Search results for: vertical earthquake coefficient
2091 Study on the Seismic Response of Slope under Pulse-Like Ground Motion
Authors: Peter Antwi Buah, Yingbin Zhang, Jianxian He, Chenlin Xiang, Delali Atsu Y. Bakah
Abstract:
Near-fault ground motions with velocity pulses are considered to cause significant damage to structures or slopes compared to ordinary ground motions without velocity pulses. The double pulsed pulse-like ground motion is as well known to be stronger than the single pulse. This study has numerically justified this perspective by studying the dynamic response of a homogeneous rock slope subjected to four pulse-like and two non-pulse-like ground motions using the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) software. Two of the pulse-like ground motions just have a single pulse. The results show that near-fault ground motions with velocity pulses can cause a higher dynamic response than regular ground motions. The amplification of the peak ground acceleration (PGA) in horizontal direction increases with the increase of the slope elevation. The seismic response of the slope under double pulse ground motion is stronger than that of the single pulse ground motion. The PGV amplification factor under the effect of the non-pulse-like records is also smaller than those under the pulse-like records. The velocity pulse strengthens the earthquake damage to the slope, which results in producing a more strong dynamic response.Keywords: velocity pulses, dynamic response, PGV magnification effect, elevation effect, double pulse
Procedia PDF Downloads 1762090 Exergy Losses Relation with Driving Forces in Heat Transfer Process
Authors: S. Ali Ashrafizadeh, M. Amidpour, N. Hedayat
Abstract:
Driving forces along with transfer coefficient affect on heat transfer rate, on the other hand, with regard to the relation of these forces with irriversibilities they are effective on exergy losses. Therefore, the driving forces can be used as a relation between heat transfer rate, transfer coefficients and exergy losses. In this paper, first, the relation of the exergetic efficiency and resistant forces is obtained, next the relation between exergy efficiency, relative driving force, heat transfer rate and heat resistances is considered. In all cases, results are argued graphically. Finally, a case study inspected by obtained results.Keywords: heat transfer, exergy losses, exergetic efficiency, driving forces
Procedia PDF Downloads 6062089 Study of Pre-Handwriting Factors Necessary for Successful Handwriting in Children
Authors: Lalitchandra J. Shah, Katarzyna Bialek, Melinda L. Clarke, Jessica L. Jansson
Abstract:
Handwriting is essential to academic success; however, the current literature is limited in the identification of pre-handwriting skills. The purpose of this study was to identify the pre-handwriting skills, which occupational therapy practitioners deem important to handwriting success, as well as those which aid in intervention planning. The online survey instrument consisted of 33 questions that assessed various skills related to the development of handwriting, as well as captured demographic information. Both occupational therapists and occupational therapy assistants were included in the survey study. The survey found that the respondents were in agreement that purposeful scribbling, the ability of a child to copy (vertical/horizontal lines, circle, squares, and triangles), imitating an oblique cross, cognitive skills (attention, praxis, self-regulation, sequencing), grasp patterns, hand dominance, in hand manipulation skills (shift, translation, rotation), bilateral integration, stabilization of paper, crossing midline, and visual perception were important indicators of handwriting readiness. The results of the survey support existing research regarding the skills necessary for the successful development of handwriting in children.Keywords: development, handwriting, occupational therapy, visual perceptual skills
Procedia PDF Downloads 3502088 Design of Reduced Links for Link-to-Column Connections in Eccentrically Braced Frames
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
Link-to-column connection in eccentrically braced frames (EBF) has been a critical problem since the link flange connected to the column fractured prior to the required link rotation. Even though the problem in link-to-column connection still exist, the use of an eccentrically braced frame (EBF) is increasing day by day as EBF have high elastic stiffness, stable inelastic response under repeated lateral loading, and excellent ductility and energy dissipation capacity. In order to address this problem, a reduced web and flange link section is proposed and evaluated in this study. Reducing the web with holes makes the link to control the failure at the edge of holes introduced. Reducing the flange allows the link to control the location at which the plastic hinge is formed. Thus, the failure supposed to occur in the link flange connected at the connection move to the web and to the reduced link flange. Nonlinear FE analysis and experimental investigations have been done on the developed links, and the result shows that the link satisfies the plastic rotation limit recommended in AICS-360-10. Design equations that define the behavior of the proposed link have been recommended, and the equations were verified through the experimental and FE analysis results.Keywords: EBFs, earthquake disaster, link-to-column connection, reduced link section
Procedia PDF Downloads 3802087 New Media and Deliberative Democracy in Malaysia
Authors: Rosyidah Muhamad
Abstract:
This article seeks to access the democratic implication of new media in Malaysia through three important key points of deliberative democracy; information access, rational critical deliberation and mechanism of vertical accountability. The article suggests that the Internet is expanding political opportunity in which contributed to a more diverse discourse. It is depending on how users used it; for democratic or non-democratic outcome. The Internet has been a key instrument in exposing human rights abuse, corruption, organizing protests and mobilizing voters during election campaigns. It therefore pushes for transparency and accountability and thus increasing the rise of deliberative democracy in Malaysia. While there are some elements of an emerging deliberative politics, it is also clear that the Malaysian online political discourse is acting as moderate forms of discourse as the sphere increasingly exist in a chaotic and diversified online discourse. Yet, the online sphere still allows citizens to discuss public affairs. When the public opinion is strong enough, it can influence public policies to ensure that they reflect the public interest. It is suggesting an increased space of negotiation and contestation among the previously muzzled offline situation. This is a big step in the progress democracy in Malaysia.Keywords: Keywords: New Media, democratization, deliberative democracy, Malaysian politics
Procedia PDF Downloads 3002086 Shock Response Analysis of Soil-Structure Systems Induced by Near-Fault Pulses
Authors: H. Masaeli, R. Ziaei, F. Khoshnoudian
Abstract:
Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by Shock Response Spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear Soil–Structure Interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.Keywords: nonlinear soil–structure interaction, shock response spectrum, near–fault ground shock, rocking isolation
Procedia PDF Downloads 3162085 Efficacy of Pooled Sera in Comparison with Commercially Acquired Quality Control Sample for Internal Quality Control at the Nkwen District Hospital Laboratory
Authors: Diom Loreen Ndum, Omarine Njimanted
Abstract:
With increasing automation in clinical laboratories, the requirements for quality control materials have greatly increased in order to monitor daily performance. The constant use of commercial control material is not economically feasible for many developing countries because of non-availability or the high-cost of the materials. Therefore, preparation and use of in-house quality control serum will be a very cost-effective measure with respect to laboratory needs.The objective of this study was to determine the efficacy of in-house prepared pooled sera with respect to commercially acquired control sample for routine internal quality control at the Nkwen District Hospital Laboratory. This was an analytical study, serum was taken from leftover serum samples of 5 healthy adult blood donors at the blood bank of Nkwen District Hospital, which had been screened negative for human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Hepatitis B antigens (HBsAg), and were pooled together in a sterile container. From the pooled sera, sixty aliquots of 150µL each were prepared. Forty aliquots of 150µL each of commercially acquired samples were prepared after reconstitution and stored in a deep freezer at − 20°C until it was required for analysis. This study started from the 9th June to 12th August 2022. Every day, alongside with commercial control sample, one aliquot of pooled sera was removed from the deep freezer and allowed to thaw before analyzed for the following parameters: blood urea, serum creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), potassium and sodium. After getting the first 20 values for each parameter of pooled sera, the mean, standard deviation and coefficient of variation were calculated, and a Levey-Jennings (L-J) chart established. The mean and standard deviation for commercially acquired control sample was provided by the manufacturer. The following results were observed; pooled sera had lesser standard deviation for creatinine, urea and AST than commercially acquired control samples. There was statistically significant difference (p<0.05) between the mean values of creatinine, urea and AST for in-house quality control when compared with commercial control. The coefficient of variation for the parameters for both commercial control and in-house control samples were less than 30%, which is an acceptable difference. The L-J charts revealed shifts and trends (warning signs), so troubleshooting and corrective measures were taken. In conclusion, in-house quality control sample prepared from pooled serum can be a good control sample for routine internal quality control.Keywords: internal quality control, levey-jennings chart, pooled sera, shifts, trends, westgard rules
Procedia PDF Downloads 772084 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle
Authors: Yury S. Shpanskiy, Boris V. Kuteev
Abstract:
Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle
Procedia PDF Downloads 1472083 Knowledge Spillovers from Patent Citations: Evidence from Swiss Manufacturing Industry
Authors: Racha Khairallah, Lamia Ben Hamida
Abstract:
Our paper attempts to examine how Swiss manufacturing firms manage to learn from patent citations to improve their innovation performance. We argue that the assessment of these effects needs a detailed analysis of spillovers according to the source of knowledge with respect to formal and informal patent citations made in European and internal search, the horizontal and vertical mechanisms by which knowledge spillovers take place, and the technological characteristics of innovative firms that able them to absorb external knowledge and integrate it in their existing innovation process. We use OECD data and find evidence that knowledge spillovers occur only from horizontal and backward linkages. The importance of these effects depends on the type of citation, in which the references to non-patent literature (informal citations made in European and international searches) have a greater impact. In addition, only firms with high technological capacities benefit from knowledge spillovers from formal and informal citations. Low-technology firms fail to catch up and efficiently learn external knowledge from patent citations.Keywords: innovation performance, patent citation, absorptive capacity, knowledge spillover mechanisms
Procedia PDF Downloads 1102082 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc
Abstract:
Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.Keywords: numerical model, additive manufacturing, friction, process
Procedia PDF Downloads 1472081 Studying on Pile Seismic Operation with Numerical Method by Using FLAC 3D Software
Authors: Hossein Motaghedi, Kaveh Arkani, Siavash Salamatpoor
Abstract:
Usually the piles are important tools for safety and economical design of high and heavy structures. For this aim the response of single pile under dynamic load is so effective. Also, the agents which have influence on single pile response are properties of pile geometrical, soil and subjected loads. In this study the finite difference numerical method and by using FLAC 3D software is used for evaluation of single pile behavior under peak ground acceleration (PGA) of El Centro earthquake record in California (1940). The results of this models compared by experimental results of other researchers and it will be seen that the results of this models are approximately coincide by experimental data's. For example the maximum moment and displacement in top of the pile is corresponding to the other experimental results of pervious researchers. Furthermore, in this paper is tried to evaluate the effective properties between soil and pile. The results is shown that by increasing the pile diagonal, the pile top displacement will be decreased. As well as, by increasing the length of pile, the top displacement will be increased. Also, by increasing the stiffness ratio of pile to soil, the produced moment in pile body will be increased and the taller piles have more interaction by soils and have high inertia. So, these results can help directly to optimization design of pile dimensions.Keywords: pile seismic response, interaction between soil and pile, numerical analysis, FLAC 3D
Procedia PDF Downloads 3882080 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis
Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay
Abstract:
Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.Keywords: mechanical power, torque, Savonius rotor, wind car
Procedia PDF Downloads 3372079 Mathematics Teachers’ Background Characteristics as a Correlate of Secondary School Students’ Achievement in Mathematics in Gombe State, Nigeria
Authors: Ali Adamu
Abstract:
Teachers’ background characteristics as a correlate of students’ achievement in Mathematics were studied in Gombe State. Pearson Product Moment Correlation Coefficient was used for the analysis. Five Hundred and Twelve (512) students and 20 teachers from 12 schools in Gombe State of Nigeria were used for the study. Students’ Achievement Tests and Mathematics Teachers’ backgrounds were instruments for the study. The findings indicated that teachers’ qualifications, experience of the teacher, and teachers’ personalities had a positive correlation with students’ achievement. Recommendations are made, which include allowing the teachers to go for training as well as the government should ensure recruiting teachers that have experience in the teaching job.Keywords: achievement-test, teachers’ personality, teaching mathematics, teacher-background
Procedia PDF Downloads 1042078 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designing the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics
Procedia PDF Downloads 4782077 Analysis of Experimentally Designed Soundproof Gypsum Partition Wall's Sections in Terms of Structural Engineering
Authors: Abdulkerim Ilgun, Ahmad Javid Zia
Abstract:
In developing countries, the urban populations are increasing rapidly and with this increment the residential areas are experiencing major problems. Construction of high-rise buildings in confined spaces is one of the most practical solutions for this problem. However, by living in high-rise buildings and sharing common residential areas, residents will face many problems. Irritating sound problem which is known as noise is one of the major problems mentioned above. The second most important problem is the weight of the high-rise buildings which makes the structure more vulnerable to earthquakes. To decrease earthquake loads it’s very important to decrease the weight of the buildings. To solve the problem of noise and keep the building weight at minimum level, experimentally designed soundproof gypsum partition wall which has optimum thickness has been used in high-rise story building and the results have been compared with ordinary brick partition walls. In this compression the effect of weights of soundproof gypsum walls and ordinary brick walls in accordance to structural engineering have been investigated.Keywords: cellubor, gypsum board, gypsum partition walls, light partition walls, noise, sound
Procedia PDF Downloads 3072076 Simple and Effective Method of Lubrication and Wear Protection
Authors: Buddha Ratna Shrestha, Jimmy Faivre, Xavier Banquy
Abstract:
By precisely controlling the molecular interactions between anti-wear macromolecules and bottle-brush lubricating molecules in the solution state, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. Our results provide rational guides to design such fluids for virtually any type of surfaces. The lowest friction coefficient and the maximum pressure that it can sustain is 5*10-3 and 2.5 MPa which is close to the physiological pressure. Lubricating and protecting surfaces against wear using liquid lubricants is a great technological challenge. Until now, wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface while lubrication was provided by a lubricating fluid. Hence, we here research for a simple, effective and applicable solution to the above problem using surface force apparatus (SFA). SFA is a powerful technique with sub-angstrom resolution in distance and 10 nN/m resolution in interaction force while performing friction experiment. Thus, SFA is used to have the direct insight into interaction force, material and friction at interface. Also, we always know the exact contact area. From our experiments, we found that by precisely controlling the molecular interactions between anti-wear macromolecules and lubricating molecules, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. The lowest friction coefficient and the maximum pressure that it can sustain in our system is 5*10-3 and 2.5 GPA which is well above the physiological pressure. Our results provide rational guides to design such fluids for virtually any type of surfaces. Most importantly this process is simple, effective and applicable method of lubrication and protection as until now wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface. Currently, the frictional data that are obtained while sliding the flat mica surfaces are compared and confirmed that a particular mixture of solution was found to surpass all other combination. So, further we would like to confirm that the lubricating and antiwear protection remains the same by performing the friction experiments in synthetic cartilages.Keywords: bottle brush polymer, hyaluronic acid, lubrication, tribology
Procedia PDF Downloads 2642075 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites
Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash
Abstract:
Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.Keywords: gamma ray irradiation, hard ferrite, magnetic coefficient, magnetic material, radiation dose
Procedia PDF Downloads 2392074 Delineation of the Geoelectric and Geovelocity Parameters in the Basement Complex of Northwestern Nigeria
Authors: M. D. Dogara, G. C. Afuwai, O. O. Esther, A. M. Dawai
Abstract:
The geology of Northern Nigeria is under intense investigation particularly that of the northwest believed to be of the basement complex. The variability of the lithology is consistently inconsistent. Hence, the need for a close range study, it is, in view of the above that, two geophysical techniques, the vertical electrical sounding employing the Schlumberger array and seismic refraction methods, were used to delineate the geoelectric and geovelocity parameters of the basement complex of northwestern Nigeria. A total area of 400,000 m² was covered with sixty geoelectric stations established and sixty sets of seismic refraction data collected using the forward and reverse method. From the interpretation of the resistivity data, it is suggestive that the area is underlain by not more than five geoelectric layers of varying thicknesses and resistivities when a maximum half electrode spread of 100m was used. The result of the interpreted seismic data revealed two geovelocity layers, with velocities ranging between 478m/s to 1666m/s for the first layer and 1166m/s to 7141m/s for the second layer. The results of the two techniques, suggests that the area of study has an undulating bedrock topography with geoeletric and geovelocity layers composed of weathered rock materials.Keywords: basement complex, delineation, geoelectric, geovelocity, Nigeria
Procedia PDF Downloads 1512073 Gas-Liquid Flow Void Fraction Identification Using Slippage Number Froud Mixture Number Relation in Bubbly Flow
Authors: Jaber Masoud Alyami, Abdelsalam H. Alsrkhi
Abstract:
Characterizing and modeling multi-phase flow is a complicated scientific and technical phenomenon represented by a variety of interrelated elements. Yet, the introduction of dimensionless numbers used to grasp gas-liquid flow is a significant step in controlling and improving the multi-phase flow area. SL (Slippage number), for instance is a strong dimensionless number defined as a the ratio of the difference in gravitational forces between slip and no-slip conditions to the inertial force of the gas. The fact that plotting SL versus Frm provides a single acceptable curve for all of the data provided proves that SL may be used to realize the behavior of gas-liquid flow. This paper creates a numerical link between SL and Froud mixing number using vertical gas-liquid flow and then utilizes that relationship to validate its reliability in practice. An improved correlation in drift flux model generated from the experimental data and its rationality has been verified. The method in this paper is to approach for predicting the void fraction in bubbly flow through SL/Frm relation and the limitations of this method, as well as areas for development, are stated.Keywords: multiphase flow, gas-liquid flow, slippage, void farction
Procedia PDF Downloads 852072 Characteristics of Speed Dispersion in Urban Expressway
Authors: Fujian Wang, Shubin Ruan, Meiwei Dai
Abstract:
Speed dispersion has tight relation to traffic safety. In this paper, several kinds of indicating parameters (the standard speed deviation, the coefficient of variation, the deviation of V85 and V15, the mean speed deviations, and the difference between adjacent car speeds) are applied to investigate the characteristics of speed dispersion, where V85 and V15 are 85th and 15th percentile speed, respectively. Their relationships are into full investigations and the results show that: there exists a positive relation (linear) between mean speed and the deviation of V85 and V15; while a negative relation (quadratic) between traffic flow and standard speed deviation. The mean speed deviation grows exponentially with mean speed while the absolute speed deviation between adjacent cars grows linearly with the headway. The results provide some basic information for traffic management.Keywords: headway, indicating parameters, speed dispersion, urban expressway
Procedia PDF Downloads 3542071 A Parametric Study on Effects of Internal Factors on Carbonation of Reinforced Concrete
Authors: Kunal Tongaria, Abhishek Mangal, S. Mandal, Devendra Mohan
Abstract:
The carbonation of concrete is a phenomenon which is a function of various interdependent parameters. Therefore, in spite of numerous literature and database, the useful generalization is not an easy task. These interdependent parameters can be grouped under the category of internal and external factors. This paper focuses on the internal parameters which govern and increase the probability of the ingress of deleterious substances into concrete. The mechanism of effects of internal parameters such as microstructure for with and without supplementary cementing materials (SCM), water/binder ratio, the age of concrete etc. has been discussed. This is followed by the comparison of various proposed mathematical models for the deterioration of concrete. Based on existing laboratory experiments as well as field results, this paper concludes the present understanding of mechanism, modeling and future research needs in this field.Keywords: carbonation, diffusion coefficient, microstructure of concrete, reinforced concrete
Procedia PDF Downloads 4082070 Evaluating Reliability Indices in 3 Critical Feeders at Lorestan Electric Power Distribution Company
Authors: Atefeh Pourshafie, Homayoun Bakhtiari
Abstract:
The main task of power distribution companies is to supply the power required by customers in an acceptable level of quality and reliability. Some key performance indicators for electric power distribution companies are those evaluating the continuity of supply within the network. More than other problems, power outages (due to lightning, flood, fire, earthquake, etc.) challenge economy and business. In addition, end users expect a reliable power supply. Reliability indices are evaluated on an annual basis by the specialized holding company of Tavanir (Power Produce, Transmission& distribution company of Iran) . Evaluation of reliability indices is essential for distribution companies, and with regard to the privatization of distribution companies, it will be of particular importance to evaluate these indices and to plan for their improvement in a not too distant future. According to IEEE-1366 standard, there are too many indices; however, the most common reliability indices include SAIFI, SAIDI and CAIDI. These indices describe the period and frequency of blackouts in the reporting period (annual or any desired timeframe). This paper calculates reliability indices for three sample feeders in Lorestan Electric Power Distribution Company and defines the threshold values in a ten-month period. At the end, strategies are introduced to reach the threshold values in order to increase customers' satisfaction.Keywords: power, distribution network, reliability, outage
Procedia PDF Downloads 4732069 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even though decreases at these extreme wind speeds but are not infinite. Moreover, we also found that it is possible to stabilize the power coefficient (stabilizing the output power) above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: probability, probability density function, stochastic, turbulence
Procedia PDF Downloads 5872068 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 1282067 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution
Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal
Abstract:
Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.Keywords: bayesian regularization, neural network, wind shear, accuracy
Procedia PDF Downloads 5022066 Investigation of Mass Transfer for RPB Distillation at High Pressure
Authors: Amiza Surmi, Azmi Shariff, Sow Mun Serene Lock
Abstract:
In recent decades, there has been a significant emphasis on the pivotal role of Rotating Packed Beds (RPBs) in absorption processes, encompassing the removal of Volatile Organic Compounds (VOCs) from groundwater, deaeration, CO2 absorption, desulfurization, and similar critical applications. The primary focus is elevating mass transfer rates, enhancing separation efficiency, curbing power consumption, and mitigating pressure drops. Additionally, substantial efforts have been invested in exploring the adaptation of RPB technology for offshore deployment. This comprehensive study delves into the intricacies of nitrogen removal under low temperature and high-pressure conditions, employing the high gravity principle via innovative RPB distillation concept with a specific emphasis on optimizing mass transfer. Based on the author's knowledge and comprehensive research, no cryogenic experimental testing was conducted to remove nitrogen via RPB. The research identifies pivotal process control factors through meticulous experimental testing, with pressure, reflux ratio, and reboil ratio emerging as critical determinants in achieving the desired separation performance. The results are remarkable, with nitrogen removal reaching less than one mole% in the Liquefied Natural Gas (LNG) product and less than three moles% methane in the nitrogen-rich gas stream. The study further unveils the mass transfer coefficient, revealing a noteworthy trend of decreasing Number of Transfer Units (NTU) and Area of Transfer Units (ATU) as the rotational speed escalates. Notably, the condenser and reboiler impose varying demands based on the operating pressure, with lower pressures at 12 bar requiring a more substantial duty than the 15-bar operation of the RPB. In pursuit of optimal energy efficiency, a meticulous sensitivity analysis is conducted, pinpointing the ideal combination of pressure and rotating speed that minimizes overall energy consumption. These findings underscore the efficiency of the RPB distillation approach in effecting efficient separation, even when operating under the challenging conditions of low temperature and high pressure. This achievement is attributed to a rigorous process control framework that diligently manages the operational pressure and temperature profile of the RPB. Nonetheless, the study's conclusions point towards the need for further research to address potential scaling challenges and associated risks, paving the way for the industrial implementation of this transformative technology.Keywords: mass transfer coefficient, nitrogen removal, liquefaction, rotating packed bed
Procedia PDF Downloads 542065 Design Challenges for Severely Skewed Steel Bridges
Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju
Abstract:
There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint
Procedia PDF Downloads 1932064 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach
Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti
Abstract:
From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.Keywords: self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability
Procedia PDF Downloads 2232063 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study
Authors: Mazin Mohammed S. Sarhan
Abstract:
This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.Keywords: concrete beam, deflection, ductility, plate
Procedia PDF Downloads 1602062 Contemplation of Thermal Characteristics by Filling Ratio of Aluminium Oxide Nano Fluid in Wire Mesh Heat Pipe
Authors: D. Mala, S. Sendhilnathan, D. Ratchagaraja
Abstract:
In this paper, the performance of heat pipe in terms of overall heat transfer coefficient and thermal resistance is quantified by varying the volume of working fluid and the performance parameters are contemplated. For this purpose Al2O3 nano particles with a density of 9.8 gm/cm3 and a volume concentration of 1% is used as the working fluid in experimental heat pipe. The performance of heat pipe was evaluated by conducting experiments with different thermal loads and different angle of inclinations. Thermocouples are used to record the temperature distribution across the experiment. The results provide evidence that the suspension of Al2O3 nano particles in the base fluid increases the thermal efficiency of heat pipe and can be used in practical heat exchange applications.Keywords: heat pipe, angle of inclination, thermal resistance, thermal efficiency
Procedia PDF Downloads 562