a CASE tool to build the corresponding UML class diagram.

Keywords: class diagram, user’s requirements, XMI, software engineering

Procedia PDF Downloads 471
2659 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network

Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour

Abstract:

Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.

Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network

Procedia PDF Downloads 169
2658 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 86
2657 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study

Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier

Abstract:

Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.

Keywords: eating disorders, risk factors, physical activity, machine learning

Procedia PDF Downloads 83
2656 A Mathematical Model of Power System State Estimation for Power Flow Solution

Authors: F. Benhamida, A. Graa, L. Benameur, I. Ziane

Abstract:

The state estimation of the electrical power system operation state is very important for supervising task. With the nonlinearity of the AC power flow model, the state estimation problem (SEP) is a nonlinear mathematical problem with many local optima. This paper treat the mathematical model for the SEP and the monitoring of the nonlinear systems of great dimensions with an application on power electrical system, the modelling, the analysis and state estimation synthesis in order to supervise the power system behavior. in fact, it is very difficult, to see impossible, (for reasons of accessibility, techniques and/or of cost) to measure the excessive number of the variables of state in a large-sized system. It is thus important to develop software sensors being able to produce a reliable estimate of the variables necessary for the diagnosis and also for the control.

Keywords: power system, state estimation, robustness, observability

Procedia PDF Downloads 523
2655 Rim Size Optimization Using Mathematical Modelling

Authors: M. Tan, N. N. Wan, N. Ramli, N. H. Hassan

Abstract:

Car drivers would always like to have custom wheel on their car for two reasons; to improve their car's aesthetic beauty and to improve their car handling. As the size of the rims or wheels played an important role in influencing the way of car handles around turns, this paper aims to present the optimality of rim size that drivers should have known while changing their rim. There are three factors that drivers should have considered while changing their rim: rim size, its weight and material of which they are made. Using mathematical analysis, this paper will focus on only one factor, which is rim size. Factors that are considered in calculating the optimum rim size are the vehicle rim radius, tire height and weight, and aspect ratio. This paper has found that there are limitations in percentage change in rim size from the original tire size. Failure to have the right offset size may cause problems in maneuvering the vehicle.

Keywords: mathematical analysis, optimum wheel size, percentage change, custom wheel

Procedia PDF Downloads 492
2654 Restoring Total Form and Function in Patients with Lower Limb Bony Defects Utilizing Patient-Specific Fused Deposition Modelling- A Neoteric Multidisciplinary Reconstructive Approach

Authors: Divya SY. Ang, Mark B. Tan, Nicholas EM. Yeo, Siti RB. Sudirman, Khong Yik Chew

Abstract:

Introduction: The importance of the amalgamation of technological and engineering advances with surgical principles of reconstruction cannot be overemphasized. With earlier detection of cancer, consequences of high-speed living and neglect, like traumatic injuries and infection, resulting in increasingly younger patients with bone defects. This may result in malformations and suboptimal function that is more noticeable and palpable in the younger, active demographic. Our team proposes a technique that encapsulates a mesh of multidisciplinary effort, tissue engineering and reconstructive principles. Methods/Materials: Our patient was a young competitive footballer in his early 30s who was diagnosed with submandibular adenoid cystic carcinoma with bony involvement. He was thus counselled for a right hemi mandibulectomy, the floor of mouth resection, right selective neck dissection, tracheostomy, and free fibular flap reconstruction of his mandible and required post-operative radiotherapy. Being young and in his prime sportsman years, he was unable to accept the morbidities associated with using his fibula to reconstruct his mandible despite it being the gold standard reconstructive option. The fibula is an ideal vascularized bone flap because it’s reliable and easily shaped with relatively minimal impact on functional outcomes. The fibula contributes to 30% of weightbearing and is the attachment for the lateral compartment muscles; it is stronger in footballers concerning lateral bending. When harvesting the fibula, the distal 6-8cm and up to 10% of the total length is preserved to maintain the ankle’s stability, thus, minimizing the impact on daily activities. There are studies that have noted gait variability post-operatively. Therefore, returning to a premorbid competitive level may be doubtful. To improve his functional outcomes, the decision was made to try and restore the fibula's form and function. Using the concept of Fused Deposition Modelling (FDM), our team comprising of Plastics, Otolaryngology, Orthopedics and Radiology, worked with Osteopore to design a 3D bioresorbable implant to regenerate the fibula defect (14.5cm). Bone marrow was harvested via reaming the contralateral hip prior to the wide resection. 30mls of his blood was obtained for extracting platelet rich plasma. These were packed into the Osteopore 3D-printed bone scaffold. This was then secured into the fibula defect with titanium plates and screws. The flexor hallucis longus and soleus were anchored along the construct and intraosseous membrane, done in a single setting. Results: He was reviewed closely as an outpatient over 10 months post operatively. He reported no discernable loss or difference in ankle function. He is satisfied and back in training and our team has video and photographs that substantiate his progress. Conclusion: FDM allows regeneration of long bone defects. However, we aimed to also restore his eversion and inversion that is imperative for footballers and hence reattached his previously dissected muscles along the length of the Osteopore implant. We believe that the reattachment of the muscle stabilizes not only the construct but allows optimum muscle tensioning when moving his ankle. This is a simple but effective technique in restoring complete function and form in a young patient whose minute muscle control is imperative to life.

Keywords: fused deposition modelling, functional reconstruction, lower limb bony defects, regenerative surgery, 3D printing, tissue engineering

Procedia PDF Downloads 73
2653 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 83
2652 Cyber-Med: Practical Detection Methodology of Cyber-Attacks Aimed at Medical Devices Eco-Systems

Authors: Nir Nissim, Erez Shalom, Tomer Lancewiki, Yuval Elovici, Yuval Shahar

Abstract:

Background: A Medical Device (MD) is an instrument, machine, implant, or similar device that includes a component intended for the purpose of the diagnosis, cure, treatment, or prevention of disease in humans or animals. Medical devices play increasingly important roles in health services eco-systems, including: (1) Patient Diagnostics and Monitoring; Medical Treatment and Surgery; and Patient Life Support Devices and Stabilizers. MDs are part of the medical device eco-system and are connected to the network, sending vital information to the internal medical information systems of medical centers that manage this data. Wireless components (e.g. Wi-Fi) are often embedded within medical devices, enabling doctors and technicians to control and configure them remotely. All these functionalities, roles, and uses of MDs make them attractive targets of cyber-attacks launched for many malicious goals; this trend is likely to significantly increase over the next several years, with increased awareness regarding MD vulnerabilities, the enhancement of potential attackers’ skills, and expanded use of medical devices. Significance: We propose to develop and implement Cyber-Med, a unique collaborative project of Ben-Gurion University of the Negev and the Clalit Health Services Health Maintenance Organization. Cyber-Med focuses on the development of a comprehensive detection framework that relies on a critical attack repository that we aim to create. Cyber-Med will allow researchers and companies to better understand the vulnerabilities and attacks associated with medical devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The Cyber-Med detection framework will consist of two independent, but complementary detection approaches: one for known attacks, and the other for unknown attacks. These modules incorporate novel ideas and algorithms inspired by our team's domains of expertise, including cyber security, biomedical informatics, and advanced machine learning, and temporal data mining techniques. The establishment and maintenance of Cyber-Med’s up-to-date attack repository will strengthen the capabilities of Cyber-Med’s detection framework. Major Findings: Based on our initial survey, we have already found more than 15 types of vulnerabilities and possible attacks aimed at MDs and their eco-system. Many of these attacks target individual patients who use devices such pacemakers and insulin pumps. In addition, such attacks are also aimed at MDs that are widely used by medical centers such as MRIs, CTs, and dialysis engines; the information systems that store patient information; protocols such as DICOM; standards such as HL7; and medical information systems such as PACS. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched against MDs. Very little research has been conducted in order to protect these devices from cyber-attacks, since most of the development and engineering efforts are aimed at the devices’ core medical functionality, the contribution to patients’ healthcare, and the business aspects associated with the medical device.

Keywords: medical device, cyber security, attack, detection, machine learning

Procedia PDF Downloads 356
2651 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques

Authors: Kishor Chandra Kandpal, Amit Kumar

Abstract:

The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.

Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests

Procedia PDF Downloads 203
2650 High Speed Rail vs. Other Factors Affecting the Tourism Market in Italy

Authors: F. Pagliara, F. Mauriello

Abstract:

The objective of this paper is to investigate the relationship between the increase of accessibility brought by high speed rail (HSR) systems and the tourism market in Italy. The impacts of HSR projects on tourism can be quantified in different ways. In this manuscript, an empirical analysis has been carried out with the aid of a dataset containing information both on tourism and transport for 99 Italian provinces during the 2006-2016 period. Panel data regression models have been considered, since they allow modelling a wide variety of correlation patterns. Results show that HSR has an impact on the choice of a given destination for Italian tourists while the presence of a second level hub mainly affects foreign tourists. Attraction variables are also significant for both categories and the variables concerning security, such as number of crimes registered in a given destination, have a negative impact on the choice of a destination.

Keywords: tourists, overnights, high speed rail, attractions, security

Procedia PDF Downloads 155
2649 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation

Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad

Abstract:

For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.

Keywords: biorobotics, rehabilitation, robotic assistive device, exoskeleton, nonlinear control

Procedia PDF Downloads 479
2648 A Hybrid LES-RANS Approach to Analyse Coupled Heat Transfer and Vortex Structures in Separated and Reattached Turbulent Flows

Authors: C. D. Ellis, H. Xia, X. Chen

Abstract:

Experimental and computational studies investigating heat transfer in separated flows have been of increasing importance over the last 60 years, as efforts are being made to understand and improve the efficiency of components such as combustors, turbines, heat exchangers, nuclear reactors and cooling channels. Understanding of not only the time-mean heat transfer properties but also the unsteady properties is vital for design of these components. As computational power increases, more sophisticated methods of modelling these flows become available for use. The hybrid LES-RANS approach has been applied to a blunt leading edge flat plate, utilising a structured grid at a moderate Reynolds number of 20300 based on the plate thickness. In the region close to the wall, the RANS method is implemented for two turbulence models; the one equation Spalart-Allmaras model and Menter’s two equation SST k-ω model. The LES region occupies the flow away from the wall and is formulated without any explicit subgrid scale LES modelling. Hybridisation is achieved between the two methods by the blending of the nearest wall distance. Validation of the flow was obtained by assessing the mean velocity profiles in comparison to similar studies. Identifying the vortex structures of the flow was obtained by utilising the λ2 criterion to identify vortex cores. The qualitative structure of the flow compared with experiments of similar Reynolds number. This identified the 2D roll up of the shear layer, breaking down via the Kelvin-Helmholtz instability. Through this instability the flow progressed into hairpin like structures, elongating as they advanced downstream. Proper Orthogonal Decomposition (POD) analysis has been performed on the full flow field and upon the surface temperature of the plate. As expected, the breakdown of POD modes for the full field revealed a relatively slow decay compared to the surface temperature field. Both POD fields identified the most energetic fluctuations occurred in the separated and recirculation region of the flow. Latter modes of the surface temperature identified these levels of fluctuations to dominate the time-mean region of maximum heat transfer and flow reattachment. In addition to the current research, work will be conducted in tracking the movement of the vortex cores and the location and magnitude of temperature hot spots upon the plate. This information will support the POD and statistical analysis performed to further identify qualitative relationships between the vortex dynamics and the response of the surface heat transfer.

Keywords: heat transfer, hybrid LES-RANS, separated and reattached flow, vortex dynamics

Procedia PDF Downloads 231
2647 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 127
2646 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
2645 Development of Knitted Seersucker Fabric for Improved Comfort Properties

Authors: Waqas Ashraf, Yasir Nawab, Haritham Khan, Habib Awais, Shahbaz Ahmad

Abstract:

Seersucker is a popular lightweight fabric widely used in men’s and women’s suiting, casual wear, children’s clothing, house robes, bed spreads and for spring and summer wear. The puckered effect generates air spaces between body and the fabric, keeping the wearer cool in hot conditions. The aim of this work was to develop knitted seersucker fabric on single cylinder weft knitting machine using plain jersey structure. Core spun cotton yarn and cotton spun yarn of same linear density were used. Core spun cotton yarn, contains cotton fiber in the sheath and elastase filament in the core. The both yarn were fed at regular interval to feeders on the machine. The loop length and yarn tension were kept constant at each feeder. The samples were then scoured and bleached. After wet processing, the fabric samples were washed and tumble dried. Parameters like loop length, stitch density and areal density were measured after conditioning these samples for 24 hours in Standard atmospheric condition. Produced sample has a regular puckering stripe along the width of the fabric with same height. The stitch density of both the flat and puckered area of relaxed fabric was found to be different .Air permeability and moisture management tests were performed. The results indicated that the knitted seersucker fabric has better wicking and moisture management properties as the flat area contact, whereas puckered area held away from the skin. Seersucker effect in knitted fabric was achieved by the difference of contraction of both sets of courses produced from different types of yarns. The seer sucker fabric produce by knitting technique is less expensive as compared to woven seer sucker fabric as there is no need of yarn preparation. The knitted seersucker fabric is more practicable for summer dresses, skirts, blouses, shirts, trousers and shorts.

Keywords: air permeability, knitted structure, moisture management, seersucker

Procedia PDF Downloads 324
2644 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal

Authors: Linta Rose, Prasad K. Bhaskaran

Abstract:

Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.

Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind

Procedia PDF Downloads 220
2643 Tectono-Stratigraphic Architecture, Depositional Systems and Salt Tectonics to Strike-Slip Faulting in Kribi-Campo-Cameroon Atlantic Margin with an Unsupervised Machine Learning Approach (West African Margin)

Authors: Joseph Bertrand Iboum Kissaaka, Charles Fonyuy Ngum Tchioben, Paul Gustave Fowe Kwetche, Jeannette Ngo Elogan Ntem, Joseph Binyet Njebakal, Ribert Yvan Makosso-Tchapi, François Mvondo Owono, Marie Joseph Ntamak-Nida

Abstract:

Located in the Gulf of Guinea, the Kribi-Campo sub-basin belongs to the Aptian salt basins along the West African Margin. In this paper, we investigated the tectono-stratigraphic architecture of the basin, focusing on the role of salt tectonics and strike-slip faults along the Kribi Fracture Zone with implications for reservoir prediction. Using 2D seismic data and well data interpreted through sequence stratigraphy with integrated seismic attributes analysis with Python Programming and unsupervised Machine Learning, at least six second-order sequences, indicating three main stages of tectono-stratigraphic evolution, were determined: pre-salt syn-rift, post-salt rift climax and post-rift stages. The pre-salt syn-rift stage with KTS1 tectonosequence (Barremian-Aptian) reveals a transform rifting along NE-SW transfer faults associated with N-S to NNE-SSW syn-rift longitudinal faults bounding a NW-SE half-graben filled with alluvial to lacustrine-fan delta deposits. The post-salt rift-climax stage (Lower to Upper Cretaceous) includes two second-order tectonosequences (KTS2 and KTS3) associated with the salt tectonics and Campo High uplift. During the rift-climax stage, the growth of salt diapirs developed syncline withdrawal basins filled by early forced regression, mid transgressive and late normal regressive systems tracts. The early rift climax underlines some fine-grained hangingwall fans or delta deposits and coarse-grained fans from the footwall of fault scarps. The post-rift stage (Paleogene to Neogene) contains at least three main tectonosequences KTS4, KTS5 and KTS6-7. The first one developed some turbiditic lobe complexes considered as mass transport complexes and feeder channel-lobe complexes cutting the unstable shelf edge of the Campo High. The last two developed submarine Channel Complexes associated with lobes towards the southern part and braided delta to tidal channels towards the northern part of the Kribi-Campo sub-basin. The reservoir distribution in the Kribi-Campo sub-basin reveals some channels, fan lobes reservoirs and stacked channels reaching up to the polygonal fault systems.

Keywords: tectono-stratigraphic architecture, Kribi-Campo sub-basin, machine learning, pre-salt sequences, post-salt sequences

Procedia PDF Downloads 56