Search results for: multi features
5784 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review
Authors: Anicet Dansou
Abstract:
Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete
Procedia PDF Downloads 1085783 An Explorative Analysis of Effective Project Management of Research and Research-Related Projects within a recently Formed Multi-Campus Technology University
Authors: Àidan Higgins
Abstract:
Higher education will be crucial in the coming decades in helping to make Ireland a nation is known for innovation, competitive enterprise, and ongoing academic success, as well as a desirable location to live and work with a high quality of life, vibrant culture, and inclusive social structures. Higher education institutions will actively connect with each student community, society, and business; they will help students develop a sense of place and identity in Ireland and provide the tools they need to contribute significantly to the global community. It will also serve as a catalyst for novel ideas through research, many of which will become the foundation for long-lasting inventive businesses in the future as part of the 2030 National Strategy on Education focuses on change and developing our education system with a focus on how we carry out Research. The emphasis is central to knowledge transfer and a consistent research framework with exploiting opportunities and having the necessary expertise. The newly formed Technological Universities (TU) in Ireland are based on a government initiative to create a new type of higher education institution that focuses on applied and industry-focused research and education. The basis of the TU is to bring together two or more existing institutes of technology to create a larger and more comprehensive institution that offers a wider range of programs and services to students and industry partners. The TU model aims to promote collaboration between academia, industry, and community organizations to foster innovation, research, and economic development. The TU model also aims to enhance the student experience by providing a more seamless pathway from undergraduate to postgraduate studies, as well as greater opportunities for work placements and engagement with industry partners. Additionally, the TUs are designed to provide a greater emphasis on applied research, technology transfer, and entrepreneurship, with the goal of fostering innovation and contributing to economic growth. A project is a collection of organised tasks carried out precisely to produce a singular output (product or service) within a given time frame. Project management is a set of activities that facilitates the successful implementation of a project. The significant differences between research and development projects are the (lack of) precise requirements and (the inability to) plan an outcome from the beginning of the project. The evaluation criteria for a research project must consider these and other "particularities" in works; for instance, proving something cannot be done may be a successful outcome. This study intends to explore how a newly established multi-campus technological university manages research projects effectively. The study will identify the potential and difficulties of managing research projects, the tools, resources and processes available in a multi-campus Technological University context and the methods and approaches employed to deal with these difficulties. Key stakeholders like project managers, academics, and administrators will be surveyed as part of the study, which will also involve an explorative investigation of current literature and data. The findings of this study will contribute significantly to creating best practices for project management in this setting and offer insightful information about the efficient management of research projects within a multi-campus technological university.Keywords: project management, research and research-related projects, multi-campus technology university, processes
Procedia PDF Downloads 605782 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents
Authors: Subir Gupta, Subhas Ganguly
Abstract:
In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure
Procedia PDF Downloads 1995781 Identification and Antibiotic Resistance Rates of Acinetobacter baumannii Strains Isolated from the Respiratory Tract Samples, Obtained from the Different Intensive Care Units
Authors: Recep Kesli, Gulşah Asik, Cengiz Demir, Onur Turkyilmaz
Abstract:
Objective: Acinetobacter baumannii (A. baumannii) can cause health-care associated infections, such as bacteremia, urinary tract and wound infections, endocarditis, meningitis, and pneumonia, particularly in intensive care unit patients. In this study, we aimed to evaluate A. baumannii production in sputum and bronchoalveolar lavage and susceptibilities for antibiotics in a 24 months period. Methods: Between October 2013 and September 2015, Acinetobacter baumannii isolated from respiratory tract speciments were evaluated retrospectively. The strains were isolated from the different intensive care units patients. A. baumannii strains were identified by both the conventional methods and aoutomated identification system -VITEK 2 (bio-Merieux, Marcy l’etoile, France). Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria. Results: All the ninety isolates included in the study were from respiratory tract specimens. While of all the isolated 90 Acinetobacter baumannii strains were found to be resistant (100%), against ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam, resistance rates against other tested antibiotics found as follows; meropenem 77, 86%, imipenem 75, 83%, trimethoprim-sulfamethoxazole (TMP-STX) 69, 76,6%, gentamicin 51, 56,6% and amikacin 48, 53,3%. Colistin was found as the most effective antibiotic against Acinetobacter baumannii, and there were not found any resistant (0%) strain against colistin. Conclusion: This study demonstrated that the no resistance was found in Acinetobacter baumannii against to colistin. High rates of resistance to carbapenems (imipenem and meropenem) and other tested antibiotics (ceftiaxone, ceftazidime, ciprofloxacine, piperacilline-tazobactam, TMP-STX gentamicin and amikacin) also have remarkable resistance rates. There was a significant relationship between demographic features of patients such as age, undergoing mechanical ventilation, length of hospital stay with resistance rates. High resistance rates against antibiotics require implementation of the infection control program and rational use of antibiotics. In the present study, while there were not found colistin resistance, panresistance were found against to ceftriaxone, ceftazidime, ciprofloxacin and piperacillin/ tazobactam.Keywords: acinetobacter baumannii, antibiotic resistance, multi drug resistance, intensive care unit
Procedia PDF Downloads 2825780 A Multi-Arm Randomized Trial Comparing the Weight Gain of Very Low Birth Weight Neonates: High Glucose versus High Protein Intake
Authors: Farnaz Firuzian, Farhad Choobdar, Ali Mazouri
Abstract:
As Very Low Birth Weight (VLBW) neonates cannot tolerate enteral feeding, parenteral nutrition (PN) must be administered shortly after birth. To find an optimal combination of nutrition, in this study, we compare administering high glucose versus high protein intake as a component of total parenteral nutrition (TPN) to test their effect on birth weight (BW) regain in VLBW. This study employs a multi-arm randomized trial: 145 newborns with BW < 1500 g were randomized to control (C) or experimental groups: high glucose (G) or high protein (P). All samples in each group received the same TPN regimens except glucose and protein intake: Glocuse was provided by dextrose water (DW) serum: 7-15 g/kg/d (10% DW) in groups C and P versus 8.75-18.75 g/kg/d (12.5% DW) in group G. Protein provided by amino acids 3 g/kg/d for groups C and G versus 4 g/kg/d for group P. Outcomes (weight, height, and head circumference) was monitored on a daily basis until the BW was regained. Data has been gathered recently and is being processed. We hypothesize that neonates with higher amino acid intake will result in sooner BW regain than other groups. The result will be presented at the conference. The findings of this study not only can help optimize nutrition, cost reduction, and shorter NICU admission of VLBW neonates at the hospital level but eventually contribute to reduced healthcare-associated infections (HAIs) and an improved health economy.Keywords: very low birth weight neonates, weight gain, parenteral nutrition, glucose, amino acids
Procedia PDF Downloads 835779 A Multi-Layer Based Architecture for the Development of an Open Source CAD/CAM Integration Virtual Platform
Authors: Alvaro Aguinaga, Carlos Avila, Edgar Cando
Abstract:
This article proposes a n-layer architecture, with a web client as a front-end, for the development of a virtual platform for process simulation on CNC machines. This Open-Source platform includes a CAD-CAM interface drawing primitives, and then used to furnish a CNC program that triggers a touch-screen virtual simulator. The objectives of this project are twofold. First one is an educational component that fosters new alternatives for the CAD-CAM/CNC learning process in undergrad and grade schools and technical and technological institutes emphasizing in the development of critical skills, discussion and collaborative work. The second objective puts together a research and technological component that will take the state of the art in CAD-CAM integration to a new level with the development of optimal algorithms and virtual platforms, on-line availability, that will pave the way for the long-term goal of this project, that is, to have a visible and active graduate school in Ecuador and a world wide Open-Innovation community in the area of CAD-CAM integration and operation of CNC machinery. The virtual platform, developed as a part of this study: (1) delivers improved training process of students, (2) creates a multidisciplinary team and a collaborative work space that will push the new generation of students to face future technological challenges, (3) implements industry standards for CAD/CAM, (4) presents a platform for the development of industrial applications. A protoype of this system was developed and implemented in a network of universities and technological institutes in Ecuador.Keywords: CAD-CAM integration, virtual platforms, CNC machines, multi-layer based architecture
Procedia PDF Downloads 4275778 Social Media Marketing in Russia
Authors: J. A. Ageeva, Z. S. Zavyalova
Abstract:
The article considers social media as a tool for business promotion. We analyze and compare the SMM experience in the western countries and Russia. A short review of Russian social networks are given including their peculiar features, and the main problems and perspectives of Russian SMM are described.Keywords: social media, social networks, marketing, SMM
Procedia PDF Downloads 5565777 Development of a Biomaterial from Naturally Occurring Chloroapatite Mineral for Biomedical Applications
Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala
Abstract:
Hydroxyapatite is a bioceramic which can be used for applications in orthopedics and dentistry due to its structural similarity with the mineral phase of mammalian bones and teeth. In this study, it was synthesized, chemically changing natural Eppawala chloroapatite mineral as a value-added product. Sol-gel approach and solid state sintering were used to synthesize products using diluted nitric acid, ethanol and calcium hydroxide under different conditions. Synthesized Eppawala hydroxyapatite powder was characterized using X-ray Fluorescence (XRF), X-ray Powder Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) in order to find out its composition, crystallinity, presence of functional groups, bonding type, surface morphology, microstructural features, and thermal dependence and stability, respectively. The XRD results reflected the formation of a hexagonal crystal structure of hydroxyapatite. Elementary composition and microstructural features of products were discussed based on the XRF and SEM results of the synthesized hydroxyapatite powder. TGA and DSC results of synthesized products showed high thermal stability and good material stability in nature. Also, FTIR spectroscopy results confirmed the formation of hydroxyapatite from apatite via the presence of hydroxyl groups. Those results coincided with the FTIR results of mammalian bones including human bones. The study concludes that there is a possibility of producing hydroxyapatite using commercially available Eppawala chloroapatite in Sri Lanka.Keywords: dentistry, Eppawala chlorapatite, hydroxyapatite, orthopedics
Procedia PDF Downloads 2355776 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 2255775 Selection of Strategic Suppliers for Partnership: A Model with Two Stages Approach
Authors: Safak Isik, Ozalp Vayvay
Abstract:
Strategic partnerships with suppliers play a vital role for the long-term value-based supply chain. This strategic collaboration keeps still being one of the top priority of many business organizations in order to create more additional value; benefiting mainly from supplier’s specialization, capacity and innovative power, securing supply and better managing costs and quality. However, many organizations encounter difficulties in initiating, developing and managing those partnerships and many attempts result in failures. One of the reasons for such failure is the incompatibility of members of this partnership or in other words wrong supplier selection which emphasize the significance of the selection process since it is the beginning stage. An effective selection process of strategic suppliers is critical to the success of the partnership. Although there are several research studies to select the suppliers in literature, only a few of them is related to strategic supplier selection for long-term partnership. The purpose of this study is to propose a conceptual model for the selection of strategic partnership suppliers. A two-stage approach has been used in proposed model incorporating first segmentation and second selection. In the first stage; considering the fact that not all suppliers are strategically equal and instead of a long list of potential suppliers, Kraljic’s purchasing portfolio matrix can be used for segmentation. This supplier segmentation is the process of categorizing suppliers based on a defined set of criteria in order to identify types of suppliers and determine potential suppliers for strategic partnership. In the second stage, from a pool of potential suppliers defined at first phase, a comprehensive evaluation and selection can be performed to finally define strategic suppliers considering various tangible and intangible criteria. Since a long-term relationship with strategic suppliers is anticipated, criteria should consider both current and future status of the supplier. Based on an extensive literature review; strategical, operational and organizational criteria have been determined and elaborated. The result of the selection can also be used to determine suppliers who are not ready for a partnership but to be developed for strategic partnership. Since the model is based on multiple criteria for both stages, it provides a framework for further utilization of Multi-Criteria Decision Making (MCDM) techniques. The model may also be applied to a wide range of industries and involve managerial features in business organizations.Keywords: Kraljic’s matrix, purchasing portfolio, strategic supplier selection, supplier collaboration, supplier partnership, supplier segmentation
Procedia PDF Downloads 2395774 Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps
Authors: Ugochukwu Ejike Akpudo, Jank-Wook Hur
Abstract:
The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation.Keywords: electromagnetic fuel pumps, comprehensive feature extraction, condition assessment, locally linear embedding, feature fusion
Procedia PDF Downloads 1175773 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 1945772 Configuration of Water-Based Features in Islamic Heritage Complexes and Vernacular Architecture: An Analysis into Interactions of Morphology, Form, and Climatic Performance
Authors: Mustaffa Kamal Bashar Mohd Fauzi, Puteri Shireen Jahn Kassim, Nurul Syala Abdul Latip
Abstract:
It is increasingly realized that sustainability includes both a response to the climatic and cultural context of a place. To assess the cultural context, a morphological analysis of urban patterns from heritage legacies is necessary. While the climatic form is derived from an analysis of meteorological data, cultural patterns and forms must be abstracted from a typological and morphological study. This current study aims to analyzes morphological and formal elements of water-based architectural and urban design of past Islamic vernacular complexes in the hot arid regions and how a vast utilization of water was shaped and sited to act as cooling devices for an entire complex. Apart from its pleasant coolness, water can be used in an aesthetically way such as emphasizing visual axes, vividly enhancing the visual of the surrounding environment and symbolically portraying the act of purity in the design. By comparing 2 case studies based on the analysis of interactions of water features into the form, planning and morphology of 2 Islamic heritage complexes, Fatehpur Sikri (India) and Lahore Fort (Pakistan) with a focus on Shish Mahal of Lahore Fort in terms of their mass, architecture and urban planning, it is agreeable that water plays an integral role in their climatic amelioration via different methods of water conveyance system. Both sites are known for their substantial historical values and prominent for their sustainable vernacular buildings for example; the courtyard of Shish Mahal in Lahore fort are designed to provide continuous coolness by constructing various miniatures water channels that run underneath the paved courtyard. One of the most remarkable features of this system that all water is made dregs-free before it was inducted into these underneath channels. In Fatehpur Sikri, the method of conveyance seems differed from Lahore Fort as the need to supply water to the ridge where Fatehpur Sikri situated is become the major challenges. Thus, the achievement of supplying water to the palatial complexes is solved by placing inhabitable water buildings within the two supply system for raising water. The process of raising the water can be either mechanical or laborious inside the enclosed well and water rising houses. The studies analyzes and abstract the water supply forms, patterns and flows in 3-dimensional shapes through the actions of evaporative cooling and wind-induced ventilation under arid climates. Through the abstraction analytical and descriptive relational morphology of the spatial configurations, the studies can suggest the idealized spatial system that can be used in urban design and complexes which later became a methodological and abstraction tool of sustainability to suit the modern contemporary world.Keywords: heritage site, Islamic vernacular architecture, water features, morphology, urban design
Procedia PDF Downloads 3755771 Optimization of Economic Order Quantity of Multi-Item Inventory Control Problem through Nonlinear Programming Technique
Authors: Prabha Rohatgi
Abstract:
To obtain an efficient control over a huge amount of inventory of drugs in pharmacy department of any hospital, generally, the medicines are categorized on the basis of their cost ‘ABC’ (Always Better Control), first and then categorize on the basis of their criticality ‘VED’ (Vital, Essential, desirable) for prioritization. About one-third of the annual expenditure of a hospital is spent on medicines. To minimize the inventory investment, the hospital management may like to keep the medicines inventory low, as medicines are perishable items. The main aim of each and every hospital is to provide better services to the patients under certain limited resources. To achieve the satisfactory level of health care services to outdoor patients, a hospital has to keep eye on the wastage of medicines because expiry date of medicines causes a great loss of money though it was limited and allocated for a particular period of time. The objectives of this study are to identify the categories of medicines requiring incentive managerial control. In this paper, to minimize the total inventory cost and the cost associated with the wastage of money due to expiry of medicines, an inventory control model is used as an estimation tool and then nonlinear programming technique is used under limited budget and fixed number of orders to be placed in a limited time period. Numerical computations have been given and shown that by using scientific methods in hospital services, we can give more effective way of inventory management under limited resources and can provide better health care services. The secondary data has been collected from a hospital to give empirical evidence.Keywords: ABC-VED inventory classification, multi item inventory problem, nonlinear programming technique, optimization of EOQ
Procedia PDF Downloads 2555770 Features of Urban Planning Design of the Largest Cities Located in Areas with High Seismic (on the example of Almaty city, Republic of Kazakhstan)
Authors: Arkinzhan Mametov, Alexey Abilov
Abstract:
Strong earthquakes are dangerous natural phenomena that lead to the destruction of entire cities and the death of a large number of people. The recent strong earthquakes in Turkey and in a number of other states have shown that as a result of them, there are significant human casualties and huge destruction. The city of Almaty is located in the foothill basin of the Trans-Ili Alatau of the Tien Shan Mountain system, in a zone with 9–10-point seismicity. Almaty (formerly Verniy) was founded in 1856 and, since that period, has experienced two catastrophic earthquakes - in 1887 and 1911, which led almost to the complete destruction of the city. Since that time, according to seismologists, the city has been annually exposed to small seismic impacts of 2-3 points. This forced the subsequent search for ways to protect buildings and the public through the use of earthquake-resistant structures and materials, limiting the number of stores of buildings and increasing gaps between them, which was carried out quite consistently and since 1957. However, at present, it is necessary to state a number of violations, primarily of the urban development plan – the placement of high-density multi-stores commercial housing in the urban environment, bypassing the existing regulations and standards in the city. Their appearance contributes to a greater concentration of residents transport in a limited area, which can lead to harmful consequences during powerful earthquakes. The experience of eliminating the consequences of catastrophic earthquakes shows that an important factor in reducing human losses is timely technical and medical assistance to victims of earthquakes, the elimination of blockages, provision of temporary housing and evacuation of the population, especially in winter. In cities located in areas with high seismicity, it is necessary to ensure strict compliance with the requirements of urban development regulations, taking into account the entire complex of planning and organizational measures to minimize the destruction of buildings and human casualties.Keywords: high seismic zones, urban planning regulations, special standards for planing, minimizing the human casualties
Procedia PDF Downloads 925769 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 1355768 Water Quality Trading with Equitable Total Maximum Daily Loads
Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani, A. Feizi Ashtiani
Abstract:
Waste load allocation (WLA) strategies usually intend to find economical policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.Keywords: waste load allocation (WLA), water quality trading (WQT), total maximum daily loads (TMDLs), Haraz River, multi objective particle swarm optimization (MOPSO), equity
Procedia PDF Downloads 3945767 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1185766 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas
Authors: Sharmin Sultana, Reinhard Schlickeiser
Abstract:
A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves
Procedia PDF Downloads 2035765 Applications of Drones in Infrastructures: Challenges and Opportunities
Authors: Jin Fan, M. Ala Saadeghvaziri
Abstract:
Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.Keywords: bridge, construction, drones, infrastructure, information
Procedia PDF Downloads 1245764 An Approach for Association Rules Ranking
Authors: Rihab Idoudi, Karim Saheb Ettabaa, Basel Solaiman, Kamel Hamrouni
Abstract:
Medical association rules induction is used to discover useful correlations between pertinent concepts from large medical databases. Nevertheless, ARs algorithms produce huge amount of delivered rules and do not guarantee the usefulness and interestingness of the generated knowledge. To overcome this drawback, we propose an ontology based interestingness measure for ARs ranking. According to domain expert, the goal of the use of ARs is to discover implicit relationships between items of different categories such as ‘clinical features and disorders’, ‘clinical features and radiological observations’, etc. That’s to say, the itemsets which are composed of ‘similar’ items are uninteresting. Therefore, the dissimilarity between the rule’s items can be used to judge the interestingness of association rules; the more different are the items, the more interesting the rule is. In this paper, we design a distinct approach for ranking semantically interesting association rules involving the use of an ontology knowledge mining approach. The basic idea is to organize the ontology’s concepts into a hierarchical structure of conceptual clusters of targeted subjects, where each cluster encapsulates ‘similar’ concepts suggesting a specific category of the domain knowledge. The interestingness of association rules is, then, defined as the dissimilarity between corresponding clusters. That is to say, the further are the clusters of the items in the AR, the more interesting the rule is. We apply the method in our domain of interest – mammographic domain- using an existing mammographic ontology called Mammo with the goal of deriving interesting rules from past experiences, to discover implicit relationships between concepts modeling the domain.Keywords: association rule, conceptual clusters, interestingness measures, ontology knowledge mining, ranking
Procedia PDF Downloads 3225763 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network
Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar
Abstract:
Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network
Procedia PDF Downloads 1095762 Associated Map and Inter-Purchase Time Model for Multiple-Category Products
Authors: Ching-I Chen
Abstract:
The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system. To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.Keywords: multiple-category purchase behavior, inter-purchase time, market basket analysis, e-commerce
Procedia PDF Downloads 3685761 A Comparative Analysis Approach Based on Fuzzy AHP, TOPSIS and PROMETHEE for the Selection Problem of GSCM Solutions
Authors: Omar Boutkhoum, Mohamed Hanine, Abdessadek Bendarag
Abstract:
Sustainable economic growth is nowadays driving firms to extend toward the adoption of many green supply chain management (GSCM) solutions. However, the evaluation and selection of these solutions is a matter of concern that needs very serious decisions, involving complexity owing to the presence of various associated factors. To resolve this problem, a comparative analysis approach based on multi-criteria decision-making methods is proposed for adequate evaluation of sustainable supply chain management solutions. In the present paper, we propose an integrated decision-making model based on FAHP (Fuzzy Analytic Hierarchy Process), TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) and PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) to contribute to a better understanding and development of new sustainable strategies for industrial organizations. Due to the varied importance of the selected criteria, FAHP is used to identify the evaluation criteria and assign the importance weights for each criterion, while TOPSIS and PROMETHEE methods employ these weighted criteria as inputs to evaluate and rank the alternatives. The main objective is to provide a comparative analysis based on TOPSIS and PROMETHEE processes to help make sound and reasoned decisions related to the selection problem of GSCM solution.Keywords: GSCM solutions, multi-criteria analysis, decision support system, TOPSIS, FAHP, PROMETHEE
Procedia PDF Downloads 1635760 Clinical Features of Acute Aortic Dissection Patients Initially Diagnosed with ST-Segment Elevation Myocardial Infarction
Authors: Min Jee Lee, Young Sun Park, Shin Ahn, Chang Hwan Sohn, Dong Woo Seo, Jae Ho Lee, Yoon Seon Lee, Kyung Soo Lim, Won Young Kim
Abstract:
Background: Acute myocardial infarction (AMI) concomitant with acute aortic syndrome (AAS) is rare but prompt recognition of concomitant AAS is crucial, especially in patients with ST-segment elevation myocardial infarction (STEMI) because misdiagnosis with early thrombolytic or anticoagulant treatment may result in catastrophic consequences. Objectives: This study investigated the clinical features of patients of STEMI concomitant with AAS that may lead to the diagnostic clue. Method: Between 1 January 2010 and 31 December 2014, 22 patients who were the initial diagnosis of acute coronary syndrome (AMI and unstable angina) and AAS (aortic dissection, intramural hematoma and ruptured thoracic aneurysm) in our emergency department were reviewed. Among these, we excluded 10 patients who were transferred from other hospital and 4 patients with non-STEMI, leaving a total of 8 patients of STEMI concomitant with AAS for analysis. Result: The mean age of study patients was 57.5±16.31 years and five patients were Standford type A and three patients were type B aortic dissection. Six patients had ST-segment elevation in anterior leads and two patients had in inferior leads. Most of the patients had acute onset, severe chest pain but no patients had dissecting nature chest pain. Serum troponin I was elevated in three patients but all patients had D-dimer elevation. Aortic regurgitation or regional wall motion abnormality was founded in four patients. However, widened mediastinum was seen in all study patients. Conclusion: When patients with STEMI have elevated D-dimer and widened mediastinum, concomitant AAS may have to be suspected.Keywords: aortic dissection, myocardial infarction, ST-segment, d-dimer
Procedia PDF Downloads 3985759 Measuring Corporate Brand Loyalties in Business Markets: A Case for Caution
Authors: Niklas Bondesson
Abstract:
Purpose: This paper attempts to examine how different facets of attitudinal brand loyalty are determined by different brand image elements in business markets. Design/Methodology/Approach: Statistical analysis is employed to data from a web survey, covering 226 professional packaging buyers in eight countries. Findings: The results reveal that different brand loyalty facets have different antecedents. Affective brand loyalties (or loyalty 'feelings') are mainly driven by customer associations to service relationships, whereas customers’ loyalty intentions (to purchase and recommend a brand) are triggered by associations to the general reputation of the company. The findings also indicate that willingness to pay a price premium is a distinct form of loyalty, with unique determinants. Research implications: Theoretically, the paper suggests that corporate B2B brand loyalty needs to be conceptualised with more refinement than has been done in extant B2B branding work. Methodologically, the paper highlights that single-item approaches can be fruitful when measuring B2B brand loyalty, and that multi-item scales can conceal important nuances in terms of understanding why customers are loyal. Practical implications: The idea of a loyalty 'silver metric' is an attractive idea, but this study indicates that firms who rely too much on one single type of brand loyalty risk to miss important building blocks. Originality/Value/Contribution: The major contribution is a more multi-faceted conceptualisation, and measurement, of corporate B2B brand loyalty and its brand image determinants than extant work has provided.Keywords: brand equity, business-to-business branding, industrial marketing, buying behaviour
Procedia PDF Downloads 4145758 Change Detection Analysis on Support Vector Machine Classifier of Land Use and Land Cover Changes: Case Study on Yangon
Authors: Khin Mar Yee, Mu Mu Than, Kyi Lint, Aye Aye Oo, Chan Mya Hmway, Khin Zar Chi Winn
Abstract:
The dynamic changes of Land Use and Land Cover (LULC) changes in Yangon have generally resulted the improvement of human welfare and economic development since the last twenty years. Making map of LULC is crucially important for the sustainable development of the environment. However, the exactly data on how environmental factors influence the LULC situation at the various scales because the nature of the natural environment is naturally composed of non-homogeneous surface features, so the features in the satellite data also have the mixed pixels. The main objective of this study is to the calculation of accuracy based on change detection of LULC changes by Support Vector Machines (SVMs). For this research work, the main data was satellite images of 1996, 2006 and 2015. Computing change detection statistics use change detection statistics to compile a detailed tabulation of changes between two classification images and Support Vector Machines (SVMs) process was applied with a soft approach at allocation as well as at a testing stage and to higher accuracy. The results of this paper showed that vegetation and cultivated area were decreased (average total 29 % from 1996 to 2015) because of conversion to the replacing over double of the built up area (average total 30 % from 1996 to 2015). The error matrix and confidence limits led to the validation of the result for LULC mapping.Keywords: land use and land cover change, change detection, image processing, support vector machines
Procedia PDF Downloads 1395757 Exclusive Value Adding by iCenter Analytics on Transient Condition
Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata
Abstract:
During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.Keywords: analytics, diagnostics, monitoring, turbomachinery
Procedia PDF Downloads 745756 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems
Authors: Moustafa Osman Mohammed
Abstract:
The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling
Procedia PDF Downloads 1565755 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 59