Search results for: object weight
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5039

Search results for: object weight

3179 Classification of Echo Signals Based on Deep Learning

Authors: Aisulu Tileukulova, Zhexebay Dauren

Abstract:

Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.

Keywords: radar, neural network, convolutional neural network, echo signals

Procedia PDF Downloads 353
3178 Optimal Protection Coordination in Distribution Systems with Distributed Generations

Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei

Abstract:

The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.

Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS

Procedia PDF Downloads 138
3177 Maternal Obesity in Nigeria: An Exploratory Study

Authors: Ojochenemi J. Onubi, Debbi Marais, Lorna Aucott, Friday Okonofua, Amudha Poobalan

Abstract:

Background: Obesity is a worldwide epidemic with major health and economic consequences. Pregnancy is a trigger point for the development of obesity, and maternal obesity is associated with significant adverse effects in the mother and child. Nigeria is experiencing a double burden of under- and over-nutrition with rising levels of obesity particularly in women. However, there is scarcity of data on maternal obesity in Nigeria and other African countries. Aims and Objectives: This project aimed at identifying crucial components of potential interventions for maternal obesity in Nigeria. The objectives were to assess the prevalence, effects, and distribution of maternal obesity; knowledge, attitude and practice (KAP) of pregnant women and maternal healthcare providers; and identify existing interventions for maternal obesity in Nigeria. Methodology: A systematic review and meta-analysis were initially conducted to appraise the existing literature on maternal obesity in Africa. Following this, a quantitative questionnaire survey of the KAP of pregnant women and a qualitative interview study of the KAP of Health Care Workers (HCW) were conducted in seven secondary and tertiary hospitals across Nigeria. Quantitative data was analysed using SPSS statistical software, while thematic analysis was conducted for qualitative data. Results: Twenty-nine studies included in the systematic review showed significant prevalence, socio-demographic associations, and adverse effects of maternal obesity on labour, maternal, and child outcomes in Africa. The questionnaire survey of 435 mothers revealed a maternal obesity prevalence of 17.9% among mothers who registered for antenatal care in the first trimester. The mothers received nutrition information from different sources and had insufficient knowledge of their own weight category or recommended Gestational Weight Gain (GWG), causes, complications, and safe ways to manage maternal obesity. However, majority of the mothers were of the opinion that excess GWG is avoided in pregnancy and some practiced weight management (diet and exercise) during pregnancy. For the qualitative study, four main themes were identified: ‘Concerns about obesity in pregnancy’, ‘Barriers to care for obese pregnant women’, ‘Practice of care for obese pregnant women’, and ‘Improving care for obese pregnant women’. HCW expressed concerns about rising levels of maternal obesity, lack of guidelines for the management of obese pregnant women and worries about unintended consequences of antenatal interventions. ‘Barriers’ included lack of contact with obese women before pregnancy, late registration for antenatal care, and perceived maternal barriers such as socio-cultural beliefs of mothers and poverty. ‘Practice’ included anticipatory care and screening for possible complications, general nutrition education during antenatal care and interdisciplinary care for mothers with complications. HCW offered suggestions on improving care for obese women including timing, type, and settings of interventions; and the need for involvement of other stake holders in caring for obese pregnant women. Conclusions: Culturally adaptable/sensitive interventions should be developed for the management of obese pregnant women in Africa. Education and training of mothers and health care workers, and provision of guidelines are some of the components of potential interventions in Nigeria.

Keywords: Africa, maternal, obesity, pregnancy

Procedia PDF Downloads 266
3176 Self –Engineering Strategy of Six Dimensional Inter-Subcultural Mental Images

Authors: Mostafa Jafari

Abstract:

How the people continually create and recreate the six dimensional inter- sub-cultural relationships from the strategic point of view? Can they engineer and direct it toward creating a set of peaceful subcultures? This paper answers to these questions. Our mental images shape the quantity and quality of our relationships. The six dimensions of mental images are: my mental image about myself, your mental image about yourself, my mental image about you, your mental image about me, my imagination about your image about me and your imagination about my mental image about you. Strategic engineering is dynamically shaping these images and imaginations.Methodology: This survey, which is based on object and the relation between the variables, is explanatory, correlative and quantitative. The target community members are 90 educated people from universities. The data has been collected through questionnaire and interview and has been analyzed by descriptive statistical techniques and qualitative method. Results: Our findings show that engineering and deliberatly managing the process of inter- sub-cultural transactions in the national and global level can enable us to continually reform a peaceful set of learner sub-culturals toward recreate a peaceful unit global Home.

Keywords: strategic engineering, mental image, six dimensional mental images strategy , cultural literacy, radar technique

Procedia PDF Downloads 403
3175 Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method

Authors: Iwona Cieślik, Władysław Migdał, Kinga Topolska, Ewa Cieślik

Abstract:

The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants.

Keywords: contaminants, fish, pesticides residues, QuEChERS method

Procedia PDF Downloads 220
3174 Cardiac Protective Effect of Olive Oil against Ischemia Reperfusion- Induced Cardiac Arrhythmias in Isolated Diabetic Rat Hearts

Authors: Ishfaq A. Bukhari, Bassem Yousef Sheikh, Abdulrahman Almotrefi, Osama Yousaf, Amer Mahmood

Abstract:

Olive oil is the primary source of fat in the Mediterranean diet which is associated with a low mortality for cardiovascular disease. Olive oil is rich in monounsaturated fatty acids, and has been reported for variety of beneficial cardiovascular effects including blood pressure lowering, anti-platelet, anti-diabetic and anti-inflammatory effects. Growing number evidences from preclinical and clinical studies have shown that olive oil improves insulin resistance, decrease vessels stiffness and prevent thromboembolism. We evaluated the effects of olive against streptozotocin-induced physiological disorders in the animal models of diabetes and ischemia and reperfusion (I/R)- induced cardiac arrhythmias. Diabetes was induced in male rats with a single intraperitoneal injection of streptozotocin (60 mg/kg), rats were treated for two months with olive oil (1 ml/kg p.o). Control animals received saline. Blood glucose, body weight were monitored every 14 days. At the end of the treatment rats were sacrificed hearts were isolated for mounting on langedorff’s apparatus. The blood glucose and body weight was not significantly different in the control and olive treated animals. The control diabetic animals exhibited 100% incidence of I/R –induced ventricular fibrillation which was reduced to 0% with olive oil, treatment. The duration of ventricular fibrillation reduced from 98.8± 2.3 (control) to 0 seconds in the olive oil treated group. Diltiazem, a calcium channel blocker (1 µm/L) showed similar results and protected the I/R-induced cardiac disorders. The biochemical analysis of the cardiac tissues showed that diabetes and I/R produce marked pathological changes in the cardiomyocytes including decreased glutathione (GSH) and increased oxidative stress (Malondialdehyde; MDA). Pretreatment of animals with olive oil (1 ml/kg p.o) increased GSH and MDA levels. Olive oil also improved the diabetic-induced histopathological changes in the cardiomyocytes. These finding indicates that olive possesses cardiac protective properties. Further studies are under way in our lab to explore the mechanism of the cardio-protective effect of olive oil.

Keywords: diabeties, ischemia-reperfusion, olive oil, rats heart

Procedia PDF Downloads 464
3173 Firefighting Means in Food Industries

Authors: Racim Rifaat Ferdjani, Zineddine Chetoui

Abstract:

The goal of our work is to provide a tool that helps control and ensures a global view of the means of firefighting (MLCI) in a food production plant (for example Hamoud Boualem plant). We divided the site into 4 zones, then we identified the firefighting means (MLCI) present in each zone, taking into account their type, weight, location, and fire class as well as their compliance with respect to the regulations in force while assigning them an alphanumeric reference which makes it possible to deduce everything. Thus, the use of a tool in the form of an Excel table was made concrete, and an average compliance rate of 45% was therefore obtained.

Keywords: MLCI, firefighting means, Hamoud, Boualem

Procedia PDF Downloads 124
3172 Black Soybeans Show Acute and Chronic Liver Protective Functions against CCl4 Induced Liver Damage

Authors: Cheng-Kuang Hsu, Chih-Hsiang Chang, Chi-Chih Wang

Abstract:

Black soybeans contain high amount of antioxidants including polyphenols, anthocyanins and flavones. The protective function of black soybean against CCl4 (a strong oxidant) induced acute and chronic liver damage was investigated in vivo using SD rats or ICR mouse. The evaluation of CCl4 induced oxidative stress in the liver tissues included the measurements of the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the concentration of thiobarbituric acid reactive substances (TBARS), the activities of antioxidant enzymes (superoxide dismutase SOD, catalase, and glutathione peroxidase GPx), as well as the level of histological lesion in the liver tissues. For chronic experiment, a decoction at the concentration of 100 or 1000 mg/kg of body weight, produced by baking black soybean at 130°C for 5 min and followed by immerging in 100°C hot water for 20 min, showed the inhibitory effect against CCl4 induced liver damage in SD rats. Hot-water extract (80 °C for 30 min) from un-preheated black soybean at the concentration of 200 mg/kg of body weight could not reduce ALT and AST levels in CCl4 treated SD rats, but the hot-water extract from preheated black soybean did enhance antioxidant enzymes activities, decline ALT and AST levels. Specially, the hot-water extract from the seed cost of black soybean had the highest liver protective function since it can reduce vacuolization and necrosis in the liver tissues. For acute experiment, the hot-water extracts from black soybean and the seed coat, as well as pure cyanidin-3-glucoside (C3G) could reduce ALT and AST levels of CCl4 induced ICR mouse. The decoction and hot-water extract from the seed coat of black soybean had higher total polyphenols, anthocyanins and flavones contents than those extracts from whole black soybean. Such results agreed with high liver protective function in the decoction and hot-water from the seed coat of black soybean. Black soybean showed protective function only after preheating process (baking at 130°C for 5 to 10 min) because preheating treatment damaged the cell wall and made the extraction of the antioxidants more effectively.

Keywords: black soybean, liver protective function, antioxidant, antioxidative stress

Procedia PDF Downloads 481
3171 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method

Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri

Abstract:

Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.

Keywords: unsharp masking, blur image, sub-region gradient, image enhancement

Procedia PDF Downloads 214
3170 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System

Authors: Mamta M. Barapatre, V. N. Sahare

Abstract:

Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.

Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept

Procedia PDF Downloads 278
3169 Polysaccharides as Pour Point Depressants

Authors: Ali M. EL-Soll

Abstract:

Physical properties of Sarir waxy crude oil was investigated, pour-point was determined using ASTM D-79 procedure, paraffin content and carbon number distribution of the paraffin was determined using gas liquid Chromatography(GLC), polymeric additives were prepared and their structures were confirmed using IR spectrophotometer. The molecular weight and molecular weigh distribution of these additives were determined by gel permeation chromatography (GPC). the performance of the synthesized additives as pour-point depressants was evaluated, for the mentioned crude oil.

Keywords: sarir, waxy, crude, pour point, depressants

Procedia PDF Downloads 452
3168 Machine Installation and Maintenance Management

Authors: Mohammed Benmostefa

Abstract:

In the industrial production of large series or even medium series, there are vibration problems. In continuous operations, technical devices result in vibrations in solid bodies and machine components, which generate solid noise and/or airborne noise. This is because vibrations are the mechanical oscillations of an object near its equilibrium point. In response to the problems resulting from these vibrations, a number of remedial acts and solutions have been put forward. These include insulation of machines, insulation of concrete masses, insulation under screeds, insulation of sensitive equipment, point insulation of machines, linear insulation of machines, full surface insulation of machines, and the like. Following this, the researcher sought not only to raise awareness on the possibility of lowering the vibration frequency in industrial machines but also to stress the significance of procedures involving the pre-installation process of machinery, namely, setting appropriate installation and start-up methods of the machine, allocating and updating imprint folders to each machine, and scheduling maintenance of each machine all year round to have reliable equipment, gain cost reduction and maintenance efficiency to eventually ensure the overall economic performance of the company.

Keywords: maintenance, vibration, efficiency, production, machinery

Procedia PDF Downloads 87
3167 Anatomical and Histological Analysis of Salpinx and Ovary in Anatolian Wild Goat (Capra aegagrus aegagrus)

Authors: Gulseren Kirbas, Mushap Kuru, Buket Bakir, Ebru Karadag Sari

Abstract:

Capra (mountain goat) is a genus comprising nine species. The domestic goat (C. aegagrus hircus) is a subspecies of the wild goat that is domesticated. This study aimed to determine the anatomical structure of the salpinx and ovary of the Anatolian wild goat (C. aegagrus aegagrus). Animals that were taken to the Kafkas University Wildlife Rescue and Rehabilitation Center, Kars, Turkey, because of various reasons, such as traffic accidents and firearm injuries, were used in this study. The salpinges and ovaries of four wild goats of similar ages, which could not be rescued by the Center despite all interventions, were dissected. Measurements were taken from the right-left salpinx and ovary using digital calipers. The weights of each ovary and salpinx were measured using a precision scale (min: 0.0001 g − max: 220 g, code: XB220A; Precisa, Swiss). The histological structure of the tissues was examined after weighing the organs. The tissue samples were fixed in 10% formaldehyde for 24 h. Then a routine procedure was applied, and the tissues were embedded in paraffin. Mallory’s modified triple staining was used to demonstrate the general structure of the salpinx. The salpinx was found to consist of three different regions (infundibulum, ampulla, and isthmus). These regions consisted of tunica mucosa, tunica muscularis, and tunica serosa. The prismatic epithelial cells were observed in the lamina epithelialis of tunica mucosa in every region, but the prismatic fimbrae cells occurred most in the infundibulum. The ampulla was distinguished by its many mucosal folds. It was the longest region of the salpinx and was joined to the isthmus via the ampullary–isthmus junction. Isthmus was the caudal end of the salpinx joined to the uterus and had the thickest tunica muscularis compared with the other regions. The mean length of the ovary was 13.22 ± 1.27 mm, width was 8.46 ± 0.88 mm, the thickness was 5.67 ± 0.79 mm, and weight was 0.59 ± 0.17 g. The average length of the salpinx was 58.11 ± 14.02 mm, width was 0.80 ± 0.22 mm, the thickness was 0.41 ± 0.01 mm, and weight was 0.30 ± 0.08 g. In conclusion, the Anatolian wild goat, which is included in wildlife diversity in Turkey, has been disappearing due to illegal and uncontrolled hunting as well as traffic accidents in recent years. These findings are believed to contribute to the literature.

Keywords: Anatolian wild goat, anatomy, ovary, salpinx

Procedia PDF Downloads 224
3166 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 289
3165 Nontuberculous Mycobacterium Infection – Still An Important Disease Among People With Late HIV Diagnosis

Authors: Jakub Młoźniak, Adam Szymański, Gabriela Stondzik, Dagny Krankowska, Tomasz Mikuła

Abstract:

Nontuberculous mycobacteria (NTM) are bacterial species that cause diversely manifesting diseases mainly in immunocompromised patients. In people with HIV, NTM infection is an AIDS-defining disease and usually appears when the lymphocyte T CD4 count is below 50 cells/μl. The usage of antiretroviral therapy has decreased the prevalence of NTM among people with HIV, but the disease can still be observed especially among patients with late HIV diagnosis. Common presence in environment, human colonization, clinical similarity with tuberculosis and slow growth on culture makes NTM especially hard to diagnose. The study aimed to analyze the epidemiology and clinical course of NTM among patients with HIV. This study included patients with NTM and HIV admitted to our department between 2017 and 2023. Medical records of patients were analyzed and data on age, sex, median time from HIV diagnosis to identification of NTM infection, median CD4 count at NTM diagnosis, methods of determining NTM infection, type of species of mycobacteria identified, clinical symptoms and treatment course were gathered. Twenty-four patients (20 men, 4 women) with identified NTM were included in this study. Among them, 20 were HIV late presenters. The patients' median age was 40. The main symptoms which patients presented were fever, weight loss and cough. Pulmonary disease confirmed with positive cultures from sputum/bronchoalveolar lavage was present in 18 patients. M. avium was the most common species identified. M. marinum caused disseminated skin lesions in 1 patient. Out of all, 5 people were not treated for NTM caused by lack of symptoms and suspicion of colonization with mycobacterium. Concomitant tuberculosis was present in 6 patients. The median diagnostic time from HIV to NTM infections was 3.5 months. The median CD4 count at NTM identification was 69.5 cells/μl. Median NTM treatment time was 16 months but 7 patients haven’t finished their treatment yet. The most commonly used medications were ethambutol and clarithromycin. Among analyzed patients, 4 of them have died. NTM infections are still an important disease among patients who are HIV late presenters. This disease should be taken into consideration during the differential diagnosis of fever, weight loss and cough in people with HIV with lymphocyte T CD4 count <100 cells/μl. Presence of tuberculosis does not exclude nontuberculous mycobacterium coinfection.

Keywords: mycobacteriosis, HIV, late presenter, epidemiology

Procedia PDF Downloads 43
3164 Development of Light-Weight Refractory Bricks

Authors: Liaqat Ali, Furqan Ahmad

Abstract:

The heat losses should be controlled during the high temperature processes from energy conservation point of view. For this purpose, refractories with low thermal conductivity, high porosity and good mechanical strength along with low price are desirable. In this work, various combinations of naturally occurring, locally available, cheap raw materials, namely, clay, rice husk and saw dust were used. Locally produced insulating firebricks (IFBs) cannot be used at higher than a few hundred °C and possess low strength as well. Various process parameters were studied and the refractories with desirable properties were produced, which can be used up to 1200 °C.

Keywords: firebricks, mechanical strength, thermal conductivity, refractory bricks

Procedia PDF Downloads 328
3163 Keyloggers Prevention with Time-Sensitive Obfuscation

Authors: Chien-Wei Hung, Fu-Hau Hsu, Chuan-Sheng Wang, Chia-Hao Lee

Abstract:

Nowadays, the abuse of keyloggers is one of the most widespread approaches to steal sensitive information. In this paper, we propose an On-Screen Prompts Approach to Keyloggers (OSPAK) and its analysis, which is installed in public computers. OSPAK utilizes a canvas to cue users when their keystrokes are going to be logged or ignored by OSPAK. This approach can protect computers against recoding sensitive inputs, which obfuscates keyloggers with letters inserted among users' keystrokes. It adds a canvas below each password field in a webpage and consists of three parts: two background areas, a hit area and a moving foreground object. Letters at different valid time intervals are combined in accordance with their time interval orders, and valid time intervals are interleaved with invalid time intervals. It utilizes animation to visualize valid time intervals and invalid time intervals, which can be integrated in a webpage as a browser extension. We have tested it against a series of known keyloggers and also performed a study with 95 users to evaluate how easily the tool is used. Experimental results made by volunteers show that OSPAK is a simple approach.

Keywords: authentication, computer security, keylogger, privacy, information leakage

Procedia PDF Downloads 122
3162 Protection of Cultural Heritage against the Effects of Climate Change Using Autonomous Aerial Systems Combined with Automated Decision Support

Authors: Artur Krukowski, Emmanouela Vogiatzaki

Abstract:

The article presents an ongoing work in research projects such as SCAN4RECO or ARCH, both funded by the European Commission under Horizon 2020 program. The former one concerns multimodal and multispectral scanning of Cultural Heritage assets for their digitization and conservation via spatiotemporal reconstruction and 3D printing, while the latter one aims to better preserve areas of cultural heritage from hazards and risks. It co-creates tools that would help pilot cities to save cultural heritage from the effects of climate change. It develops a disaster risk management framework for assessing and improving the resilience of historic areas to climate change and natural hazards. Tools and methodologies are designed for local authorities and practitioners, urban population, as well as national and international expert communities, aiding authorities in knowledge-aware decision making. In this article we focus on 3D modelling of object geometry using primarily photogrammetric methods to achieve very high model accuracy using consumer types of devices, attractive both to professions and hobbyists alike.

Keywords: 3D modelling, UAS, cultural heritage, preservation

Procedia PDF Downloads 123
3161 Optimizing Machine Learning Through Python Based Image Processing Techniques

Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash

Abstract:

This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.

Keywords: image processing, machine learning applications, template matching, emotion detection

Procedia PDF Downloads 16
3160 Biomechanical Analysis and Interpretation of Pitching Sequences for Enhanced Performance Programming

Authors: Corey F. Fitzgerald

Abstract:

This study provides a comprehensive examination of the biomechanical sequencing inherent in pitching motions, coupled with an advanced methodology for interpreting gathered data to inform programming strategies. The analysis is conducted utilizing state-of-the-art biomechanical laboratory equipment capable of detecting subtle changes and deviations, facilitating highly informed decision-making processes. Through this presentation, the intricate dynamics of pitching sequences are meticulously discussed to highlight the complex movement patterns accessible and actionable for performance enhancement purposes in the weight room.

Keywords: sport science, applied biomechanics, strength and conditioning, applied research

Procedia PDF Downloads 60
3159 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 118
3158 Increased Risk of Adverse Birth Outcomes of Newborns in Arsenic Exposed- Women with Gestational Diabetes

Authors: Tania Mannan, Rahelee Zinnat, Fatema Jebunnesa, Israt Ara Hossain

Abstract:

Background: Exposure to arsenic has known toxic effects but the effect on pregnancy outcomes is not as widely documented especially in women with diabetes. Growing evidence has suggested a potential role of arsenic exposure in the development of gestational diabetes mellitus (GDM). Therefore, we aimed to investigate the association of urinary arsenic (UAs) with birth outcomes in GDM subjects. Methods: Under an observational cross-sectional design a total of 263 GDM subjects (age in years, M±SD, 21±3.7) residing in an arsenic affected area of Bangladesh, were subjected to a 2 sample OGTT at the third trimester of gestation. Among them, 73 GDM and 190 non-GDM subjects enrolled in this study. Clinical and anthropometric measurements were done by standard techniques. Degree of chronic arsenic exposure was assessed by the level of UAs level. According to World Health Organization (WHO) criteria, GDM was diagnosed and neonatal outcomes using APGAR (Activity Pulse Grimace Appearance Respirations) Score, birth weight and size were assessed by a specialist obstetrician. Serum glucose was measured by the Glucose Oxidase method and UAs level was determined by ultraviolet/visible spectrophotometry. Result: Out of the 263 pregnant women, 28% developed GDM. Urinary Arsenic was significantly higher in the GDM as compared to the non-GDM group [UAs, µg/l, M±SD (range), 204.2±67.0 (67.0-377.0) vs 77.3±38.1 (22.0-99.0), p < 0.001]. Activity Pulse Grimace Appearance Respirations Score of the neonates from GDM mothers was significantly lower compared to the neonates from non-GDM mothers [APGAR Score, M±SD, 4.7±0.8 vs. 6.4±0.7, p<0.001]. Pearson’s correlation analysis in GDM subjects revealed that UA levels were found to have a significant positive correlation with both fasting and postprandial serum glucose levels (p < 0.001) and (p < 0.001) respectively. Again, a significant inverse correlation of UAs with birth weight and size was observed (p < 0.001). The APGAR Score of the neonates were found to have a significant negative correlation (p < 0.001) with UAs level. Conclusion: The effect of chronic arsenic exposure is associated with glucose intolerance during pregnancy and it also adversely affects birth outcomes. The study suggests further research on the impact of total arsenic exposure on pregnancy outcomes.

Keywords: APGAR score, arsenic exposure, birth outcome, gestational diabetes mellitus,

Procedia PDF Downloads 129
3157 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 126
3156 Assessing Land Cover Change Trajectories in Olomouc, Czech Republic

Authors: Mukesh Singh Boori, Vít Voženílek

Abstract:

Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socio-economic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment.

Keywords: remote sensing, land use/cover, change trajectories, image classification

Procedia PDF Downloads 404
3155 A Computer-Aided System for Tooth Shade Matching

Authors: Zuhal Kurt, Meral Kurt, Bilge T. Bal, Kemal Ozkan

Abstract:

Shade matching and reproduction is the most important element of success in prosthetic dentistry. Until recently, shade matching procedure was implemented by dentists visual perception with the help of shade guides. Since many factors influence visual perception; tooth shade matching using visual devices (shade guides) is highly subjective and inconsistent. Subjective nature of this process has lead to the development of instrumental devices. Nowadays, colorimeters, spectrophotometers, spectroradiometers and digital image analysing systems are used for instrumental shade selection. Instrumental devices have advantages that readings are quantifiable, can obtain more rapidly and simply, objectively and precisely. However, these devices have noticeable drawbacks. For example, translucent structure and irregular surfaces of teeth lead to defects on measurement with these devices. Also between the results acquired by devices with different measurement principles may make inconsistencies. So, its obligatory to search for new methods for dental shade matching process. A computer-aided system device; digital camera has developed rapidly upon today. Currently, advances in image processing and computing have resulted in the extensive use of digital cameras for color imaging. This procedure has a much cheaper process than the use of traditional contact-type color measurement devices. Digital cameras can be taken by the place of contact-type instruments for shade selection and overcome their disadvantages. Images taken from teeth show morphology and color texture of teeth. In last decades, a new method was recommended to compare the color of shade tabs taken by a digital camera using color features. This method showed that visual and computer-aided shade matching systems should be used as concatenated. Recently using methods of feature extraction techniques are based on shape description and not used color information. However, color is mostly experienced as an essential property in depicting and extracting features from objects in the world around us. When local feature descriptors with color information are extended by concatenating color descriptor with the shape descriptor, that descriptor will be effective on visual object recognition and classification task. Therefore, the color descriptor is to be used in combination with a shape descriptor it does not need to contain any spatial information, which leads us to use local histograms. This local color histogram method is remain reliable under variation of photometric changes, geometrical changes and variation of image quality. So, coloring local feature extraction methods are used to extract features, and also the Scale Invariant Feature Transform (SIFT) descriptor used to for shape description in the proposed method. After the combination of these descriptors, the state-of-art descriptor named by Color-SIFT will be used in this study. Finally, the image feature vectors obtained from quantization algorithm are fed to classifiers such as Nearest Neighbor (KNN), Naive Bayes or Support Vector Machines (SVM) to determine label(s) of the visual object category or matching. In this study, SVM are used as classifiers for color determination and shade matching. Finally, experimental results of this method will be compared with other recent studies. It is concluded from the study that the proposed method is remarkable development on computer aided tooth shade determination system.

Keywords: classifiers, color determination, computer-aided system, tooth shade matching, feature extraction

Procedia PDF Downloads 444
3154 Mass Rearing and Effects of Gamma Irradiation on the Pupal Mortality and Reproduction of Citrus Leaf Miner Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae)

Authors: Shiva Osouli, Maryam Atapour, Mehrdad Ahmadi, Shima Shokri

Abstract:

Citrus leaf miner (Phyllocnistis citrella Stainton) is native to Asia and one of the most serious pests of Iran’s citrus nursery stocks. In the present study, the possibility of insect mass rearing on four various citrus hosts and the effects of gamma irradiation on the pupal mortality and reproduction of this pest were studied. Trifoliate orange and grapefruit showed less infection, while the number of pupae in Valencia oranges and sweet lemons cages was so high. There was not any significant difference between weight of male and female pupae among different citrus hosts, but generally the weight of male pupae was less than females. Use of Valencia orange or sweet lemons seedlings in especial dark emergence and oviposition cages could be recommended for mass rearing of this pest. In this study, the effects of gamma radiation at doses 100 to 450 Gy on biological and reproductive parameters of the pest has been determined. The results show that mean percent of pupal mortality increased with increasing doses and reached to 28.67% at 450 Gy for male pupae and 38.367% for female pupae. Also, the mean values of this parameter were higher for irradiated female, which indicated the higher sensitivity of this sex. The gamma ray irradiation from 200 and 300 Gy caused decrease in male and female adult moth longevity, respectively. The eggs were laid by emerged females, and their hatchability was decreased by increasing gamma doses. The fecundity of females in both combinations of crosses (irradiated male × normal female and irradiated female × normal male) did not differ, but fertility of laid eggs by irradiated female × normal male affected seriously and the mean values of this parameter reached to zero at 300 Gy. The hatchability percentage of produced eggs by normal female × irradiated male at 300 Gy was 23.29% and reached to less than 2 % at 450 Gy as the highest tested dose. The results of this test show that females have more radio-sensitivity in comparison to males.

Keywords: citrus leaf miner, Phyllocnistis citrella, citrus hosts, mass rearing, Sterile Insect Technique (SIT)

Procedia PDF Downloads 173
3153 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, prediction, RBF neural network, earthquake

Procedia PDF Downloads 496
3152 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 134
3151 Collaborative and Context-Aware Learning Approach Using Mobile Technology

Authors: Sameh Baccari, Mahmoud Neji

Abstract:

In recent years, the rapid developments on mobile devices and wireless technologies enable new dimension capabilities for the learning domain. This dimension facilitates people daily activities and shortens the distances between individuals. When these technologies have been used in learning, a new paradigm has been emerged giving birth to mobile learning. Because of the mobility feature, m-learning courses have to be adapted dynamically to the learner’s context. The main challenge in context-aware mobile learning is to develop an approach building the best learning resources according to dynamic learning situations. In this paper, we propose a context-aware mobile learning system called Collaborative and Context-aware Mobile Learning System (CCMLS). It takes into account the requirements of Mobility, Collaboration and Context-Awareness. This system is based on the semantic modeling of the learning context and the learning content. The adaptation part of this approach is made up of adaptation rules to propose and select relevant resources, learning partners and learning activities based not only on the user’s needs, but also on its current context.

Keywords: mobile learning, mobile technologies, context-awareness, collaboration, semantic web, adaptation engine, adaptation strategy, learning object, learning context

Procedia PDF Downloads 308
3150 Composite Components Manufacturing in SAE Formula Student, a Case Study of AGH Racing

Authors: Hanna Faron, Wojciech Marcinkowski, Daniel Prusak, Władysław Hamiga

Abstract:

Interest in composite materials comes out of two basic premises: their supreme mechanical and strength properties,combined with a small specific weight. Origin and evolution of modern composite materials bonds with development of manufacturing of synthetic fibers, which have begun during Second World War. Main condition to achieve intended properties of composite materials is proper bonding of reinforcing layer with appropriate adhesive in manufacturing process. It is one of the fundamental quality evaluation criterion of fabrication processes.

Keywords: SAE, formula student, composite materials, carbon fiber, Aramid fiber, hot wire cutter

Procedia PDF Downloads 514