Search results for: real time anomaly detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22999

Search results for: real time anomaly detection

21139 Cadmium Telluride Quantum Dots (CdTe QDs)-Thymine Conjugate Based Fluorescence Biosensor for Sensitive Determination of Nucleobases/Nucleosides

Authors: Lucja Rodzik, Joanna Lewandowska-Lancucka, Michal Szuwarzynski, Krzysztof Szczubialka, Maria Nowakowska

Abstract:

The analysis of nucleobases is of great importance for bioscience since their abnormal concentration in body fluids suggests the deficiency and mutation of the immune system, and it is considered to be an important parameter for diagnosis of various diseases. The presented conjugate meets the need for development of the effective, selective and highly sensitive sensor for nucleobase/nucleoside detection. The novel, highly fluorescent cadmium telluride quantum dots (CdTe QDs) functionalized with thymine and stabilized with thioglycolic acid (TGA) conjugates has been developed and thoroughly characterized. Successful formation of the material was confirmed by elemental analysis, and UV–Vis fluorescence and FTIR spectroscopies. The crystalline structure of the obtained product was characterized with X-ray diffraction (XRD) method. The composition of CdTe QDs and their thymine conjugate was also examined using X-ray photoelectron spectroscopy (XPS). The size of the CdTe-thymine was 3-6 nm as demonstrated using atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) imaging. The plasmon resonance fluorescence band at 540 nm on excitation at 351 nm was observed for these nanoparticles. The intensity of this band increased with the increase in the amount of conjugated thymine with no shift in its position. Based on the fluorescence measurements, it was found that the CdTe-thymine conjugate interacted efficiently and selectively not only with adenine, a nucleobase complementary to thymine, but also with nucleosides and adenine-containing modified nucleosides, i.e., 5′-deoxy-5′-(methylthio)adenosine (MTA) and 2’-O-methyladenosine, the urinary tumor markers which allow monitoring of the disease progression. The applicability of the CdTe-thymine sensor for the real sample analysis was also investigated in simulated urine conditions. High sensitivity and selectivity of CdTe-thymine fluorescence towards adenine, adenosine and modified adenosine suggest that obtained conjugate can be potentially useful for development of the biosensor for complementary nucleobase/nucleoside detection.

Keywords: CdTe quantum dots, conjugate, sensor, thymine

Procedia PDF Downloads 411
21138 Temporal Axis in Japanese: The Paradox of a Metaphorical Orientation in Time

Authors: Tomoko Usui

Abstract:

In the field of linguistics, it has been said that concepts associated with space and motion systematically contribute structure to the temporal concept. This is the conceptual metaphor theory. conceptual metaphors typically employ a more abstract concept (time) as their target and a more concrete or physical concept as their source (space). This paper will examine two major temporal conceptual metaphors: Ego-centered Moving Time Metaphor and Time-RP Metaphor. Moving time generally receives a front-back orientation, however, Japanese shows a different orientation given to time. By means of Ego perspective, this paper will illustrate the paradox of a metaphorical orientation in time.

Keywords: Ego-centered Moving Time Metaphor, Japanese saki, temporal metaphors, Time RP Metaphor

Procedia PDF Downloads 496
21137 Crossing the Interdisciplinary Border: A Multidimensional Linguistics Analysis of a Legislative Discourse

Authors: Manvender Kaur Sarjit Singh

Abstract:

There is a crucial mismatch between classroom written language tasks and real world written language requirements. Realizing the importance of reducing the gap between the professional needs of the legal practitioners and the higher learning institutions that offer the legislative education in Malaysia, it is deemed necessary to develop a framework that integrates real-life written communication with the teaching of content-based legislative discourse to future legal practitioners. By highlighting the actual needs of the legal practitioners in the country, the present teaching practices will be enhanced and aligned with the actual needs of the learners thus realizing the vision and aspirations of the Malaysian Education Blueprint 2013-2025 and Legal Profession Qualifying Board. The need to focus future education according to the actual needs of the learners can be realized by developing a teaching framework which is designed within the prospective requirements of its real-life context. This paper presents the steps taken to develop a specific teaching framework that fulfills the fundamental real-life context of the prospective legal practitioners. The teaching framework was developed based on real-life written communication from the legal profession in Malaysia, using the specific genre analysis approach which integrates a corpus-based approach and a structural linguistics analysis. This approach was adopted due to its fundamental nature of intensive exploration of the real-life written communication according to the established strategies used. The findings showed the use of specific moves and parts-of-speech by the legal practitioners, in order to prepare the selected genre. The teaching framework is hoped to enhance the teachings of content-based law courses offered at present in the higher learning institutions in Malaysia.

Keywords: linguistics analysis, corpus analysis, genre analysis, legislative discourse

Procedia PDF Downloads 382
21136 Development and Validation Method for Quantitative Determination of Rifampicin in Human Plasma and Its Application in Bioequivalence Test

Authors: Endang Lukitaningsih, Fathul Jannah, Arief R. Hakim, Ratna D. Puspita, Zullies Ikawati

Abstract:

Rifampicin is a semisynthetic antibiotic derivative of rifamycin B produced by Streptomyces mediterranei. RIF has been used worldwide as first line drug-prescribed throughout tuberculosis therapy. This study aims to develop and to validate an HPLC method couple with a UV detection for determination of rifampicin in spiked human plasma and its application for bioequivalence study. The chromatographic separation was achieved on an RP-C18 column (LachromHitachi, 250 x 4.6 mm., 5μm), utilizing a mobile phase of phosphate buffer/acetonitrile (55:45, v/v, pH 6.8 ± 0.1) at a flow of 1.5 mL/min. Detection was carried out at 337 nm by using spectrophotometer. The developed method was statistically validated for the linearity, accuracy, limit of detection, limit of quantitation, precise and specifity. The specifity of the method was ascertained by comparing chromatograms of blank plasma and plasma containing rifampicin; the matrix and rifampicin were well separated. The limit of detection and limit of quantification were 0.7 µg/mL and 2.3 µg/mL, respectively. The regression curve of standard was linear (r > 0.999) over a range concentration of 20.0 – 100.0 µg/mL. The mean recovery of the method was 96.68 ± 8.06 %. Both intraday and interday precision data showed reproducibility (R.S.D. 2.98% and 1.13 %, respectively). Therefore, the method can be used for routine analysis of rifampicin in human plasma and in bioequivalence study. The validated method was successfully applied in pharmacokinetic and bioequivalence study of rifampicin tablet in a limited number of subjects (under an Ethical Clearance No. KE/FK/6201/EC/2015). The mean values of Cmax, Tmax, AUC(0-24) and AUC(o-∞) for the test formulation of rifampicin were 5.81 ± 0.88 µg/mL, 1.25 hour, 29.16 ± 4.05 µg/mL. h. and 29.41 ± 4.07 µg/mL. h., respectively. Meanwhile for the reference formulation, the values were 5.04 ± 0.54 µg/mL, 1.31 hour, 27.20 ± 3.98 µg/mL.h. and 27.49 ± 4.01 µg/mL.h. From bioequivalence study, the 90% CIs for the test formulation/reference formulation ratio for the logarithmic transformations of Cmax and AUC(0-24) were 97.96-129.48% and 99.13-120.02%, respectively. According to the bioequivamence test guidelines of the European Commission-European Medicines Agency, it can be concluded that the test formulation of rifampicin is bioequivalence with the reference formulation.

Keywords: validation, HPLC, plasma, bioequivalence

Procedia PDF Downloads 288
21135 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 219
21134 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 426
21133 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 214
21132 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique

Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani

Abstract:

Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.

Keywords: regression, machine learning, scan radiation, robot

Procedia PDF Downloads 76
21131 Comparison between High Resolution Ultrasonography and Magnetic Resonance Imaging in Assessment of Musculoskeletal Disorders Causing Ankle Pain

Authors: Engy S. El-Kayal, Mohamed M. S. Arafa

Abstract:

There are various causes of ankle pain including traumatic and non-traumatic causes. Various imaging techniques are available for assessment of AP. MRI is considered to be the imaging modality of choice for ankle joint evaluation with an advantage of its high spatial resolution, multiplanar capability, hence its ability to visualize small complex anatomical structures around the ankle. However, the high costs and the relatively limited availability of MRI systems, as well as the relatively long duration of the examination all are considered disadvantages of MRI examination. Therefore there is a need for a more rapid and less expensive examination modality with good diagnostic accuracy to fulfill this gap. HRU has become increasingly important in the assessment of ankle disorders, with advantages of being fast, reliable, of low cost and readily available. US can visualize detailed anatomical structures and assess tendinous and ligamentous integrity. The aim of this study was to compare the diagnostic accuracy of HRU with MRI in the assessment of patients with AP. We included forty patients complaining of AP. All patients were subjected to real-time HRU and MRI of the affected ankle. Results of both techniques were compared to surgical and arthroscopic findings. All patients were examined according to a defined protocol that includes imaging the tendon tears or tendinitis, muscle tears, masses, or fluid collection, ligament sprain or tears, inflammation or fluid effusion within the joint or bursa, bone and cartilage lesions, erosions and osteophytes. Analysis of the results showed that the mean age of patients was 38 years. The study comprised of 24 women (60%) and 16 men (40%). The accuracy of HRU in detecting causes of AP was 85%, while the accuracy of MRI in the detection of causes of AP was 87.5%. In conclusions: HRU and MRI are two complementary tools of investigation with the former will be used as a primary tool of investigation and the latter will be used to confirm the diagnosis and the extent of the lesion especially when surgical interference is planned.

Keywords: ankle pain (AP), high-resolution ultrasound (HRU), magnetic resonance imaging (MRI) ultrasonography (US)

Procedia PDF Downloads 188
21130 Evaluation of the Cytotoxicity and Cellular Uptake of a Cyclodextrin-Based Drug Delivery System for Cancer Therapy

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

Drug delivery systems are proposed for use in cancer treatment to specifically target cancer cells and deliver a therapeutic dose without affecting normal cells. For that purpose, the use of folate receptors (FR) can be considered a key strategy, since they are commonly over-expressed in cancer cells. In this study, cyclodextrins (CD) have being used as vehicles to target FR and deliver the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within their cavities. Here, β-CD has been modified using folic acid so as to specifically target the FR. Thus, this drug delivery system consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 15.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 16.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 10.5 for A549 and 132.6 µM ± 16.1 and 288.1 µM ± 26.3 for BEAS-2B. These results demonstrate that free MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug. The use of cell imaging by confocal microscopy has allowed visualisation of FR targeting in cancer cells, as well as the identification of the interlisation pathway of the drug. Hence, the cellular uptake and internalisation process of this drug delivery system is being addressed.

Keywords: cancer treatment, cyclodextrins, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 309
21129 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 71
21128 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance

Authors: Emad Alenany, M. Adel El-Baz

Abstract:

In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.

Keywords: queueing network, discrete-event simulation, health applications, SPT

Procedia PDF Downloads 185
21127 Vibration Imaging Method for Vibrating Objects with Translation

Authors: Kohei Shimasaki, Tomoaki Okamura, Idaku Ishii

Abstract:

We propose a vibration imaging method for high frame rate (HFR)-video-based localization of vibrating objects with large translations. When the ratio of the translation speed of a target to its vibration frequency is large, obtaining its frequency response in image intensities becomes difficult because one or no waves are observable at the same pixel. Our method can precisely localize moving objects with vibration by virtually translating multiple image sequences for pixel-level short-time Fourier transform to observe multiple waves at the same pixel. The effectiveness of the proposed method is demonstrated by analyzing several HFR videos of flying insects in real scenarios.

Keywords: HFR video analysis, pixel-level vibration source localization, short-time Fourier transform, virtual translation

Procedia PDF Downloads 107
21126 Evaluation of Polymerisation Shrinkage of Randomly Oriented Micro-Sized Fibre Reinforced Dental Composites Using Fibre-Bragg Grating Sensors and Their Correlation with Degree of Conversion

Authors: Sonam Behl, Raju, Ginu Rajan, Paul Farrar, B. Gangadhara Prusty

Abstract:

Reinforcing dental composites with micro-sized fibres can significantly improve the physio-mechanical properties of dental composites. The short fibres can be oriented randomly within dental composites, thus providing quasi-isotropic reinforcing efficiency unlike unidirectional/bidirectional fibre reinforced composites enhancing anisotropic properties. Thus, short fibres reinforced dental composites are getting popular among practitioners. However, despite their popularity, resin-based dental composites are prone to failure on account of shrinkage during photo polymerisation. The shrinkage in the structure may lead to marginal gap formation, causing secondary caries, thus ultimately inducing failure of the restoration. The traditional methods to evaluate polymerisation shrinkage using strain gauges, density-based measurements, dilatometer, or bonded-disk focuses on average value of volumetric shrinkage. Moreover, the results obtained from traditional methods are sensitive to the specimen geometry. The present research aims to evaluate the real-time shrinkage strain at selected locations in the material with the help of optical fibre Bragg grating (FBG) sensors. Due to the miniature size (diameter 250 µm) of FBG sensors, they can be easily embedded into small samples of dental composites. Furthermore, an FBG array into the system can map the real-time shrinkage strain at different regions of the composite. The evaluation of real-time monitoring of shrinkage values may help to optimise the physio-mechanical properties of composites. Previously, FBG sensors have been able to rightfully measure polymerisation strains of anisotropic (unidirectional or bidirectional) reinforced dental composites. However, very limited study exists to establish the validity of FBG based sensors to evaluate volumetric shrinkage for randomly oriented fibres reinforced composites. The present study aims to fill this research gap and is focussed on establishing the usage of FBG based sensors for evaluating the shrinkage of dental composites reinforced with randomly oriented fibres. Three groups of specimens were prepared by mixing the resin (80% UDMA/20% TEGDMA) with 55% of silane treated BaAlSiO₂ particulate fillers or by adding 5% of micro-sized fibres of diameter 5 µm, and length 250/350 µm along with 50% of silane treated BaAlSiO₂ particulate fillers into the resin. For measurement of polymerisation shrinkage strain, an array of three fibre Bragg grating sensors was embedded at a depth of 1 mm into a circular Teflon mould of diameter 15 mm and depth 2 mm. The results obtained are compared with the traditional method for evaluation of the volumetric shrinkage using density-based measurements. Degree of conversion was measured using FTIR spectroscopy (Spotlight 400 FT-IR from PerkinElmer). It is expected that the average polymerisation shrinkage strain values for dental composites reinforced with micro-sized fibres can directly correlate with the measured degree of conversion values, implying that more C=C double bond conversion to C-C single bond values also leads to higher shrinkage strain within the composite. Moreover, it could be established the photonics approach could help assess the shrinkage at any point of interest in the material, suggesting that fibre-Bragg grating sensors are a suitable means for measuring real-time polymerisation shrinkage strain for randomly fibre reinforced dental composites as well.

Keywords: dental composite, glass fibre, polymerisation shrinkage strain, fibre-Bragg grating sensors

Procedia PDF Downloads 152
21125 Processes and Application of Casting Simulation and Its Software’s

Authors: Surinder Pal, Ajay Gupta, Johny Khajuria

Abstract:

Casting simulation helps visualize mold filling and casting solidification; predict related defects like cold shut, shrinkage porosity and hard spots; and optimize the casting design to achieve the desired quality with high yield. Flow and solidification of molten metals are, however, a very complex phenomenon that is difficult to simulate correctly by conventional computational techniques, especially when the part geometry is intricate and the required inputs (like thermo-physical properties and heat transfer coefficients) are not available. Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mockup of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome. The all casting simulation software has own requirements, like magma cast has only best for crack simulation. The latest generation software Auto CAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feed aids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. IIT Bombay has developed a set of applications for the foundry industry to improve casting yield and quality. Casting simulation is a fast and efficient solution for process for advanced tool which is the result of more than 20 years of collaboration with major industrial partners and academic institutions around the world. In this paper the process of casting simulation is studied.

Keywords: casting simulation software’s, simulation technique’s, casting simulation, processes

Procedia PDF Downloads 474
21124 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 142
21123 Clinical Impact of Ultra-Deep Versus Sanger Sequencing Detection of Minority Mutations on the HIV-1 Drug Resistance Genotype Interpretations after Virological Failure

Authors: S. Mohamed, D. Gonzalez, C. Sayada, P. Halfon

Abstract:

Drug resistance mutations are routinely detected using standard Sanger sequencing, which does not detect minor variants with a frequency below 20%. The impact of detecting minor variants generated by ultra-deep sequencing (UDS) on HIV drug-resistance (DR) interpretations has not yet been studied. Fifty HIV-1 patients who experienced virological failure were included in this retrospective study. The HIV-1 UDS protocol allowed the detection and quantification of HIV-1 protease and reverse transcriptase variants related to genotypes A, B, C, E, F, and G. DeepChek®-HIV simplified DR interpretation software was used to compare Sanger sequencing and UDS. The total time required for the UDS protocol was found to be approximately three times longer than Sanger sequencing with equivalent reagent costs. UDS detected all of the mutations found by population sequencing and identified additional resistance variants in all patients. An analysis of DR revealed a total of 643 and 224 clinically relevant mutations by UDS and Sanger sequencing, respectively. Three resistance mutations with > 20% prevalence were detected solely by UDS: A98S (23%), E138A (21%) and V179I (25%). A significant difference in the DR interpretations for 19 antiretroviral drugs was observed between the UDS and Sanger sequencing methods. Y181C and T215Y were the most frequent mutations associated with interpretation differences. A combination of UDS and DeepChek® software for the interpretation of DR results would help clinicians provide suitable treatments. A cut-off of 1% allowed a better characterisation of the viral population by identifying additional resistance mutations and improving the DR interpretation.

Keywords: HIV-1, ultra-deep sequencing, Sanger sequencing, drug resistance

Procedia PDF Downloads 333
21122 Conceptual Model for Massive Open Online Blended Courses Based on Disciplines’ Concepts Capitalization and Obstacles’ Detection

Authors: N. Hammid, F. Bouarab-Dahmani, T. Berkane

Abstract:

Since its appearance, the MOOC (massive open online course) is gaining more and more intention of the educational communities over the world. Apart from the current MOOCs design and purposes, the creators of MOOC focused on the importance of the connection and knowledge exchange between individuals in learning. In this paper, we present a conceptual model for massive open online blended courses where teachers over the world can collaborate and exchange their experience to get a common efficient content designed as a MOOC opened to their students to live a better learning experience. This model is based on disciplines’ concepts capitalization and the detection of the obstacles met by their students when faced with problem situations (exercises, projects, case studies, etc.). This detection is possible by analyzing the frequently of semantic errors committed by the students. The participation of teachers in the design of the course and the attendance by their students can guarantee an efficient and extensive participation (an important number of participants) in the course, the learners’ motivation and the evaluation issues, in the way that the teachers designing the course assess their students. Thus, the teachers review, together with their knowledge, offer a better assessment and efficient connections to their students.

Keywords: massive open online course, MOOC, online learning, e-learning

Procedia PDF Downloads 266
21121 Obstacle Detection and Path Tracking Application for Disables

Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir

Abstract:

Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.

Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence

Procedia PDF Downloads 547
21120 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems

Authors: Jalil Boudjadar

Abstract:

Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.

Keywords: time-critical systems, multicore systems, schedulability analysis, energy consumption, performance analysis

Procedia PDF Downloads 107
21119 The Power of the Proper Orthogonal Decomposition Method

Authors: Charles Lee

Abstract:

The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.

Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios

Procedia PDF Downloads 82
21118 A Handheld Light Meter Device for Methamphetamine Detection in Oral Fluid

Authors: Anindita Sen

Abstract:

Oral fluid is a promising diagnostic matrix for drugs of abuse compared to urine and serum. Detection of methamphetamine in oral fluid would pave way for the easy evaluation of impairment in drivers during roadside drug testing as well as ensure safe working environments by facilitating evaluation of impairment in employees at workplaces. A membrane-based point-of-care (POC) friendly pre-treatment technique has been developed which aided elimination of interferences caused by salivary proteins and facilitated the demonstration of methamphetamine detection in saliva using a gold nanoparticle based colorimetric aptasensor platform. It was found that the colorimetric response in saliva was always suppressed owing to the matrix effects. By navigating the challenging interfering issues in saliva, we were successfully able to detect methamphetamine at nanomolar levels in saliva offering immense promise for the translation of these platforms for on-site diagnostic systems. This subsequently motivated the development of a handheld portable light meter device that can reliably transduce the aptasensors colorimetric response into absorbance, facilitating quantitative detection of analyte concentrations on-site. This is crucial due to the prevalent unreliability and sensitivity problems of the conventional drug testing kits. The fabricated light meter device response was validated against a standard UV-Vis spectrometer to confirm reliability. The portable and cost-effective handheld detector device features sensitivity comparable to the well-established UV-Vis benchtop instrument and the easy-to-use device could potentially serve as a prototype for a commercial device in the future.

Keywords: aptasensors, colorimetric gold nanoparticle assay, point-of-care, oral fluid

Procedia PDF Downloads 57
21117 A Comparative Assessment of Membrane Bioscrubber and Classical Bioscrubber for Biogas Purification

Authors: Ebrahim Tilahun, Erkan Sahinkaya, Bariş Calli̇

Abstract:

Raw biogas is a valuable renewable energy source however it usually needs removal of the impurities. The presence of hydrogen sulfide (H2S) in the biogas has detrimental corrosion effects on the cogeneration units. Removal of H2S from the biogas can therefore significantly improve the biogas quality. In this work, a conventional bioscrubber (CBS), and a dense membrane bioscrubber (DMBS) were comparatively evaluated in terms of H2S removal efficiency (RE), CH4 enrichment and alkaline consumption at gas residence times ranging from 5 to 20 min. Both bioscrubbers were fed with a synthetic biogas containing H2S (1%), CO2 (39%) and CH4 (60%). The results show that high RE (98%) was obtained in the DMBS when gas residence time was 20 min, whereas slightly lower CO2 RE was observed. While in CBS system the outlet H2S concentration was always lower than 250 ppmv, and its H2S RE remained higher than 98% regardless of the gas residence time, although the high alkaline consumption and frequent absorbent replacement limited its cost-effectiveness. The result also indicates that in DMBS when the gas residence time increased to 20 min, the CH4 content in the treated biogas enriched upto 80%. However, while operating the CBS unit the CH4 content of the raw biogas (60%) decreased by three fold. The lower CH4 content in CBS was probably caused by extreme dilution of biogas with air (N2 and O2). According to the results obtained here the DMBS system is a robust and effective biotechnology in comparison with CBS. Hence, DMBS has a better potential for real scale applications.

Keywords: biogas, bioscrubber, desulfurization, PDMS membrane

Procedia PDF Downloads 223
21116 Radio Frequency Identification (Rfid) Cost-Effective, Location-Based System for Managing Construction Materials

Authors: Mourad Bakouka, Abdelaziz Rabehi

Abstract:

Companies need to have logistics and transportation in place that can adapt to the changing nature of construction sites. This ensures they can react quickly when needed. A study was conducted to develop a way to locate and track materials on construction sites. The system is an RFID/GPS integration that's required to pull off this feat. The study also reports how the platform has been used in construction. They found many advantages to using it, including reductions in both time and costs as well as improved management of materials orders. . For example, the time in which a project could start up was shortened from two weeks to three days with just a single digital order. As of now, the technology is still limited in its widespread adoption due largely to overall lack of awareness and difficulty connecting to it. However, as more and more companies embrace it in construction, the technology is expected to become ubiquitous. The developed platform provides contractors and construction managers with real-time information about the status of materials and work, allowing them to better manage the workflow in a project. The study sheds new light on this subject, which is essential to know. This work is becoming increasingly aware of the use of smart tools in constructing buildings.

Keywords: materials management, internet of things (IoT), radio frequency identification (RFID), construction site, supply chain management

Procedia PDF Downloads 79
21115 Inverse Problem Method for Microwave Intrabody Medical Imaging

Authors: J. Chamorro-Servent, S. Tassani, M. A. Gonzalez-Ballester, L. J. Roca, J. Romeu, O. Camara

Abstract:

Electromagnetic and microwave imaging (MWI) have been used in medical imaging in the last years, being the most common applications of breast cancer and stroke detection or monitoring. In those applications, the subject or zone to observe is surrounded by a number of antennas, and the Nyquist criterium can be satisfied. Additionally, the space between the antennas (transmitting and receiving the electromagnetic fields) and the zone to study can be prepared in a homogeneous scenario. However, this may differ in other cases as could be intracardiac catheters, stomach monitoring devices, pelvic organ systems, liver ablation monitoring devices, or uterine fibroids’ ablation systems. In this work, we analyzed different MWI algorithms to find the most suitable method for dealing with an intrabody scenario. Due to the space limitations usually confronted on those applications, the device would have a cylindrical configuration of a maximum of eight transmitters and eight receiver antennas. This together with the positioning of the supposed device inside a body tract impose additional constraints in order to choose a reconstruction method; for instance, it inhabitants the use of well-known algorithms such as filtered backpropagation for diffraction tomography (due to the unusual configuration with probes enclosed by the imaging region). Finally, the difficulty of simulating a realistic non-homogeneous background inside the body (due to the incomplete knowledge of the dielectric properties of other tissues between the antennas’ position and the zone to observe), also prevents the use of Born and Rytov algorithms due to their limitations with a heterogeneous background. Instead, we decided to use a time-reversed algorithm (mostly used in geophysics) due to its characteristics of ignoring heterogeneities in the background medium, and of focusing its generated field onto the scatters. Therefore, a 2D time-reversed finite difference time domain was developed based on the time-reversed approach for microwave breast cancer detection. Simultaneously an in-silico testbed was also developed to compare ground-truth dielectric properties with corresponding microwave imaging reconstruction. Forward and inverse problems were computed varying: the frequency used related to a small zone to observe (7, 7.5 and 8 GHz); a small polyp diameter (5, 7 and 10 mm); two polyp positions with respect to the closest antenna (aligned or disaligned); and the (transmitters-to-receivers) antenna combination used for the reconstruction (1-1, 8-1, 8-8 or 8-3). Results indicate that when using the existent time-reversed method for breast cancer here for the different combinations of transmitters and receivers, we found false positives due to the high degrees of freedom and unusual configuration (and the possible violation of Nyquist criterium). Those false positives founded in 8-1 and 8-8 combinations, highly reduced with the 1-1 and 8-3 combination, being the 8-3 configuration de most suitable (three neighboring receivers at each time). The 8-3 configuration creates a region-of-interest reduced problem, decreasing the ill-posedness of the inverse problem. To conclude, the proposed algorithm solves the main limitations of the described intrabody application, successfully detecting the angular position of targets inside the body tract.

Keywords: FDTD, time-reversed, medical imaging, microwave imaging

Procedia PDF Downloads 125
21114 Ischemic Stroke Detection in Computed Tomography Examinations

Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina

Abstract:

Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.

Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means

Procedia PDF Downloads 366
21113 Radical Web Text Classification Using a Composite-Based Approach

Authors: Kolade Olawande Owoeye, George R. S. Weir

Abstract:

The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.

Keywords: extremist, web pages, classification, semantics, posit

Procedia PDF Downloads 143
21112 Angle of Arrival Estimation Using Maximum Likelihood Method

Authors: Olomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr, Zekeriya Aliyazicioglu, H. K. Hwang

Abstract:

Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna.

Keywords: MIMO radar, phased array antenna, target detection, radar signal processing

Procedia PDF Downloads 540
21111 On the Design of a Secure Two-Party Authentication Scheme for Internet of Things Using Cancelable Biometrics and Physically Unclonable Functions

Authors: Behnam Zahednejad, Saeed Kosari

Abstract:

Widespread deployment of Internet of Things (IoT) has raised security and privacy issues in this environment. Designing a secure two-factor authentication scheme between the user and server is still a challenging task. In this paper, we focus on Cancelable Biometric (CB) as an authentication factor in IoT. We show that previous CB-based scheme fail to provide real two-factor security, Perfect Forward Secrecy (PFS) and suffer database attacks and traceability of the user. Then we propose our improved scheme based on CB and Physically Unclonable Functions (PUF), which can provide real two-factor security, PFS, user’s unlinkability, and resistance to database attack. In addition, Key Compromise Impersonation (KCI) resilience is achieved in our scheme. We also prove the security of our proposed scheme formally using both Real-Or-Random (RoR) model and the ProVerif analysis tool. For the usability of our scheme, we conducted a performance analysis and showed that our scheme has the least communication cost compared to the previous CB-based scheme. The computational cost of our scheme is also acceptable for the IoT environment.

Keywords: IoT, two-factor security, cancelable biometric, key compromise impersonation resilience, perfect forward secrecy, database attack, real-or-random model, ProVerif

Procedia PDF Downloads 100
21110 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 354