Search results for: virus detection
2184 Advanced Mouse Cursor Control and Speech Recognition Module
Authors: Prasad Kalagura, B. Veeresh kumar
Abstract:
We constructed an interface system that would allow a similarly paralyzed user to interact with a computer with almost full functional capability. A real-time tracking algorithm is implemented based on adaptive skin detection and motion analysis. The clicking of the mouse is activated by the user's eye blinking through a sensor. The keyboard function is implemented by voice recognition kit.Keywords: embedded ARM7 processor, mouse pointer control, voice recognition
Procedia PDF Downloads 5782183 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 3162182 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis
Authors: A. Ghanbari Mardasi, N. Wu, C. Wu
Abstract:
In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.Keywords: edge effect, scale optimization, small crack locating, spatial wavelet
Procedia PDF Downloads 3572181 The Distribution of HLA-C* 14:02 Allele in Thai Population to See Risk Factors for Severe COVID-19
Authors: Naso Isaiah Thanavisuth, Patompong Satapornpong
Abstract:
Introduction: Covid-19 has been a global pandemic for some time now, causing severe symptoms to patients that received the virus. However, there has been no report on this gene in the Thai population. Objective: Our aim in this study is to explore and compare the frequency of HLA-C allele that is associated with severe COVID-19 symptoms in Thais and other populations. Method: 200 general Thai population were enrolled in this study. The genotyping of HLA -C alleles were determined by the polymerase chain reaction with sequence-specific oligonucleotide probes (PCR-SSOP) and Luminex®IS 100 system (Luminex Corporation, Austin, Texas, USA). Results: We found that the frequency of alleles HLA-C* 01:02 (16.00%), HLA-C* 08:01(10.50%), HLA-C* 03:04 (10.25%),HLA-C* 07:02 (10.00%), HLA-C* 03:02 (9.25%), HLA-C* 07:01 (6.75%), HLA-C* 04:01 (5.00%), HLA-C* 06:02 (4.00%), HLA-C* 04:03 (4.00%), and HLA-C* 07:04 (3.75%) were more common in the Thai population. HLA-C* 01:02 (16.00%) allele was the highest frequency in the North, Center, and North East groups in Thailand, but there was the South region that was not significantly different when compared with the other groups of the region. Additionally, HLA-C∗14:02 allele was similarly distributed in Thais (3.00%), African Americans (1.98%), Caucasians (2.08%), Hispanics (1.71%), North American Natives (1.34%) and Asians (5.01%) by p-value = 0.6506, 0.6506, 0.6506, 0.6135 and 0.7182, respectively. Conclusion: Genetic variation database is important to identify HLA can be a risk factor for severe COVID-19 in many populations. In this study, we will support the research of the HLA markers for screening severe COVID-19 in many populations.Keywords: HLA-C * 14:02, COVID-19, allele frequency, Thailand
Procedia PDF Downloads 1152180 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions
Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka
Abstract:
Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68
Procedia PDF Downloads 1342179 Clinical Outcomes of Neonates Born to COVID-19 Positive Mothers in a Tertiary Level Private Hospital
Authors: Patricia Abigail B. Miranda, Imelda A. Luna
Abstract:
Introduction: COVID-19 infection is a novel viral illness that began as a local epidemic in December 2019 in Wuhan, China which quickly emerged into a pandemic by February 2020. The virus causes a spectrum of signs and symptoms, ranging from mild upper respiratory symptoms to acute respiratory distress syndrome, which may lead to death. Among children and neonates, those afflicted with the disease may present asymptomatically or with mild symptoms. To date, there has been limited local data that describes the outcomes of the growing number of COVID-19 cases, specifically in neonates. Methods: A cross-sectional study was conducted to determine the outcomes of neonates born to COVID-19 Positive Mothers from March 2020 until June 2022. The prevalence of COVID-19 among these neonates was also determined. Results: COVID-positive prevalence after 24 hours of life is at 8%, while prevalence after 48 hours among those who still underwent testing was at 13.51%. Moreover, among those COVID-19-negative neonates who had symptoms, they mostly presented with tachypnea (5.7%). The prevalence of complications among COVID-19-negative neonates delivered to COVID-19-positive mothers is 22.7%. Conclusion: Neonates born to COVID-19-positive mothers who yielded positive COVID-19 results are generally asymptomatic. Moreover, there are no associated mortalities among those who yielded positive results.Keywords: COVID-19, neonates, outcomes, clinical profile
Procedia PDF Downloads 822178 Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan
Authors: Munenari Inoguchi, Keiko Tamura
Abstract:
In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources.Keywords: building damage inspection, flood, geographic information system, spatial interpolation
Procedia PDF Downloads 1242177 Deployment of Information and Communication Technology (ICT) to Reduce Occurrences of Terrorism in Nigeria
Authors: Okike Benjamin
Abstract:
Terrorism is the use of violence and threat to intimidate or coerce a person, group, society or even government especially for political purposes. Terrorism may be a way of resisting government by some group who may feel marginalized. It could also be a way of expressing displeasure over the activities of government. On 26th December, 2009, US placed Nigeria as a terrorist nation. Recently, the occurrences of terrorism in Nigeria have increased considerably. In Jos, Plateau state, Nigeria, there was a bomb blast which claimed many lives on the eve of 2010 Christmas. Similarly, there was another bomb blast in Mugadishi (Sani Abacha) Barracks Mammy market on the eve of 2011 New Year. For some time now, it is no longer news that bomb exploded in some Northern part of Nigeria. About 25 years ago, stopping terrorism in America by the Americans relied on old-fashioned tools such as strict physical security at vulnerable places, intelligence gathering by government agents, or individuals, vigilance on the part of all citizens, and a sense of community in which citizens do what could be done to protect each other. Just as technology has virtually been used to better the way many other things are done, so also this powerful new weapon called computer technology can be used to detect and prevent terrorism not only in Nigeria, but all over the world. This paper will x-ray the possible causes and effects of bomb blast, which is an act of terrorism and suggest ways in which Explosive Detection Devices (EDDs) and computer software technology could be deployed to reduce the occurrences of terrorism in Nigeria. This become necessary with the abduction of over 200 schoolgirls in Chibok, Borno State from their hostel by members of Boko Haram sect members on 14th April, 2014. Presently, Barrack Obama and other world leaders have sent some of their military personnel to help rescue those innocent schoolgirls whose offence is simply seeking to acquire western education which the sect strongly believe is forbidden.Keywords: terrorism, bomb blast, computer technology, explosive detection devices, Nigeria
Procedia PDF Downloads 2612176 Distribution and Risk Assessment of Phthalates in Water and Sediment of Omambala River, Anambra State, Nigeria, in Wet Season
Authors: Ogbuagu Josephat Okechukwu, Okeke Abuchi Princewill, Arinze Rosemary Uche, Tabugbo Ifeyinwa Blessing, Ogbuagu Adaora Stellamaris
Abstract:
Phthalates or Phthalate esters (PAEs), categorized as an endocrine disruptor and persistent organic pollutants, are known for their environmental contamination and toxicological effects. In this study, the concentration of selected phthalates was determined across the sampling site to investigate their occurrence and the ecological and health risk assessment they pose to the environment. Water and sediment samples were collected following standard procedures. Solid phase and ultrasonic methods were used to extract seven different PAEs, which were analyzed by Gas Chromatography with Mass Detector (GCMS). The analytical average recovery was found to be within the range of 83.4% ± 2.3%. The results showed that PAEs were detected in six out of seven samples with a high percentage of detection rate in water. Di-n-butyl phthalate (DPB) and disobutyl phthalates (DiBP) showed a greater detection rate compared to other PAE monomers. The concentration of PEs was found to be higher in sediment samples compared to water samples due to the fact that sediments serve as a sink for most persistent organic pollutants. The concentrations of PAEs in water samples and sediments ranged from 0.00 to 0.23 mg/kg and 0.00 to 0.028 mg/l, respectively. Ecological risk assessment using the risk quotient method (RQ) reveals that the estimated environmental risk caused by phthalates lies within the moderate level as RQ ranges from 0.1 to 1.0, whereas the health risk assessment caused by phthalates on estimating the average daily dose reveals that the ingestion of phthalates was found to be approaching permissible limit which can cause serious carcinogenic occurrence in the human system with time due to excess accumulation.Keywords: phthalates, endocrine disruptor, risk assessment, ecological risk, health risk
Procedia PDF Downloads 742175 Barrier to Implementing Public-Private Mix Approach for Tuberculosis Case Management in Nepal
Authors: R. K. Yadav, S. Baral, H. R. Paudel, R. Basnet
Abstract:
The Public-Private Mix (PPM) approach is a strategic initiative that involves engaging all private and public healthcare providers in the fight against tuberculosis using international healthcare standards. For tuberculosis control in Nepal, the PPM approach could be a milestone. This study aimed to explore the barriers to a public-private mix approach in the management of tuberculosis cases in Nepal. A total of 20 respondents participated in the study. Barriers to PPM were identified in the following three themes: 1) Obstacles related to TB case detection, 2) Obstacles related to patients, and 3) Obstacles related to the healthcare system. PPM implementation was challenged by following subthemes that included staff turnover, low private sector participation in workshops, a lack of training, poor recording and reporting, insufficient joint monitoring and supervision, poor financial benefit, lack of coordination and collaboration, and non-supportive TB-related policies and strategies. The study concludes that numerous barriers exist in the way of effective implementation of the PPM approach, including TB cases detection barriers such as knowledge of TB diagnosis and treatment, HW attitude, workload, patient-related barriers such as knowledge of TB, self-medication practice, stigma and discrimination, financial status, and health system-related barriers such as staff turnover and poor engagement of the private sector in workshops, training, recording, and re-evaluation. Government stakeholders must work together with private sector stakeholders to perform joint monitoring and supervision. Private practitioners should receive training and orientation, and presumptive TB patients should be given adequate time and counseling as well as motivation to visit a government health facility.Keywords: barrier, tuberculosis, case finding, PPM, nepal
Procedia PDF Downloads 1102174 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: Adesuyi Ayodeji Steve, Zahn Munch
Abstract:
This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.Keywords: change detection, land cover, modis, NDVI
Procedia PDF Downloads 4022173 Functional Beverage to Boosting Immune System in Elderly
Authors: Adineh Tajmousavilangerudi, Ali Zein Alabiden Tlais, Raffaella Di Cagno
Abstract:
The SARS-Cov-2 pandemic has exposed our vulnerability to new illnesses and novel viruses that attack our immune systems, particularly in the elderly. The vaccine is being gradually introduced over the world, but new strains of the virus and COVID-19 will emerge and continue to cause illness. Aging is associated with significant changes in intestinal physiology, which increases the production of inflammatory products, alters the gut microbiota, and consequently establish inadequate immune response to minimize symptoms and disease development. In this context, older people who followed a Mediterranean-style diet, rich in polyphenols and dietary fiber, performed better physically and mentally (1,2). This demonstrates the importance of the human gut microbiome in transforming complex dietary macromolecules into the most biologically available and active nutrients, which in turn help to regulate metabolism and both intestinal and systemic immune function (3,4). The role of lactic acid fermentation is prominent also as a powerful tool for improving the nutritional quality of the human diet by releasing nutrients and boosting the complex bioactive compounds and vitamin content. the PhD project aims to design fermented and functional foods/beverages capable of modulating human immune function via the gut microbiome.Keywords: functional bevarage, fermented beverage, gut microbiota functionality, immun system
Procedia PDF Downloads 1122172 Comparison Between a Droplet Digital PCR and Real Time PCR Method in Quantification of HBV DNA
Authors: Surangrat Srisurapanon, Chatchawal Wongjitrat, Navin Horthongkham, Ruengpung Sutthent
Abstract:
HBV infection causes a potential serious public health problem. The ability to detect the HBV DNA concentration is of the importance and improved continuously. By using quantitative Polymerase Chain Reaction (qPCR), several factors in standardized; source of material, calibration standard curve and PCR efficiency are inconsistent. Digital PCR (dPCR) is an alternative PCR-based technique for absolute quantification using Poisson's statistics without requiring a standard curve. Therefore, the aim of this study is to compare the data set of HBV DNA generated between dPCR and qPCR methods. All samples were quantified by Abbott’s real time PCR and 54 samples with 2 -6 log10 HBV DNA were selected for comparison with dPCR. Of these 54 samples, there were two outlier samples defined as negative by dPCR. Of these two, samples were defined as negative by dPCR, whereas 52 samples were positive by both the tests. The difference between the two assays was less than 0.25 log IU/mL in 24/52 samples (46%) of paired samples; less than 0.5 log IU/mL in 46/52 samples (88%) and less than 1 log in 50/52 samples (96%). The correlation coefficient was r=0.788 and P-value <0.0001. Comparison to qPCR, data generated by dPCR tend to be the overestimation in the sample with low HBV DNA concentration and underestimated in the sample with high viral load. The variation in DNA by dPCR measurement might be due to the pre-amplification bias, template. Moreover, a minor drawback of dPCR is the large quantity of DNA had to be used when compare to the qPCR. Since the technology is relatively new, the limitations of this assay will be improved.Keywords: hepatitis B virus, real time PCR, digital PCR, DNA quantification
Procedia PDF Downloads 4812171 Use of the Occupational Repetitive Action Method in Different Productive Sectors: A Literature Review 2007-2018
Authors: Aanh Eduardo Dimate-Garcia, Diana Carolina Rodriguez-Romero, Edna Yuliana Gonzalez Rincon, Diana Marcela Pardo Lopez, Yessica Garibello Cubillos
Abstract:
Musculoskeletal disorders (MD) are the new epidemic of chronic diseases, are multifactorial and affect the different productive sectors. Although there are multiple instruments to evaluate the static and dynamic load, the method of repetitive occupational action (OCRA) seems to be an attractive option. Objective: It is aimed to analyze the use of the OCRA method and the prevalence of MD in workers of various productive sectors according to the literature (2007-2018). Materials and Methods: A literature review (following the PRISMA statement) of studies aimed at assessing the level of biomechanical risk (OCRA) and the prevalence of MD in the databases Scielo, Science Direct, Scopus, ProQuest, Gale, PubMed, Lilacs and Ebsco was realized; 7 studies met the selection criteria; the majority are quantitative (cross section). Results: it was evidenced (gardening and flower-growers) in this review that 79% of the conditions related to the task require physical requirements and involve repetitive movements. In addition, of the high appearance of DM in the high-low back, upper and lower extremities that are produced by the frequency of the activities carried out (footwear production). Likewise, there was evidence of 'very high risks' of developing MD (salmon industry) and a medium index (OCRA) for repetitive movements that require special care (U-Assembly line). Conclusions: the review showed the limited use of the OCRA method for the detection of MD in workers from different sectors, and this method can be used for the detection of biomechanical risk and the appearance of MD.Keywords: checklist, cumulative trauma disorders, musculoskeletal diseases, repetitive movements
Procedia PDF Downloads 1812170 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images
Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy
Abstract:
Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms
Procedia PDF Downloads 3802169 Prediction of Ionizing Radiation Doses in Irradiated red Pepper (Capsicum annuum) and Mint (Mentha piperita) by Gel Electrophoresis
Authors: Şeyma Özçirak Ergün, Ergün Şakalar, Emrah Yalazi̇, Nebahat Şahi̇n
Abstract:
Food irradiation is a usage of exposing food to ionising radiation (IR) such as gamma rays. IR has been used to decrease the number of harmful microorganisms in the food such as spices. Excessive usage of IR can cause damage to both food and people who consuming food. And also it causes to damages on food DNA. Generally, IR detection techniques were utilized in literature for spices are Electron Spin Resonance (ESR), Thermos Luminescence (TL). Storage creates negative effect on IR detection method then analyses of samples have been performed without storage in general. In the experimental part, red pepper (Capsicum annuum) and mint (Mentha piperita) as spices were exposed to 0, 0.272, 0.497, 1.06, 3.64, 8.82, and 17.42 kGy ionize radiation. ESR was applied to samples irradiated. DNA isolation from irradiated samples was performed using GIDAGEN Multi Fast DNA isolation kit. The DNA concentration was measured using a microplate reader spectrophotometer (Infinite® 200 PRO-Life Science–Tecan). The concentration of each DNA was adjusted to 50 ng/µL. Genomic DNA was imaged by UV transilluminator (Gel Doc XR System, Bio-Rad) for the estimation of genomic DNA bp-fragment size after IR. Thus, agarose gel profiles of irradiated spices were obtained to determine the change of band profiles. Besides, samples were examined at three different time periods (0, 3, 6 months storage) to show the feasibility of developed method. Results of gel electrophoresis showed especially degradation of DNA of irradiated samples. In conclusion, this study with gel electrophoresis can be used as a basis for the identification of the dose of irradiation by looking at degradation profiles at specific amounts of irradiation. Agarose gel results of irradiated samples were confirmed with ESR analysis. This method can be applied widely to not only food products but also all biological materials containing DNA to predict radiation-induced damage of DNA.Keywords: DNA, electrophoresis, gel electrophoresis, ionizeradiation
Procedia PDF Downloads 2592168 Quality Analysis of Vegetables Through Image Processing
Authors: Abdul Khalique Baloch, Ali Okatan
Abstract:
The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria
Procedia PDF Downloads 702167 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples
Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari
Abstract:
Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.Keywords: doxycycline, electrochemical sensor, food control, gold nanoparticles, honey, molecular imprinted polymer
Procedia PDF Downloads 3162166 Electrophoretic Deposition of Ultrasonically Synthesized Nanostructured Conducting Poly(o-phenylenediamine)-Co-Poly(1-naphthylamine) Film for Detection of Glucose
Authors: Vaibhav Budhiraja, Chandra Mouli Pandey
Abstract:
The ultrasonic synthesis of nanostructured conducting copolymer is an effective technique to synthesize polymer with desired chemical properties. This tailored nanostructure, shows tremendous improvement in sensitivity and stability to detect a variety of analytes. The present work reports ultrasonically synthesized nanostructured conducting poly(o-phenylenediamine)-co-poly(1-naphthylamine) (POPD-co-PNA). The synthesized material has been characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy, transmission electron microscopy, X-ray diffraction and cyclic voltammetry. FTIR spectroscopy confirmed random copolymerization, while UV-visible studies reveal the variation in polaronic states upon copolymerization. High crystallinity was achieved via ultrasonic synthesis which was confirmed by X-ray diffraction, and the controlled morphology of the nanostructures was confirmed by transmission electron microscopy analysis. Cyclic voltammetry shows that POPD-co-PNA has rather high electrochemical activity. This behavior was explained on the basis of variable orientations adopted by the conducting polymer chains. The synthesized material was electrophoretically deposited at onto indium tin oxide coated glass substrate which is used as cathode and parallel platinum plate as the counter electrode. The fabricated bioelectrode was further used for detection of glucose by crosslinking of glucose oxidase in the PODP-co-PNA film. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.72, charge transfer rate constant (ks) of 21.77 s⁻¹ and diffusion coefficient 7.354 × 10⁻¹⁵ cm²s⁻¹.Keywords: conducting, electrophoretic, glucose, poly (o-phenylenediamine), poly (1-naphthylamine), ultrasonic
Procedia PDF Downloads 1422165 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy
Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll
Abstract:
ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy
Procedia PDF Downloads 2282164 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks
Authors: Naveed Ghani, Samreen Javed
Abstract:
In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.Keywords: network worms, malware infection propagating malicious code, virus, security, VPN
Procedia PDF Downloads 3582163 Analysis of Endogenous Sirevirus in Germinating Barley (Hordeum vulgare L.)
Authors: Nermin Gozukirmizi, Buket Cakmak, Sevgi Marakli
Abstract:
Sireviruses are genera of copia LTR retrotransposons with a unique genome structure among retrotransposons. Barley (Hordeum vulgare L.) is an economically important plant and has been studied as a model plant regarding its short annual life cycle and seven chromosome pairs. In this study, we used mature barley embryos, 10-day-old roots and 10-day-old leaves derived from the same barley plant to investigate SIRE1 retrotransposon movements by Inter-Retrotransposon Amplified Polymorphism (IRAP) technique. We found polymorphism rates between 0-64% among embryos, roots and leaves. Polymorphism rates were detected to be 0-27% among embryos, 8-60% among roots, and 11-50% among leaves. Polymorphisms were observed not only among the parts of different individuals, but also on the parts of the same plant (23-64%). The internal domains of SIRE1 (gag, env and rt) were also analyzed in the embryos, roots and leaves. Analysis of band profiles showed no polymorphism for gag, however, different band patterns were observed among samples for rt and env. The sequencing of SIRE1 gag, env and rt domains revealed 79% similarity for gag, 95% for env and 84% for rt to Ty1-copia retrotransposons. SIRE1 retrotransposon was identified in the soybean genome and has been studied on other plants (maize, rice, tomatoe etc.). This study is the first detailed investigation of SIRE1 in barley genome. The obtained findings are expected to contribute to the comprehension of SIRE1 retrotransposon and its role in barley genome.Keywords: barley, polymorphism, retrotransposon, SIRE1 virus
Procedia PDF Downloads 3082162 COVID in Pregnancy: Evaluating Maternal and Neonatal Complications
Authors: Alexa L. Walsh, Christine Hartl, Juliette Ferdschneider, Lezode Kipoliongo, Eleonora Feketeova
Abstract:
The investigation of COVID-19 and its effects has been at the forefront of clinical research since its emergence in the United States in 2020. Although the possibility of severe infection in immunocompromised individuals has been documented, within the general population of pregnant individuals, there remains to be vaccine hesitancy and uncertainty regarding how the virus may affect the individual and fetus. To combat this hesitancy, this study aims to evaluate the effects of COVID-19 infection on maternal and neonatal complication rates. This retrospective study was conducted by manual chart review of women who were diagnosed with COVID-19 during pregnancy (n = 78) and women who were not diagnosed with COVID-19 during pregnancy (n = 1,124) that gave birth at Garnet Health Medical Centers between 1/1/2019-1/1/2021. Both the COVID+ and COVID- groups exhibited similar median ages, BMI, and parity. The rates of complications were compared between the groups and statistical significance was determined using Chi-squared analysis. Results demonstrated a statistically higher rate of PROM, polyhydramnios, oligohydramnios, GDM, DVT/PE, preterm birth, and the overall incidence of any birth complication in the population that was infected with COVID-19 during their pregnancy. With this information, obstetrical providers can be better prepared for the management of COVID-19+ pregnancies and continue to educate their patients on the benefits of vaccination.Keywords: complications, COVID-19, Gynecology, Obstetrics
Procedia PDF Downloads 782161 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)
Authors: Salvatore Luongo, Carlo Luongo
Abstract:
This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilitiesKeywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification
Procedia PDF Downloads 2852160 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines
Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto
Abstract:
Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.Keywords: aerial image, landcover, LiDAR, soil fertility degradation
Procedia PDF Downloads 2522159 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 932158 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors
Procedia PDF Downloads 2732157 Aggregation-Induced-Active Stimuli-Responsive Based Nano-Objects for Wastewater Treatment Application
Authors: Parvaneh Eskandari, Rachel O'Reilly
Abstract:
In the last years, controlling the self-assembly behavior of stimuli-responsive nano-objects, including micelles, vesicles, worm-like, etc., at different conditions is considered a pertinent challenge in the polymer community. The aim of the project was to synthesize aggregation-induced emission (AIE)-active stimuli-responsive polymeric nano-objects to control the self-assemblies morphologies of the prepared nano-objects. Two types of nanoobjects, micelle and vesicles, including PDMAEMA-b-P(BzMA-TPEMA) [PDMAEMA: poly(N,Ndimethylaminoethyl methacrylate); P(BzMA-TPEMA): poly[benzyl methacrylate-co- tetraphenylethene methacrylate]] were synthesized by using reversible addition−fragmentation chain-transfer (RAFT)- mediated polymerization-induced self-assembly (PISA), which combines polymerization and self-assembly in a single step. Transmission electron microscope and dynamic light scattering (DLS) analysis were used to confirm the formed self-assemblies morphologies. The controlled self-assemblies were applied as nitrophenolic compounds (NPCs) adsorbents from wastewater, thanks to their CO2-responsive part, PDMAEMA. Moreover, the fluorescence-active part of the prepared nano-objects, P(BzMA-TPEMA), played a key role in the detection of the NPCs at the aqueous solution. The optical properties of the prepared nano-objects were studied by UV/Vis and fluorescence spectroscopies. For responsivity investigations, the hydrodynamic diameter and Zeta-potential (ζ-potential) of the sample's aqueous solution were measured by DLS. In the end, the prepared nano-objects were used for the detection and adsorption of different NPCs.Keywords: aggregation-induced emission polymers, stimuli-responsive polymers, reversible addition−fragmentation chain-transfer polymerization, polymerization-induced self-assembly, wastewater treatment
Procedia PDF Downloads 732156 Nanowire Sensor Based on Novel Impedance Spectroscopy Approach
Authors: Valeriy M. Kondratev, Ekaterina A. Vyacheslavova, Talgat Shugabaev, Alexander S. Gudovskikh, Alexey D. Bolshakov
Abstract:
Modern sensorics imposes strict requirements on the biosensors characteristics, especially technological feasibility, and selectivity. There is a growing interest in the analysis of human health biological markers, which indirectly testifying the pathological processes in the body. Such markers are acids and alkalis produced by the human, in particular - ammonia and hydrochloric acid, which are found in human sweat, blood, and urine, as well as in gastric juice. Biosensors based on modern nanomaterials, especially low dimensional, can be used for this markers detection. Most classical adsorption sensors based on metal and silicon oxides are considered non-selective, because they identically change their electrical resistance (or impedance) under the action of adsorption of different target analytes. This work demonstrates a feasible frequency-resistive method of electrical impedance spectroscopy data analysis. The approach allows to obtain of selectivity in adsorption sensors of a resistive type. The method potential is demonstrated with analyzis of impedance spectra of silicon nanowires in the presence of NH3 and HCl vapors with concentrations of about 125 mmol/L (2 ppm) and water vapor. We demonstrate the possibility of unambiguous distinction of the sensory signal from NH3 and HCl adsorption. Moreover, the method is found applicable for analysis of the composition of ammonia and hydrochloric acid vapors mixture without water cross-sensitivity. Presented silicon sensor can be used to find diseases of the gastrointestinal tract by the qualitative and quantitative detection of ammonia and hydrochloric acid content in biological samples. The method of data analysis can be directly translated to other nanomaterials to analyze their applicability in the field of biosensory.Keywords: electrical impedance spectroscopy, spectroscopy data analysis, selective adsorption sensor, nanotechnology
Procedia PDF Downloads 1142155 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan
Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad
Abstract:
Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules
Procedia PDF Downloads 107