Search results for: climate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2757

Search results for: climate

867 Methane versus Carbon Dioxide Mitigation Prospects

Authors: Alexander J. Severinsky, Allen L. Sessoms

Abstract:

Atmospheric carbon dioxide (CO₂) has dominated the discussion about the causes of climate change. This is a reflection of the time horizon that has become the norm adopted by the IPCC as the planning horizon. Recently, it has become clear that a 100-year time horizon is much too long, and yet almost all mitigation efforts, including those in the near-term horizon of 30 years, are geared toward it. In this paper, we show that, for a 30-year time horizon, methane (CH₄) is the greenhouse gas whose radiative forcing exceeds that of CO₂. In our analysis, we used radiative forcing of greenhouse gases in the atmosphere since they directly affect the temperature rise on Earth. In 2019, the radiative forcing of methane was ~2.5 W/m² and that of carbon dioxide ~2.1 W/m². Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m² and ~3.1 W/m², respectively. There is a substantial spread in the data for anthropogenic and natural methane emissions as well as CH₄ leakages from production to consumption. We estimated the minimum and maximum effects of the reduction of these leakages. Such action may reduce the annual radiative forcing of all CH₄ emissions by between ~15% and ~30%. This translates into a reduction of the RF by 2050 from ~2.8 W/m² to ~2.5 W/m² in the case of the minimum effect and to ~2.15 W/m² in the case of the maximum. Under the BAU, we found that the RF of CO₂ would increase from ~2.1 W/m² nowadays to ~3.1 W/m² by 2050. We assumed a reduction of 50% of anthropogenic emission linearly over the next 30 years. That would reduce radiative forcing from ~3.1 W/m² to ~2.9 W/m². In the case of ‘net zero,’ the other 50% of reduction of only anthropogenic emissions would be limited to either from sources of emissions or directly from the atmosphere. The total reduction would be from ~3.1 to ~2.7, or ~0.4 W/m². To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m², then an additional reduction of radiative forcing of CO₂ would be approximately 2.7 -2.15=0.55 W/m². This is a much larger value than in expectations from ‘net zero’. In total, one needs to remove from the atmosphere ~660 GT to match the maximum reduction of current methane leakages and ~270 GT to achieve ‘net zero.’ This amounts to over 900 GT in total.

Keywords: methane leakages, methane radiative forcing, methane mitigation, methane net zero

Procedia PDF Downloads 146
866 Effect of Pollution and Ethylene-Diurea on Bean Plants Grown in KSA

Authors: Abdel Rahman A. Alzandi

Abstract:

The primary objectives of this investigation were to examine the interactive effects of three air quality treatments, ethylene-diurea (EDU) and two irrigation conditions on physiological characteristics of kidney beans (Phaseolus vulgaris L.) during its whole growth. These plants were grown in 12-open top chambers (OTC's). Ethylene-diurea (EDU) was used as a factor to evaluate O3 pollution impact on plant growth. The air quality treatments consisted of charcoal filtered (CF) air, nonfiltered (NF) air and ambient air (AA) were irrigated and non- irrigated. Leaf samples were collected from upper canopy positions six times (pre- EDU addition, week after four EDU's addition, at the time of harvesting). Maximal differences in leaf carbohydrate, N contents, pigments and total lipids were observed in response to moisture conditions in presence and absence of EDU applications. Significant reduction were noted for air quality treatments regarding carbohydrate and pigment fractions but not for all cases of leaf N and lipid contents under O3 effects only. Minimal differences were found for first EDU application while maximal ones were recorded at 200 mg l-1 of treatments. The EDU treatments stimulated carbohydrate and pigment contents at the upper canopy position with higher levels for both NF and AA compared to untreated conditions. The NF and AA treatments caused lower total carbohydrate and pigment contents in the canopy position before harvesting of EDU applications. The stimulation in leaf carbohydrates by the EDU treatment, compared to the non-treated EDU of AA and NF treatments, provides a rational explanation for the counteracting effects of EDU against moderate exposures to O3 regarding grain yields in C3 plants.

Keywords: leaf contents, moisture relations, EDU additions, global climate change, kidney bean

Procedia PDF Downloads 351
865 Building Up a Sustainable, Future-Proof, Export-Orientated Chili Value Chain in Bugesera District, Rwanda

Authors: Akingeneye Liliane

Abstract:

The value chain concept in recent times is being used by businesses and organizations to develop and implement their businesses. Chili farming has been identified as a significant contributor to the economic growth of Bugesera district. However, numerous challenges have led to a decrease in production. The primary objective of this research was to assess the current Bugesera chili value chain, identify the bottlenecks in the value chain, and come up with interventions that can help increase the output of the Bugesera chili value chain, in a climate-smart way and enhance Long-term sustainability of the value chain. The research used a case study approach to fulfill its objectives, utilizing primary and secondary data sources. Data, both qualitative and quantitative, were gathered through semi-structured interviews conducted with 22 individual farmers, five exporters, and five supporters within the Bugesera district. A focus group discussion (FGD) with seven stakeholders was also conducted to validate the research findings. The study's results underscore the challenges faced by chili farmers and other actors in the chain, the perceptions of different stakeholders to contribute to chili production, and the importance of promoting strong collaboration among stakeholders in the chili value chain to establish a sustainable framework. Based on these findings, the study puts forward recommendations that aim to address the identified challenges and improve the chili farming sector in Bugesera. The business canvas model, as a proposed recommendation, once implemented, is believed to represent the most effective approach to enhancing chili productivity in Bugesera and securing the long-term sustainability of an export-oriented chili value chain in the district.

Keywords: building, sustainable, chili, value chain

Procedia PDF Downloads 57
864 FSO Performance under High Solar Irradiation: Case Study Qatar

Authors: Syed Jawad Hussain, Abir Touati, Farid Touati

Abstract:

Free-Space Optics (FSO) is a wireless technology that enables the optical transmission of data though the air. FSO is emerging as a promising alternative or complementary technology to fiber optic and wireless radio-frequency (RF) links due to its high-bandwidth, robustness to EMI, and operation in unregulated spectrum. These systems are envisioned to be an essential part of future generation heterogeneous communication networks. Despite the vibrant advantages of FSO technology and the variety of its applications, its widespread adoption has been hampered by rather disappointing link reliability for long-range links due to atmospheric turbulence-induced fading and sensitivity to detrimental climate conditions. Qatar, with modest cloud coverage, high concentrations of airborne dust and high relative humidity particularly lies in virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2 and 80-90% clear skies throughout the year. The specific objective of this work is to study for the first time in Qatar the effect of solar irradiation on the deliverability of the FSO Link. In order to analyze the transport media, we have ported Embedded Linux kernel on Field Programmable Gate Array (FPGA) and designed a network sniffer application that can run into FPGA. We installed new FSO terminals and configure and align them successively. In the reporting period, we carry out measurement and relate them to weather conditions.

Keywords: free space optics, solar irradiation, field programmable gate array, FSO outage

Procedia PDF Downloads 362
863 Assessment of Drought Tolerance Maize Hybrids at Grain Growth Stage in Mediterranean Area

Authors: Ayman El Sabagh, Celaleddin Barutçular, Hirofumi Saneoka

Abstract:

Drought is one of the most serious problems posing a grave threat to cereals production including maize. Maize improvement in drought-stress tolerance poses a great challenge as the global need for food and bio-enegry increases. Thus, the current study was planned to explore the variations and determine the performance of target traits of maize hybrids at grain growth stage under drought conditions during 2014 under Adana, Mediterranean climate conditions, Turkey. Maize hybrids (Sancia, Indaco, 71May69, Aaccel, Calgary, 70May82, 72May80) were evaluated under (irrigated and water stress). Results revealed that, grain yield and yield traits had a negative effects because of water stress conditions compared with the normal irrigation. As well as, based on the result under normal irrigation, the maximum biological yield and harvest index were recorded. According to the differences among hybrids were found that, significant differences were observed among hybrids with respect to yield and yield traits under current research. Based on the results, grain weight had more effect on grain yield than grain number during grain filling growth stage under water stress conditions. In this concern, according to low drought susceptibility index (less grain yield losses), the hybrid (Indaco) was more stable in grain number and grain weight. Consequently, it may be concluded that this hybrid would be recommended for use in the future breeding programs for production of drought tolerant hybrids.

Keywords: drought susceptibility index, grain growth, grain yield, maize, water stress

Procedia PDF Downloads 330
862 Building Up a Sustainable, Future-Proof, Export-Orientated Chili Value Chain in Bugesera District, Rwanda

Authors: Akingeneye Liliane

Abstract:

The value chain concept in recent times is being used by businesses and organizations to develop and implement their businesses. Chili farming has been identified as a significant contributor to the economic growth of Bugesera district. However, numerous challenges have led to a decrease in production. The primary objective of this research was to assess the current Bugesera chili value chain, identify the bottlenecks in the value chain, and come up with interventions that can help increase the output of the Bugesera chili value chain, in a climate-smart way and enhance Long-term sustainability of the value chain. The research used a case study approach to fulfill its objectives, utilizing primary and secondary data sources. Qualitative and quantitative data were gathered through semi-structured interviews with 22 individual farmers, five exporters, and five supporters within the Bugesera district. A focus group discussion (FGD) with seven stakeholders was also conducted to validate the research findings. The study's results underscore the challenges faced by chili farmers and other actors in the chain, the perceptions of different stakeholders to contribute to chili production, and the importance of promoting strong collaboration among stakeholders in the chili value chain to establish a sustainable framework. Based on these findings, the study puts forward recommendations to address the identified challenges and improve the chili farming sector in Bugesera. The business canvas model, as a proposed recommendation, once implemented, is believed to represent the most effective approach to enhancing chili productivity in Bugesera and securing the long-term sustainability of an export-oriented chili value chain in the district.

Keywords: build, sustainability, chili value chain, export-oriented

Procedia PDF Downloads 44
861 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 197
860 A Geogpraphic Overview about Offshore Energy Cleantech in Portugal

Authors: Ana Pego

Abstract:

Environmental technologies were developed for decades. Clean technologies emerged a few years ago. In these perspectives, the use of cleantech technologies has become very important due the fact of new era of environmental feats. As such, the market itself has become more competitive, more collaborative towards a better use of clean technologies. This paper shows the importance of clean technologies in offshore energy sector in Portuguese market, its localization and its impact on economy. Clean technologies are directly related with renewable cluster and concomitant with economic and social resource optimization criteria, geographic aspects, climate change and soil features. Cleantech is related with regional development, socio-technical transitions in organisations. There are an economical and social combinations which allow specialisation of regions in activities, higher employment, reduce of energy costs, local knowledge spillover and, business collaboration and competitiveness. The methodology used will be quantitative (IO matrix for Portugal 2013) and qualitative (questionnaires to stakeholders). The mix of both methodologies will confirm whether the use of technologies will allow a positive impact on economic and social variables used on this model. It is expected a positive impact on Portuguese economy both in investment and employment taking in account the localization of offshore renewable activities. This means that the importance of offshore renewable investment in Portugal has a few points which should be pointed out: the increase of specialised employment, localization of specific activities in territory, and increase of value added in certain regions. The conclusion will allow researchers and organisation to compare the Portuguese model to other European regions in order to a better use of natural and human resources.

Keywords: cleantech, economic impact, localisation, territory dynamics

Procedia PDF Downloads 228
859 Comparative Study of the Abundance of Winter Nests of the Pine Processionary Caterpillar in Different Forests of Pinus Halepensis, pinus Pinaster, Pinus Pinea and Cedrus Atlantica, in Algeria

Authors: Boudjahem Ibtissem, Aouati Amel

Abstract:

Thaumetopoea pityocampa is one of the major insect pests of pine forests in Algeria, the Mediterranean region, and central Europe. This pest is responsible for several natural and human damages these last years. The caterpillar can feed itself during the larval stage on several species of pine or cedar. The forests attack by the insect can reduce their resistance against other forest enemies, fires, or drought conditions. In this case, the tree becomes more vulnerable to other pests. To understand the eating behavior of the insect in its ecological conditions, and its nutritional preference, we realized a study of the abundance of winter nests of the pine processionary caterpillar in four different forests: Pinus halepensis; Pinus pinaster; Pinus pinea, and Cedrus atlantica. A count of the sites affected by the processionary caterpillar was carried out on a hundred trees from the forests in different regions in Algeria; Alkala region, Mila region, Annaba region, and Blida region; the total rate and average abundance are calculated for each forest. Ecological parameters are also estimated for each infestation. The results indicated a higher rate of infestation in Pinus halepensis trees (85%) followed by Cedrus atlantica (66%) and Pinus pinaster (50%) trees. The Pinus pinea forest is the least attacked region by the pine processionary caterpillar (23%). The abundance of the pine processionary caterpillar can be influenced by the height of the trees, the climate of the region, the age of the forest but also the quality of needles.

Keywords: Thaumetopoea pityocampa, Pinus halepensis, needles, winter nests

Procedia PDF Downloads 150
858 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System

Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky

Abstract:

Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.

Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion

Procedia PDF Downloads 233
857 Probabilistic Approach to the Spatial Identification of the Environmental Sources behind Mortality Rates in Europe

Authors: Alina Svechkina, Boris A. Portnov

Abstract:

In line with a rapid increase in pollution sources and enforcement of stricter air pollution regulation, which lowers pollution levels, it becomes more difficult to identify actual risk sources behind the observed morbidity patterns, and new approaches are required to identify potential risks and take preventive actions. In the present study, we discuss a probabilistic approach to the spatial identification of a priori unidentified environmental health hazards. The underlying assumption behind the tested approach is that the observed adverse health patterns (morbidity, mortality) can become a source of information on the geographic location of environmental risk factors that stand behind them. Using this approach, we analyzed sources of environmental exposure using data on mortality rates available for the year 2015 for NUTS 3 (Nomenclature of Territorial Units for Statistics) subdivisions of the European Union. We identified several areas in the southwestern part of Europe as primary risk sources for the observed mortality patterns. Multivariate regressions, controlled by geographical location, climate conditions, GDP (gross domestic product) per capita, dependency ratios, population density, and the level of road freight revealed that mortality rates decline as a function of distance from the identified hazard location. We recommend the proposed approach an exploratory analysis tool for initial investigation of regional patterns of population morbidity patterns and factors behind it.

Keywords: mortality, environmental hazards, air pollution, distance decay gradient, multi regression analysis, Europe, NUTS3

Procedia PDF Downloads 167
856 The Effect of Additive Acid on the Phytoremediation Efficiency

Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh

Abstract:

Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.

Keywords: phytoremediation, heavy metal, wheat, soil

Procedia PDF Downloads 338
855 Retrofitting Residential Buildings for Energy Efficiency: An Experimental Investigation

Authors: Naseer M. A.

Abstract:

Buildings are major consumers of energy in both their construction and operation. They account for 40% of World’s energy use. It is estimated that 40-60% of this goes for conditioning the indoor environment. In India, like many other countries, the residential buildings have a major share (more than 50%) in the building sector. Of these, single-family units take a mammoth share. The single-family dwelling units in the urban and fringe areas are built in two stories to minimize the building foot print on small land parcels. And quite often, the bedrooms are located in the first floors. The modern buildings are provided with reinforced concrete (RC) roofs that absorb heat throughout the day and radiate the heat into the interiors during the night. The rooms that are occupied in the night, like bedrooms, are having their indoors uncomfortable. This has resulted in the use of active systems like air-conditioners and air coolers, thereby increasing the energy use. An investigation conducted by monitoring the thermal comfort condition in the residential building with RC roofs have proved that the indoors are really uncomfortable in the night hours. A sustainable solution to improve the thermal performance of the RC roofs was developed by an experimental study by continuously monitoring the thermal comfort parameters during summer (the period that is most uncomfortable in temperate climate). The study conducted in the southern peninsular India, prove that retrofitting of existing residential building can give a sustainable solution in abating the ever increasing energy demand especially when it is a fact that these residential buildings that are built for a normal life span of 40 years would continue to consume the energy for the rest of its useful life.

Keywords: energy efficiency, thermal comfort, retrofitting, residential buildings

Procedia PDF Downloads 252
854 Bayesian Locally Approach for Spatial Modeling of Visceral Leishmaniasis Infection in Northern and Central Tunisia

Authors: Kais Ben-Ahmed, Mhamed Ali-El-Aroui

Abstract:

This paper develops a Local Generalized Linear Spatial Model (LGLSM) to describe the spatial variation of Visceral Leishmaniasis (VL) infection risk in northern and central Tunisia. The response from each region is a number of affected children less than five years of age recorded from 1996 through 2006 from Tunisian pediatric departments and treated as a poison county level data. The model includes climatic factors, namely averages of annual rainfall, extreme values of low temperatures in winter and high temperatures in summer to characterize the climate of each region according to each continentality index, the pluviometric quotient of Emberger (Q2) to characterize bioclimatic regions and component for residual extra-poison variation. The statistical results show the progressive increase in the number of affected children in regions with high continentality index and low mean yearly rainfull. On the other hand, an increase in pluviometric quotient of Emberger contributed to a significant increase in VL incidence rate. When compared with the original GLSM, Bayesian locally modeling is improvement and gives a better approximation of the Tunisian VL risk estimation. According to the Bayesian approach inference, we use vague priors for all parameters model and Markov Chain Monte Carlo method.

Keywords: generalized linear spatial model, local model, extra-poisson variation, continentality index, visceral leishmaniasis, Tunisia

Procedia PDF Downloads 398
853 Exploring the Cultural Significance of Mural Paintings in the Tombs of Gilan, Iran: Evaluation of Drawn Figures

Authors: Zeinab Mirabulqasemi, Gholamali Hatam

Abstract:

This article discusses the significance of mural paintings in Iranian culture, particularly within the context of religious tombs known as Imamzadehs. These tombs, dedicated to Shiite imams and other revered religious figures, serve as important religious and communal spaces. The tradition of tomb construction evolved from early Islamic practices, gradually transforming burial sites into places of worship. In the Gilan region of Iran, these tombs hold a revered status, serving as focal points for religious observances and social gatherings. The murals adorning these tombs often depict religious motifs, with a particular emphasis on events like the Day of Judgment and the martyrdom of the Imams, notably the saga of Ashura. These paintings also reflect the community's social perspectives and historical allegiances. Various architectural styles are employed in constructing these tombs, including Islamic, traditional, local, and aesthetic architecture. However, the region's climate poses challenges to the preservation of these structures and their murals. Despite these challenges, efforts are made to document and preserve these artworks to ensure their accessibility for future generations. This research also studies tomb paintings by adopting a multifaceted approach, including library research, image analysis, and field research. Finally, it examines the portrayal of significant figures such as the Shiite imams, prophets, and Imamzadehs within these murals, highlighting their thematic significance and cultural importance.

Keywords: cultural ritual, Shiite imams, mural, belief foundations, religious paintings

Procedia PDF Downloads 55
852 Social Crises and Its Impact on the Environment: Case Study of Jos, Plateau State

Authors: A. B. Benshak, M. G. Yilkangnha, V. Y. Nanle

Abstract:

Social crises and violent conflict can inflict direct (short-term) impact on the environment like poisoning water bodies, climate change, deforestation, destroying the chemical component of the soil due to the chemical and biological weapons used. It can also impact the environment indirectly (long-term), e.g., the destruction of political and economic infrastructure to manage the environmental resources and breaking down traditional conservation practices, population displacement and refugee flows which puts pressure on the already inadequate resources, infrastructure, facilities, amenities, services etc. This study therefore examines the impact of social crises on the environment in Jos Plateau State with emphasis on the long-term impact, analyze the relationship between crises and the environment and assess the perception of people on social crises because much work have concentrated on other repercussions such as the economy, health etc that are more politically expedient. The data for this research were collected mostly through interviews, questionnaire, dailies and reports on the subject matter. The data and findings were presented in tables and results showed that the environment is directly and indirectly impacted by crises and that these impacts can in turn result to a continuous cycle of violent activities if not addressed because of the inadequacies in the supply of infrastructural facilities, resources and so on caused by the inflow of displaced population. Recommendations were made on providing security to minimize conflict occurrences in Jos and its environs, minimizing the impact of social crises on the environment, provision of adequate infrastructural facilities to carter for population rise, renewal and regeneration schemes, etc. which will go a long way in mitigating the impact of crises on the environment.

Keywords: environment, impact, long-term, social crises

Procedia PDF Downloads 344
851 An Investigation into the Gaps in Green Building Education and Training Offerings in Nigeria

Authors: Adebayo A. Abimbola, Anifowose O. Joseph, Olanrewaju S. Taiwo

Abstract:

Green building (GB) practices have the potential to save energy, save money, and improve the quality of human habitat. They can also contribute to water conservation, more efficient use of raw materials, and ecosystem health around the globe. The Intergovernmental Panel on Climate Change (IPCC) singled out the building sector as having the most cost-effective opportunities for reducing carbon emissions—in fact, many building-related opportunities are cost-neutral, or even cost-positive, to the building owner. These benefits have made green building practices the fastest-growing trend in the building industry, but they still represent only a fraction of new construction, and the enormous stock of existing buildings has barely been touched at all. To effectively deliver the kind of (GB) that can become a force for positive change at global, regional and local scales, all workforce sectors need new skills that are both technical and interpersonal in nature. A prominent bottleneck is seen to be education and training. This paper investigates the major gaps in current GB education and training offerings in Nigeria. A questionnaire survey was developed to capture the perception of construction professionals and academics in relevant professions regarding the significance of the identified gaps as it affects GB education and training. Based on Likert scale ranking, research result shows that perception of training in specific technical fields and financial benefits and evaluation are identified as the top gaps in GB training and education offerings. The paper concludes with suggestions and actions that can enhance capabilities of the GB workforce in Nigeria.

Keywords: education and training, gaps, green building, workforce

Procedia PDF Downloads 322
850 Challenges of Solid Waste Management: Insights into the Management and Disposal Behaviour in Bauchi Metropolis of Northeast Nigeria

Authors: Salisu Abdullahi Dalhat, Ibrahim Aliyu Adamu, Abubakar Magaji, Ridwan Adebola Adedigba

Abstract:

The paper examined the municipal solid waste disposal methods and the environmental issues associated with the management of solid waste in Bauchi Metropolis, Nigeria. Data were obtained through the administration of structured questionnaires, oral interviews, and field observations, as well as the desk review method. The research identifies how the city was composed of both biodegradable and non-biodegradable materials, which are mostly paper waste, polythene, and plastic materials. Most of the solid wastes are left unattended for a long period. Poor design of dump sites, ineffective management of urban development plans, and poor enforcement of environmental laws were observed to be the major causes of poor waste management, and in a few areas where large waste containers are provided, they are hardly used by the community. The major environmental issues resulting from improper disposal and poor management of solid waste in the Bauchi metropolis are a nuisance of the waste to the environment, emitting of methane gas which contributes to climate change, blockage of drainages during rainstorms causing flooding within the metropolis as well as the decomposition of such waste leading to contamination of groundwater thereby leading to the cholera outbreak. Relevant stakeholders should, without compromise, design enforceable short, workable bye-laws; local supervisors should be stationed at the designated dump sites across the city as well as public enlightenment/sensitization campaigns could be the way out.

Keywords: biodegradable, contamination, cholera outbreak, solid waste, solid waste management, urban development

Procedia PDF Downloads 126
849 Sustainable Manufacturing Industries and Energy-Water Nexus Approach

Authors: Shahbaz Abbas, Lin Han Chiang Hsieh

Abstract:

The significant population growth and climate change issues have contributed to the natural resources depletion and their sustainability in the future. Manufacturing industries have a substantial impact on every country’s economy, but the sustainability of the industrial resources is challenging, and the policymakers have been developing the possible solutions to manage the sustainability of industrial resources such as raw material, energy, water, and industrial supply chain. In order to address these challenges, nexus approach is one of the optimization and modelling techniques in the recent sustainable environmental research. The interactions between the nexus components acknowledge that all components are dependent upon each other, and they are interrelated; therefore, their sustainability is also associated with each other. In addition, the nexus concept does not only provide the resources sustainability but also environmental sustainability can be achieved through nexus approach by utilizing the industrial waste as a resource for the industrial processes. Based on energy-water nexus, this study has developed a resource-energy-water for the sugar industry to understand the interactions between sugarcane, energy, and water towards the sustainable sugar industry. In particular, the focus of the research is the Taiwanese sugar industry; however, the same approach can be adapted worldwide to optimize the sustainability of sugar industries. It has been concluded that there are significant interactions between sugarcane, energy consumption, and water consumption in the sugar industry to manage the scarcity of resources in the future. The interactions between sugarcane and energy also deliver a mechanism to reuse the sugar industrial waste as a source of energy, consequently validating industrial and environmental sustainability. The desired outcomes from the nexus can be achieved with the modifications in the policy and regulations of Taiwanese industrial sector.

Keywords: energy-water nexus, environmental sustainability, industrial sustainability, natural resource management

Procedia PDF Downloads 125
848 Drivers of Deforestation in the Colombian Amazon: An Empirical Causal Loop Diagram of Food Security and Land-Use Change

Authors: Jesica López, Deniz Koca, Asaf Tzachor

Abstract:

In 2016 the historic peace accord between the Colombian government and the Revolutionary Armed Forces of Colombia (FARC) had no strong mechanism for managing changes to land use and the environment. Since the end of a 60-year conflict in Colombia, large areas of forest in the Amazon region have been rapidly converted to agricultural uses, most recently by cattle ranching. This suggests that the peace agreement presents a threat to the conservation of the country's rainforest. We analyze the effects of cattle ranching as a driver and accelerator of deforestation from a systemic perspective, focusing on two key leverage points the legal and illegal activities involved in the cattle ranching practices. We map and understand the inherent dynamic complexity of deforestation, including factors such as land policy instruments, national strategy to tackle deforestation, land use nexus with Amazonian food systems, and loss of biodiversity. Our results show that deforestation inside Colombian Protected Areas (PAs) in the Amazon region and the surrounding buffer areas has accelerated with the onset of peace. By using a systems analysis approach, we contextualized the competition of land between cattle ranching and the need to protect tropical forests and their biodiversity loss. We elaborate on future recommendations for land use management decisions making suggest the inclusion of an Amazonian food system, interconnecting and visualizing the synergies between sustainable development goals, climate action (SDG 13) and life on land (SDG 15).

Keywords: tropical rainforest, deforestation, sustainable land use, food security, Colombian Amazon

Procedia PDF Downloads 97
847 Planning Water Reservoirs as Complementary Habitats for Waterbirds

Authors: Tamar Trop, Ido Izhaki

Abstract:

Small natural freshwater bodies (SNFWBs), which are vital for many waterbird species, are considered endangered habitats due to their progressive loss and extensive degradation. While SNFWBs are becoming extinct, studies have indicated that many waterbird species may greatly benefit from various types of small artificial waterbodies (SAWBs), such as floodwater and treated water reservoirs. If designed and managed with care, SAWBs hold significant potential to serve as alternative or complementary habitats for birds, and thus mitigate the adverse effects of SNFWBs loss. Currently, most reservoirs are built as infrastructural facilities and designed according to engineering best practices and site-specific considerations, which do not include catering for waterbirds' needs. Furthermore, as things stand, there is still a lack of clear and comprehensive knowledge regarding the additional factors that should be considered in tackling the challenge of attracting waterbirds' to reservoirs, without compromising on the reservoirs' original functions. This study attempts to narrow this knowledge gap by performing a systematic review of the various factors (e.g., bird attributes; physical, structural, spatial, climatic, chemical, and biological characteristics of the waterbody; and anthropogenic activities) affecting the occurrence, abundance, richness, and diversity of waterbirds in SNFWBs. The methodical review provides a concise and relatively unbiased synthesis of the knowledge in the field, which can inform decision-making and practice regarding the planning, design, and management of reservoirs with birds in mind. Such knowledge is especially beneficial for arid and semiarid areas, where natural water sources are deteriorating and becoming extinct even faster due to climate change.

Keywords: artificial waterbodies, reservoirs, small waterbodies, waterbirds

Procedia PDF Downloads 74
846 Impact of Using Pyrolytic Carbon Black as Asphalt Modifier on Wearing Course of Flexible Pavement

Authors: Samiya Siddique, Taslima Akter Elma, Shahrina Mahzabin, Tamanna Jerin, Mohammed Russedul Islam

Abstract:

In the maneuver and designing of highway engineering, pavement performance is a principal concern. Quality of construction and materials, traffic volume, climate, etc. are the factors that affect the performance of asphalt concrete. Modified asphalt requires to attain greater strength and stability even at inimical circumstances. In this point of view, pyrolytic carbon black (PCB), which is a by-product of waste tire pyrolysis, holds incomparable properties that individualizes it from other conventional fillers by making it an imminent modifier of bitumen. Optimum asphalt content of 60/70 penetration grade asphalt is determined 5% through the Marshall Stability and Flow test for the wearing course of flexible pavement. 5, 10, and 15 percentages of PCB are then used with neat asphalt for modification. Deviations of physical and rheological properties are investigated on both PCB modified and neat asphalt by going through several laboratory tests such as penetration, softening point, and ductility tests. The obtained results reveal that the performance of paving asphalt can be upgraded by modifying it with PCB. With the increasing percentage of PCB, ductility is gradually decreased, and also penetration grade is gradually reduced from 60/70 to 30/40. Furthermore, asphalt mixtures modified with PCB demonstrate higher stability and lower flow values. The research discloses that the apposite percentage of PCB used in asphalt concrete plays a significant role in the advancement of pavement performances and reutilizing of waste tires.

Keywords: asphalt modification, pavement performances, pyrolytic carbon black, marshall stability, wearing course

Procedia PDF Downloads 150
845 A Geospatial Analysis of Diminishing Himalayan Ice Under Influence of Anthropomorphism: A Case Study of Himalayan Ice From 1990 to 2020 in Pakistan

Authors: Ali Akber Khan

Abstract:

In the 21st century, freshwater resources, especially ice cover, would have grave significance as ice carries most of the total freshwater resources in the world. The Himalayas in Pakistan is one of the biggest sources of fresh water for Pakistan. These regions of the Himalayas and neighboring mountains include Swat, Chitral, Upper Dir, Lower Dir, Mardan, Swabi, Haripur, Abbottabad, Muzaffarabad, Neelum, and Mansehra in Pakistan. The study examines ice resources in the years 1990 to 2020 and shows a decrease in snow-shrouded regions, reducing from 72,187.54 sq. km in 1990 to 66,061.17 sq. km in 2020. This indicates a total ice cover loss of 6,126.37 sq. km area in 40 years due to environmental variabilities and climatic changes. From 2010 to 2020 loss of ice-covered area was 3479.24 sq. km. The mean maximum temperature from 2000 to 2010 in December, January and February is 7.4 °C, 4.2 °Cand 7.8 °C respectively, while from 2011 to 2022 mean maximum temperature registered in December, January and February is 6.9°C, 4.1°C and 6.6 °C respectively. Investigation of anthropogenic elements in the region shows population rise. From investigation, 22 cities and towns of the Himalayas region and neighboring mountains showed the highest rise in population, 329.46%, and a minimum rise of 14.39%, while 12 towns have risen in population by more than 100% from 1990 to 2023. This examination adds to a point-by-point comprehension of the connections among normal variables, population dynamics, snow cover variation, evidence strategies, and multipurpose measures for maintained and strong improvement in the districts.

Keywords: snow, ice, Himalayas, Pakistan, climate change, population

Procedia PDF Downloads 48
844 The Agroclimatic Atlas of Croatia for the Periods 1981-2010 and 1991-2020

Authors: Višnjica Vučetić, Mislav Anić, Jelena Bašić, Petra Sviličić, Ivana Tomašević

Abstract:

The Agroclimatic Atlas of Croatia (Atlas) for the periods 1981–2010 and 1991–2020 is monograph of six chapters in digital form. Detailed descriptions of particular agroclimatological data are given in separate chapters as follows: agroclimatic indices based on air temperature (degree days, Huglin heliothermal index), soil temperature, water balance components (precipitation, potential evapotranspiration, actual evapotranspiration, soil moisture content, runoff, recharge and soil moisture loss) and fire weather indices. The last chapter is a description of the digital methods for the spatial interpolations (R and GIS). The Atlas comprises textual description of the relevant climate characteristic, maps of the spatial distribution of climatological elements at 109 stations (26 stations for soil temperature) and tables of the 30-year mean monthly, seasonal and annual values of climatological parameters at 24 stations. The Atlas was published in 2021, on the seventieth anniversary of the agrometeorology development at the Meteorological and Hydrological Service of Croatia. It is intended to support improvement of sustainable system of agricultural production and forest protection from fire and as a rich source of information for agronomic and forestry experts, but also for the decision-making bodies to use it for the development of strategic plans.

Keywords: agrometeorology, agroclimatic indices, soil temperature, water balance components, fire weather index, meteorological and hydrological service of Croatia

Procedia PDF Downloads 128
843 The Improvement of Turbulent Heat Flux Parameterizations in Tropical GCMs Simulations Using Low Wind Speed Excess Resistance Parameter

Authors: M. O. Adeniyi, R. T. Akinnubi

Abstract:

The parameterization of turbulent heat fluxes is needed for modeling land-atmosphere interactions in Global Climate Models (GCMs). However, current GCMs still have difficulties with producing reliable turbulent heat fluxes for humid tropical regions, which may be due to inadequate parameterization of the roughness lengths for momentum (z0m) and heat (z0h) transfer. These roughness lengths are usually expressed in term of excess resistance factor (κB^(-1)), and this factor is used to account for different resistances for momentum and heat transfers. In this paper, a more appropriate excess resistance factor (〖 κB〗^(-1)) suitable for low wind speed condition was developed and incorporated into the aerodynamic resistance approach (ARA) in the GCMs. Also, the performance of various standard GCMs κB^(-1) schemes developed for high wind speed conditions were assessed. Based on the in-situ surface heat fluxes and profile measurements of wind speed and temperature from Nigeria Micrometeorological Experimental site (NIMEX), new κB^(-1) was derived through application of the Monin–Obukhov similarity theory and Brutsaert theoretical model for heat transfer. Turbulent flux parameterizations with this new formula provides better estimates of heat fluxes when compared with others estimated using existing GCMs κB^(-1) schemes. The derived κB^(-1) MBE and RMSE in the parameterized QH ranged from -1.15 to – 5.10 Wm-2 and 10.01 to 23.47 Wm-2, while that of QE ranged from - 8.02 to 6.11 Wm-2 and 14.01 to 18.11 Wm-2 respectively. The derived 〖 κB〗^(-1) gave better estimates of QH than QE during daytime. The derived 〖 κB〗^(-1)=6.66〖 Re〗_*^0.02-5.47, where Re_* is the Reynolds number. The derived κB^(-1) scheme which corrects a well documented large overestimation of turbulent heat fluxes is therefore, recommended for most regional models within the tropic where low wind speed is prevalent.

Keywords: humid, tropic, excess resistance factor, overestimation, turbulent heat fluxes

Procedia PDF Downloads 205
842 The Impact of a Sustainable Solar Heating System on the Growth of ‎Strawberry Plants in an Agricultural Greenhouse

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

The use of solar energy is a crucial tactic in the agricultural industry's plan ‎‎to decrease greenhouse gas emissions. This clean source of energy can ‎greatly lower the sector's carbon footprint and make a significant impact in ‎the ‎fight against climate change. In this regard, this study examines the ‎effects ‎of a solar-based heating system, in a north-south oriented agricultural ‎green‎house on the development of strawberry plants during winter. This ‎system ‎relies on the circulation of water as a heat transfer fluid in a closed ‎circuit ‎installed on the greenhouse roof to store heat during the day and ‎release it ‎inside at night. A comparative experimental study was conducted ‎in two ‎greenhouses, one experimental with the solar heating system and the ‎other ‎for control without any heating system. Both greenhouses are located ‎on the ‎terrace of the Solar Energy and Environment Laboratory of the ‎Mohammed ‎V University in Rabat, Morocco. The developed heating system ‎consists of a ‎copper coil inserted in double glazing and placed on the roof of ‎the greenhouse, a water pump circulator, a battery, and a photovoltaic solar ‎panel to ‎power the electrical components. This inexpensive and ‎environmentally ‎friendly system allows the greenhouse to be heated during ‎the winter and ‎improves its microclimate system. This improvement resulted ‎in an increase ‎in the air temperature inside the experimental greenhouse by 6 ‎‎°C and 8 °C, ‎and a reduction in its relative humidity by 23% and 35% ‎compared to the ‎control greenhouse and the ambient air, respectively, ‎throughout the winter. ‎For the agronomic performance, it was observed that ‎the production was 17 ‎days earlier than in the control greenhouse‎.‎

Keywords: sustainability, thermal energy storage, solar energy, agriculture greenhouse

Procedia PDF Downloads 89
841 Enhancing Maritime Governance in Africa: Challenges of Maritime Policy Development in the East African Community

Authors: Christantus Begealawuh Nchongayi

Abstract:

As clearly stated in goal 14 of sustainable development goals, global oceans greatly contribute to making the earth habitable for mankind. This explains why ocean governance is an important global concern today. The emerging maritime security problems and the impact of climate change on African oceans, evidenced by tropical cyclones as seen recently in the Southern region of Africa, is also an indication that maritime governance and policymaking are important elements of peace and security in Africa. Within the last decade, there have been commendable efforts towards maritime governance and policymaking in Africa, although implementation of existing maritime policies is still lacking. This paper provides a snapshot of the overall state of the maritime policymaking process in Africa. It specifically explores the challenges facing policymakers in developing national and regional maritime security strategy in the East African Community. For methodology, the paper relied on primary and secondary data. Primary data was collected from informal discussions with policymakers and key policy-making bodies in Africa, and from a survey of public opinions. The study found that the Africa Integrated Maritime Strategy (2050 AIMS) is a recent template for regional and national maritime security policymaking in Africa and that although maritime security has in the past not been prioritized in the security agenda of the East African Community, developing and aligning a regional maritime security strategy to the 2050 AIMS will result to positive regional integration outcomes in East Africa.

Keywords: 2050 Africa integrated maritime strategy, east African community, maritime policy-making, maritime security

Procedia PDF Downloads 218
840 Working Between Human and Non-Human Nature: Using Labour as a Tool to Capture the Transformations of Planetary Life

Authors: Ellen Kirkpatrick

Abstract:

Deforestation, toxification, and loss of environmental habitats, accompanied by expanding production and urbanization, are visibly altering planetary life. This is bringing humans and non-human nature into closer contact, resulting in the emergence of infectious diseases such as the Covid-19 virus which, while zoonotic in origin, spread through market relations and networks of local and global production. However, while the pandemic sharply illuminated the role of labour within social transformations, the question remains about the role of labour in transforming ecological relations. Drawing on a historical materialist approach, this paper explores the emergence and transmission of the COVID-19 virus through the Marxist conceptualization of metabolic rift. This allows for a perspective of human and non-human nature, which is in constant motion and dialectical. This negotiates distinctions and binaries between them as humans and non-human nature are taken to mutually constrain, enable and constitute one another. This is particularly significant when considering the ongoing transformations of a climate-changing world and the corresponding effects on social life. To do this, this paper empirically focuses on the Huanan Seafood Wholesale Market in Wuhan, China, where the COVID-19 virus was first detected. It examines how the virus jumped from non-human animals to humans through concrete production operations locally before traveling globally through networks of abstract market relations based on the logic of circulation, trade and exchange. As a mediating relation between human and non-human nature, labour is an analytical tool that can create a dialogue between the concrete and the abstract, as well as the local and global.

Keywords: Marxism, social reproduction, metabolic rift, labour

Procedia PDF Downloads 22
839 Heuristics for Optimizing Power Consumption in the Smart Grid

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Our increasing reliance on electricity, with inefficient consumption trends, has resulted in several economical and environmental threats. These threats include wasting billions of dollars, draining limited resources, and elevating the impact of climate change. As a solution, the smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing the peak power consumption under a fixed delay requirement is a significant problem in the smart grid. In addition, matching demand to supply is a key requirement for the success of the future electricity. In this work, we consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-Hard, we propose two versions of a heuristic algorithm for solving this problem. Our theoretical analysis and experimental results show that our proposed heuristics outperform existing methods by providing a better approximation to the optimal solution. In addition, we consider dynamic pricing methods to minimize the peak load and match demand to supply in the smart grid. Our contribution is the proposal of generic, as well as customized pricing heuristics to minimize the peak demand and match demand with supply. In addition, we propose optimal pricing algorithms that can be used when the maximum deadline period of the power jobs is relatively small. Finally, we provide theoretical analysis and conduct several experiments to evaluate the performance of the proposed algorithms.

Keywords: heuristics, optimization, smart grid, peak demand, power supply

Procedia PDF Downloads 89
838 Use of Cow Dung Residues of Biogas Plants for Sustainable Development of Rural Communities in Pakistan

Authors: Sumra Siddique Abbasi, Cheng Shikun

Abstract:

Biogas technology has rapidly developed in agriculture sector to upgrade and improve the life of farmers by providing them alternative and cost-effective energy source. Main purpose of this study is to understand the advantages of biogas plants by livestock owners either they are household-based livestock owners or may own farms for livestock. Similarly, a pertinent and major purpose of this research is to examine the factors affecting the decision to adopt biogas technologies at the household level. Based on the result, both public and private sector organization can make decisions related to the installation of biogas projects. Biogas is major energy source which can be used as an alternative and renewable energy source. This energy production technology can contribute in uplifting the lifestyle of farmers and can contribute into sustainable development of rural communities in Pakistan. People with livestock in any community in Pakistan can get benefit from biogas plants and it will contribute in sustainable development program which generates socio economic benefits, heath upgradation, cost effective energy source and positive impact on climate change or environmental issues. This study was conductive using survey method and descriptive analysis. One hundred fifty (150) farmers were the respondents who participated in survey. These farmers were from Layyah district of Punjab and were selected using snowball sampling technique. To generate the results, SPSS tool was used for data analysis.

Keywords: biogas plant, animal dunk, renewable energy, pakistan

Procedia PDF Downloads 73