Search results for: accuracy assessment.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9153

Search results for: accuracy assessment.

7293 PhilSHORE: Development of a WebGIS-Based Marine Spatial Planning Tool for Tidal Current Energy Resource Assessment and Site Suitability Analysis

Authors: Ma. Rosario Concepcion O. Ang, Luis Caezar Ian K. Panganiban, Charmyne B. Mamador, Oliver Dan G. De Luna, Michael D. Bausas, Joselito P. Cruz

Abstract:

PhilSHORE is a multi-site, multi-device and multi-criteria decision support tool designed to support the development of tidal current energy in the Philippines. Its platform is based on Geographic Information Systems (GIS) which allows for the collection, storage, processing, analyses and display of geospatial data. Combining GIS tools with open source web development applications, PhilSHORE becomes a webGIS-based marine spatial planning tool. To date, PhilSHORE displays output maps and graphs of power and energy density, site suitability and site-device analysis. It enables stakeholders and the public easy access to the results of tidal current energy resource assessments and site suitability analyses. Results of the initial development shows PhilSHORE is a promising decision support tool for ORE project developments.

Keywords: gis, site suitability analysis, tidal current energy resource assessment, webgis

Procedia PDF Downloads 525
7292 Modelling Social Influence and Cultural Variation in Global Low-Carbon Vehicle Transitions

Authors: Hazel Pettifor, Charlie Wilson, David Mccollum, Oreane Edelenbosch

Abstract:

Vehicle purchase is a technology adoption decision that will strongly influence future energy and emission outcomes. Global integrated assessment models (IAMs) provide valuable insights into the medium and long terms effects of socio-economic development, technological change and climate policy. In this paper we present a unique and transparent approach for improving the behavioural representation of these models by incorporating social influence effects to more accurately represent consumer choice. This work draws together strong conceptual thinking and robust empirical evidence to introduce heterogeneous and interconnected consumers who vary in their aversion to new technologies. Focussing on vehicle choice, we conduct novel empirical research to parameterise consumer risk aversion and how this is shaped by social and cultural influences. We find robust evidence for social influence effects, and variation between countries as a function of cultural differences. We then formulate an approach to modelling social influence which is implementable in both simulation and optimisation-type models. We use two global integrated assessment models (IMAGE and MESSAGE) to analyse four scenarios that introduce social influence and cultural differences between regions. These scenarios allow us to explore the interactions between consumer preferences and social influence. We find that incorporating social influence effects into global models accelerates the early deployment of electric vehicles and stimulates more widespread deployment across adopter groups. Incorporating cultural variation leads to significant differences in deployment between culturally divergent regions such as the USA and China. Our analysis significantly extends the ability of global integrated assessment models to provide policy-relevant analysis grounded in real-world processes.

Keywords: behavioural realism, electric vehicles, social influence, vehicle choice

Procedia PDF Downloads 186
7291 Development and Validation of High-Performance Liquid Chromatography Method for the Determination and Pharmacokinetic Study of Linagliptin in Rat Plasma

Authors: Hoda Mahgoub, Abeer Hanafy

Abstract:

Linagliptin (LNG) belongs to dipeptidyl-peptidase-4 (DPP-4) inhibitor class. DPP-4 inhibitors represent a new therapeutic approach for the treatment of type 2 diabetes in adults. The aim of this work was to develop and validate an accurate and reproducible HPLC method for the determination of LNG with high sensitivity in rat plasma. The method involved separation of both LNG and pindolol (internal standard) at ambient temperature on a Zorbax Eclipse XDB C18 column and a mobile phase composed of 75% methanol: 25% formic acid 0.1% pH 4.1 at a flow rate of 1.0 mL.min-1. UV detection was performed at 254nm. The method was validated in compliance with ICH guidelines and found to be linear in the range of 5–1000ng.mL-1. The limit of quantification (LOQ) was found to be 5ng.mL-1 based on 100µL of plasma. The variations for intra- and inter-assay precision were less than 10%, and the accuracy values were ranged between 93.3% and 102.5%. The extraction recovery (R%) was more than 83%. The method involved a single extraction step of a very small plasma volume (100µL). The assay was successfully applied to an in-vivo pharmacokinetic study of LNG in rats that were administered a single oral dose of 10mg.kg-1 LNG. The maximum concentration (Cmax) was found to be 927.5 ± 23.9ng.mL-1. The area under the plasma concentration-time curve (AUC0-72) was 18285.02 ± 605.76h.ng.mL-1. In conclusion, the good accuracy and low LOQ of the bioanalytical HPLC method were suitable for monitoring the full pharmacokinetic profile of LNG in rats. The main advantages of the method were the sensitivity, small sample volume, single-step extraction procedure and the short time of analysis.

Keywords: HPLC, linagliptin, pharmacokinetic study, rat plasma

Procedia PDF Downloads 240
7290 Landmark Based Catch Trends Assessment of Gray Eel Catfish (Plotosus canius) at Mangrove Estuary in Bangladesh

Authors: Ahmad Rabby

Abstract:

The present study emphasizing the catch trends assessment of Gray eel catfish (Plotosus canius) that was scrutinized on the basis of monthly length frequency data collected from mangrove estuary, Bangladesh during January 2017 to December 2018. A total amount of 1298 specimens were collected to estimate the total length (TL) and weight (W) of P. canius ranged from 13.3 cm to 87.4 cm and 28 g to 5200 g, respectively. The length-weight relationship was W=0.006 L2.95 with R2=0.972 for both sexes. The von Bertalanffy growth function parameters were L∞=93.25 cm and K=0.28 yr-1, hypothetical age at zero length of t0=0.059 years and goodness of the fit of Rn=0.494. The growth performances indices for L∞ and W∞ were computed as Φ'=3.386 and Φ=1.84, respectively. The size at first sexual maturity was estimated in TL as 48.8 cm for pool sexes. The natural mortality was 0.51 yr-1 at average annual water surface temperature as 22 0C. The total instantaneous mortality was 1.24 yr-1 at CI95% of 0.105–1.42 (r2=0.986). While fishing mortality was 0.73 yr-1 and the current exploitation ratio as 0.59. The recruitment was continued throughout the year with one major peak during May-June was 17.20-17.96%. The Beverton-Holt yield per recruit model was analyzed by FiSAT-II, when tc was at 1.43 yr, the Fmax was estimated as 0.6 yr-1 and F0.1 was 0.33 yr-1. Current age at the first capture was approximately 0.6 year, however Fcurrent = 0.73 yr-1 which is beyond the F0.1 indicated that the current stock of P. canius of Bangladesh was overexploited.

Keywords: Plotosus canius, mangrove estuary, asymptotic length, FiSAT-II

Procedia PDF Downloads 150
7289 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 79
7288 A Two-Stage Bayesian Variable Selection Method with the Extension of Lasso for Geo-Referenced Data

Authors: Georgiana Onicescu, Yuqian Shen

Abstract:

Due to the complex nature of geo-referenced data, multicollinearity of the risk factors in public health spatial studies is a commonly encountered issue, which leads to low parameter estimation accuracy because it inflates the variance in the regression analysis. To address this issue, we proposed a two-stage variable selection method by extending the least absolute shrinkage and selection operator (Lasso) to the Bayesian spatial setting, investigating the impact of risk factors to health outcomes. Specifically, in stage I, we performed the variable selection using Bayesian Lasso and several other variable selection approaches. Then, in stage II, we performed the model selection with only the selected variables from stage I and compared again the methods. To evaluate the performance of the two-stage variable selection methods, we conducted a simulation study with different distributions for the risk factors, using geo-referenced count data as the outcome and Michigan as the research region. We considered the cases when all candidate risk factors are independently normally distributed, or follow a multivariate normal distribution with different correlation levels. Two other Bayesian variable selection methods, Binary indicator, and the combination of Binary indicator and Lasso were considered and compared as alternative methods. The simulation results indicated that the proposed two-stage Bayesian Lasso variable selection method has the best performance for both independent and dependent cases considered. When compared with the one-stage approach, and the other two alternative methods, the two-stage Bayesian Lasso approach provides the highest estimation accuracy in all scenarios considered.

Keywords: Lasso, Bayesian analysis, spatial analysis, variable selection

Procedia PDF Downloads 142
7287 Creep Analysis and Rupture Evaluation of High Temperature Materials

Authors: Yuexi Xiong, Jingwu He

Abstract:

The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.

Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines

Procedia PDF Downloads 287
7286 Advanced Seismic Retrofit of a School Building by a DFP Base Isolation Solution

Authors: Stefano Sorace, Gloria Terenzi

Abstract:

The study of a base isolation seismic retrofit solution for a reinforced concrete school building is presented in this paper. The building was assumed as a benchmark structure for a Research Project financed by the Italian Department of Civil Protection, and is representative of several similar public edifices designed with earlier Technical Standards editions, in Italy as well as in other earthquake-prone European countries. The structural characteristics of the building, and a synthesis of the investigation campaigns developed on it, are initially presented. The mechanical parameters, dimensions, locations and installation details of the base isolation system, incorporating double friction pendulum sliding bearings as protective devices, are then illustrated, along with the performance assessment analyses carried out in original and rehabilitated conditions according to a full non-linear dynamic approach. The results of the analyses show a remarkable enhancement of the seismic response capacities of the structure in base-isolated configuration. This allows reaching the high performance levels postulated in the rehabilitation design with notably lower costs and architectural intrusion as compared to traditional retrofit interventions designed for the same objectives.

Keywords: seismic retrofit, seismic assessment, r/c structures, school buildings, base isolation

Procedia PDF Downloads 268
7285 Cognitive Performance and Everyday Functionality in Healthy Greek Seniors

Authors: George Pavlidis, Ana Vivas

Abstract:

The demographic change into an aging population has stimulated the examination of seniors’ mental health and ability to live independently. The corresponding literature depicts the relation between cognitive decline and everyday functionality with aging, focusing largely in individuals that are reaching or have bridged the threshold of various forms of neuropathology and disability. In this context, recent meta-analysis depicts a moderate relation between cognitive performance and everyday functionality in AD sufferers. However, there has not been an analogous effort for the examination of this relation in the healthy spectrum of aging (i.e, in samples that are not challenged from a neurodegenerative disease). There is a consensus that the assessment tools designed to detect neuropathology with those that assess cognitive performance in healthy adults are distinct, thus their universal use in cognitively challenged and in healthy adults is not always valid. The same accounts for the assessment of everyday functionality. In addition, it is argued that everyday functionality should be examined with cultural adjusted assessment tools, since many vital everyday tasks are heterotypical among distinct cultures. Therefore, this study was set out to examine the relation between cognitive performance and everyday functionality a) in the healthy spectrum of aging and b) by adjusting the everyday functionality tools EPT and OTDL-R in the Greek cultural context. In Greece, 107 cognitively healthy seniors ( Mage = 62.24) completed a battery of neuropsychological tests and everyday functionality tests. Both were carefully chosen to be sensitive in fluctuations of performance in the healthy spectrum of cognitive performance and everyday functionality. The everyday functionality assessment tools were modified to reflect the local cultural context (i.e., EPT-G and OTDL-G). The results depicted that performance in all everyday functionality measures decline with age (.197 < r > .509). Statistically significant correlations emerged between cognitive performance and everyday functionality assessments that range from r =0.202 to r=0.510. A series of independent regression analysis including the scores of cognitive assessments has yield statistical significant models that explained 20.9 < AR2 > 32.4 of the variance in everyday functionality scored indexes. All everyday functionality measures were independently predicted by the TMT B-A index, and indicator of executive function. Stepwise regression analyses depicted that TMT B-A and age were statistically significant independent predictors of EPT-G and OTDL-G. It was concluded that everyday functionality is declining with age and that cognitive performance and everyday functional may be related in the healthy spectrum of aging. Age seems not to be the sole contributing factor in everyday functionality decline, rather executive control as well. Moreover, it was concluded that the EPT-G and OTDL-G are valuable tools to assess everyday functionality in Greek seniors that are not cognitively challenged, especially for research purposes. Future research should examine the contributing factors of a better cognitive vitality especially in executive control, as vital for the maintenance of independent living capacity with aging.

Keywords: cognition, everyday functionality, aging, cognitive decline, healthy aging, Greece

Procedia PDF Downloads 522
7284 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour

Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo

Abstract:

The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².

Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River

Procedia PDF Downloads 454
7283 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model

Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You

Abstract:

The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.

Keywords: DBSCAN, potential function, speech signal, the UBSS model

Procedia PDF Downloads 133
7282 Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles

Authors: Jisoo Kim, Jin-Young Choi, MinSu Lee, Sunmook Lee

Abstract:

Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship.

Keywords: bioabsorbable, bone fixation device, ceramic nanoparticles, durability assessment, nanocomposite

Procedia PDF Downloads 324
7281 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data

Authors: N. Borjalilu, P. Rabiei, A. Enjoo

Abstract:

Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.

Keywords: F-topsis, fuzzy set, flight data monitoring (FDM), flight safety

Procedia PDF Downloads 166
7280 Contact Address Levels and Human Health Risk of Metals In Milk and Milk Products Bought from Abeokuta, Southwestern Nigeria

Authors: Olukayode Bamgbose, Feyisola Agboola, Adewale M. Taiwo, Olanrewaju Olujimi Oluwole Terebo, Azeez Soyingbe, Akeem Bamgbade

Abstract:

The present study evaluated the contents and health risk assessment of metals determined in milk and milk product samples collected from the Abeokuta market. Forty-five milk and milk product (yoghurt) samples were digested and analysed for selected metals using Atomic Absorption Spectrophotometric method. Health risk assessment was evaluated for hazard quotient (HQ), hazard index (HI), and cancer risk (CR). Data were subjected to descriptive and inferential statistics. The concentrations of Zn, which ranged from 3.24±0.59 to 4.35±0.59 mg/kg, were the highest in the samples. Cr and Cd were measured below the detection limit of the analytical instrument, while the Pb level was higher than the Codex Alimentarius Commission value of 0.02 mg/kg, indicating unsafe for consumption. However, the HQ of Pb and other metals in milk and milk product samples was less than 1.0, thereby establishing no adverse health effects for Pb and other metals. The distribution pattern of metals in milk and milk product samples followed the decreasing order of Zn > Fe > Ni > Co > Cu > Mn > Pb > Cd/Cr. The CR levels of meals were also less than the permissible limit of 1.0 x 10-4, establishing no possible development of cancer. Keywords: adverse effects, cancer, metals, milk, milk product, the permissible limit.

Keywords: adverse effects, cancer, metals, milk, milk product, permissible limit

Procedia PDF Downloads 78
7279 A New Social Vulnerability Index for Evaluating Social Vulnerability to Climate Change at the Local Scale

Authors: Cuong V Nguyen, Ralph Horne, John Fien, France Cheong

Abstract:

Social vulnerability to climate change is increasingly being acknowledged, and proposals to measure and manage it are emerging. Building upon this work, this paper proposes an approach to social vulnerability assessment using a new mechanism to aggregate and account for causal relationships among components of a Social Vulnerability Index (SVI). To operationalize this index, the authors propose a means to develop an appropriate primary dataset, through application of a specifically-designed household survey questionnaire. The data collection and analysis, including calibration and calculation of the SVI is demonstrated through application in case study city in central coastal Vietnam. The calculation of SVI at the fine-grained local neighbourhood scale provides high resolution in vulnerability assessment, and also obviates the need for secondary data, which may be unavailable or problematic, particularly at the local scale in developing countries. The SVI household survey is underpinned by the results of a Delphi survey, an in-depth interview and focus group discussions with local environmental professionals and community members. The research reveals inherent limitations of existing SVIs but also indicates the potential for their use in assessing social vulnerability and making decisions associated with responding to climate change at the local scale.

Keywords: climate change, local scale, social vulnerability, social vulnerability index

Procedia PDF Downloads 433
7278 Evaluation of Soil Stiffness and Strength for Quality Control of Compacted Earthwork

Authors: A. Sawangsuriya, T. B. Edil

Abstract:

Microstructure and fabric of soils play an important role on structural properties e.g. stiffness and strength of compacted earthwork. Traditional quality control monitoring based on moisture-density tests neither reflects the variability of soil microstructure nor provides a direct assessment of structural property, which is the ultimate objective of the earthwork quality control. Since stiffness and strength are sensitive to soil microstructure and fabric, any independent test methods that provide simple, rapid, and direct measurement of stiffness and strength are anticipated to provide an effective assessment of compacted earthen materials’ uniformity. In this study, the soil stiffness gauge (SSG) and the dynamic cone penetrometer (DCP) were respectively utilized to measure and monitor the stiffness and strength in companion with traditional moisture-density measurements of various earthen materials used in Thailand road construction projects. The practical earthwork quality control criteria are presented herein in order to assure proper earthwork quality control and uniform structural property of compacted earthworks.

Keywords: dynamic cone penetrometer, moisture content, quality control, relative compaction, soil stiffness gauge, structural properties

Procedia PDF Downloads 358
7277 Influence of Alcohol Consumption on Attention in Wistar Albino Rats

Authors: Adekunle Adesina, Dorcas Adesina

Abstract:

This Research investigated the influence of alcohol consumption on attention in Wister albino rats. It was designed to test whether or not alcohol consumption affected visual and auditory attention. The sample of this study comprise of 3males albino rats and 3 females albino rats which were randomly assigned to 3 (male/female each) groups, 1, 2 and 3. The first group which was experimental Group 1 received 4ml of alcohol ingestion with cannula twice daily (morning and evening). The second group which was experimental group 2 received 2ml of alcohol ingestion with cannula twice daily (morning and evening). Third group which was the control group only received water (placebo), all these happened within a period of 2 days. Three hypotheses were advanced and testedf in the study. Hypothesis 1 stated that there will be no significant difference between the response speed of albino rats that consume alcohol and those that consume water on visual attention using 5-CSRTT. This was confirmed (DF (2, 9) = 0.72, P <.05). Hypothesis 2 stated that albino rats who consumed alcohol will perform better than those who consume water on auditory accuracy using 5-CSRTT. This was also tested but not confirmed (DF (2, 9) = 2.10, P< .05). The third hypothesis which stated that female albino rats who consumed alcohol would not perform better than male albino rats who consumed alcohol on auditory accuracy using 5-CSRTT was tested and not confirmed. (DF (4) = 0.17, P < .05). Data was analyzed using one-way ANOVA and T-test for independent measures. It was therefore recommended that government policies and programs should be directed at reducing to the barest minimum the rate of alcohol consumption especially among males as it is detrimental to the human auditory attentional organ.

Keywords: alcohol, attention, influence, rats, Wistar

Procedia PDF Downloads 261
7276 An Enhanced Approach in Validating Analytical Methods Using Tolerance-Based Design of Experiments (DoE)

Authors: Gule Teri

Abstract:

The effective validation of analytical methods forms a crucial component of pharmaceutical manufacturing. However, traditional validation techniques can occasionally fail to fully account for inherent variations within datasets, which may result in inconsistent outcomes. This deficiency in validation accuracy is particularly noticeable when quantifying low concentrations of active pharmaceutical ingredients (APIs), excipients, or impurities, introducing a risk to the reliability of the results and, subsequently, the safety and effectiveness of the pharmaceutical products. In response to this challenge, we introduce an enhanced, tolerance-based Design of Experiments (DoE) approach for the validation of analytical methods. This approach distinctly measures variability with reference to tolerance or design margins, enhancing the precision and trustworthiness of the results. This method provides a systematic, statistically grounded validation technique that improves the truthfulness of results. It offers an essential tool for industry professionals aiming to guarantee the accuracy of their measurements, particularly for low-concentration components. By incorporating this innovative method, pharmaceutical manufacturers can substantially advance their validation processes, subsequently improving the overall quality and safety of their products. This paper delves deeper into the development, application, and advantages of this tolerance-based DoE approach and demonstrates its effectiveness using High-Performance Liquid Chromatography (HPLC) data for verification. This paper also discusses the potential implications and future applications of this method in enhancing pharmaceutical manufacturing practices and outcomes.

Keywords: tolerance-based design, design of experiments, analytical method validation, quality control, biopharmaceutical manufacturing

Procedia PDF Downloads 78
7275 Comparison of Selected Behavioural Patterns of German Shepherd Puppies in Open-Field Test by Practical Assessment Report

Authors: Igor Miňo, Lenka Lešková

Abstract:

Over the past 80 years, open-field method has evolved as a commonly used tool for the analysis of animal behaviour. The study was carried out using 50 kennel-reared purebred puppies of the German Shepherd dog breed. All dogs were tested in 5th, 7th, and 9th week of age. For the purpose of behavioural analysis, an open-field evaluation report was designed prior to testing to ensure the most convenient, rapid, and suitable way to assess selected behavioural patterns in field conditions. Onset of vocalisation, intensity of vocalisation, level of physical activity, response to sound, and overall behaviour was monitored in the study. Correlations between measures of height, weight and chest circumference, and behavioural characteristics in the 5th, 7th, and 9th week of age were not statistically significant. Onset of vocalisation, intensity of vocalisation, level of physical activity and response to sound differed on statistically significant level between 5th, 7th, and 9th week of age. Results suggest that our practical assessment report may be used as an applicable method to evaluate the suitability of service dog puppies for future working roles.

Keywords: dog, behaviour, open-field, testing

Procedia PDF Downloads 218
7274 Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model

Authors: Nahlah Abbas, Saleh A. Wasimi, Nadhir Al-Ansari

Abstract:

The Greater Zab and Lesser Zab are the major tributaries of Tigris River contributing the largest flow volumes into the river. The impacts of climate change on water resources in these basins have not been well addressed. To gain a better understanding of the effects of climate change on water resources of the study area in near future (2049-2069) as well as in distant future (2080-2099), Soil and Water Assessment Tool (SWAT) was applied. The model was first calibrated for the period from 1979 to 2004 to test its suitability in describing the hydrological processes in the basins. The SWAT model showed a good performance in simulating streamflow. The calibrated model was then used to evaluate the impacts of climate change on water resources. Six general circulation models (GCMs) from phase five of the Coupled Model Intercomparison Project (CMIP5) under three Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 and 2080-2099 were used to project the climate change impacts on these basins. The results demonstrated a significant decline in water resources availability in the future.

Keywords: Tigris River, climate change, water resources, SWAT

Procedia PDF Downloads 202
7273 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis

Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos

Abstract:

The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.

Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy

Procedia PDF Downloads 4
7272 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 66
7271 Effect of Knowledge of Bubble Point Pressure on Estimating PVT Properties from Correlations

Authors: Ahmed El-Banbi, Ahmed El-Maraghi

Abstract:

PVT properties are needed as input data in all reservoir, production, and surface facilities engineering calculations. In the absence of PVT reports on valid reservoir fluid samples, engineers rely on PVT correlations to generate the required PVT data. The accuracy of PVT correlations varies, and no correlation group has been found to provide accurate results for all oil types. The effect of inaccurate PVT data can be significant in engineering calculations and is well documented in the literature. Bubble point pressure can sometimes be obtained from external sources. In this paper, we show how to utilize the known bubble point pressure to improve the accuracy of calculated PVT properties from correlations. We conducted a systematic study using around 250 reservoir oil samples to quantify the effect of pre-knowledge of bubble point pressure. The samples spanned a wide range of oils, from very volatile oils to black oils and all the way to low-GOR oils. A method for shifting both undersaturated and saturated sections of the PVT properties curves to the correct bubble point is explained. Seven PVT correlation families were used in this study. All PVT properties (e.g., solution gas-oil ratio, formation volume factor, density, viscosity, and compressibility) were calculated using the correct bubble point pressure and the correlation estimated bubble point pressure. Comparisons between the calculated PVT properties and actual laboratory-measured values were made. It was found that pre-knowledge of bubble point pressure and using the shifting technique presented in the paper improved the correlation-estimated values by 10% to more than 30%. The most improvement was seen in the solution gas-oil ratio and formation volume factor.

Keywords: PVT data, PVT properties, PVT correlations, bubble point pressure

Procedia PDF Downloads 62
7270 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 325
7269 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 70
7268 Comparison the Energy Consumption with Sustainability in Campus: Case Study of Four American Universities

Authors: Bifeng Zhu, Zhekai Wang, Chaoyang Sun, Bart Dewancker

Abstract:

Under the tide of promoting sustainable development in the world, American universities that have been committed to sustainable practice and innovation, not only have its sustainable campus construction been in the forefront of the world, but also have developed STARS (The Sustainability Tracking, Assessment & Rating System), which is widely used in the world and highly recognized. At the same time, in the process of global sustainable campus construction, energy problem is often regarded as one of the most important sustainable aspects, even equivalent to the sustainability of campus. Therefore, the relationship between campus energy and sustainability is worth discussing. In this study, four American universities with the highest level evaluated by STARS are selected as examples to compare and analyze the campus energy consumption and the use of new energy, GHG emissions and the overall sustainability of the campus, in order to explore the relationship between campus energy and sustainable construction. It is found that the advantages of sustainable campus construction in the United States are mainly focused on the "software" of management, education, activities, etc. Although different energy-saving measures have been taken in campus energy, the construction results are quite different. Moreover, as an important aspect of sustainable campus, energy can not fully represent the sustainability of campus, but because of the various measures it takes, it can greatly promote the sustainable construction of the whole campus. These measures and construction experiences are worthy of summary and promotion, and have positive reference significance for other universities even communities around the world.

Keywords: sustainable campus, energy consumption, STARS assessment, GHG emissions

Procedia PDF Downloads 272
7267 Implementation of Project-Based Learning with Peer Assessment in Large Classes under Consideration of Faculty’s Scare Resources

Authors: Margit Kastner

Abstract:

To overcome the negative consequences associated with large class sizes and to support students in developing the necessary competences (e.g., critical thinking, problem-solving, or team-work skills) a marketing course has been redesigned by implementing project-based learning with peer assessment (PBL&PA). This means that students can voluntarily take advantage of this supplementary offer and explore -in addition to attending the lecture where clicker questions are asked- a real-world problem, find a solution, and assess the results of peers while working in small collaborative groups. In order to handle this with little further effort, the process is technically supported by the university’s e-learning system in such a way that students upload their solution in form of an assignment which is then automatically distributed to peer groups who have to assess the work of three other groups. Finally, students’ work is graded automatically considering both, students’ contribution to the project and the conformity of the peer assessment. The purpose of this study is to evaluate students’ perception of PBL&PA using an online-questionnaire to collect the data. More specifically, it aims to discover students’ motivations for (not) working on a project and the benefits and problems students encounter. In addition to the survey, students’ performance was analyzed by comparing the final grades of those who participated in PBL&PA with those who did not participate. Among the 260 students who filled out the questionnaire, 47% participated in PBL&PA. Besides extrinsic motivations (bonus credits), students’ participation was often motivated by learning and social benefits. Reasons for not working on a project were connected to students’ organization and management of their studies (e.g., time constraints, no/wrong information) and teamwork concerns (e.g., missing engagement of peers, prior negative experiences). In addition, high workload and insufficient extrinsic motivation (bonus credits) were mentioned. With regards to benefits and problems students encountered during the project, students provided more positive than negative comments. Positive aspects most often stated were learning and social benefits while negative ones were mainly attached to the technical implementation. Interestingly, bonus credits were hardly named as a positive aspect meaning that intrinsic motivations have become more important when working on the project. Team aspects generated mixed feelings. In addition, students who voluntarily participated in PBL&PA were, in general, more active and utilized further course offers such as clicker questions. Examining students’ performance at the final exam revealed that students without participating in any of the offered active learning tasks performed poorest in the exam while students who used all activities were best. In conclusion, the goals of the implementation were met in terms of students’ perceived benefits and the positive impact on students’ exam performance. Since the comparison of the automatic grading with faculty grading showed valid results, it is possible to rely only on automatic grading in the future. That way, the additional workload for faculty will be within limits. Thus, the implementation of project-based learning with peer assessment can be recommended for large classes.

Keywords: automated grading, large classes, peer assessment, project-based learning

Procedia PDF Downloads 165
7266 Safety Culture Implementation Based on Occupational Health and Safety Assessment

Authors: Nyambayar Davaadorj, Ichiro Koshijima

Abstract:

Safety or the state of being safe can be described as a condition of being not dangerous or not harmful. It is necessary for an individual to avoid dangerous situations every day. Also, an organization is subject to legal requirements for the health and safety of persons inside and around the immediate workplace, or who are exposed to the workplace activities. Although it might be difficult to keep a situation where complete safety is ensured, efforts must nonetheless be made to consider ways of removing any potential danger within an organization. In order to ensure a safe working environment, the capability of responding (i.e., resilience) to signals (i.e., information concerning events that could pose future problems that must be taken into account) that occur in and around corporations is necessary. The ability to evaluate this essential point is thus one way in which safety and security can be managed. This study focuses on OHSAS18001, an internationally applied standard for the construction and operation of occupational health and safety management systems, by using IDEF0 for Function Modeling (IDEF0) and the Resilience Matrix originally made by Bracco. Further, this study discusses a method for evaluating a manner in which Occupational Health and Safety Assessment Series (OHSAS) systematically functions within corporations. Based on the findings, this study clarifies the potential structural objection for corporations when implementing and operating the OHSAS standard.

Keywords: OHSAS18001, IDEF0, resilience engineering, safety culture

Procedia PDF Downloads 239
7265 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain

Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas

Abstract:

Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.

Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot

Procedia PDF Downloads 170
7264 On the Added Value of Probabilistic Forecasts Applied to the Optimal Scheduling of a PV Power Plant with Batteries in French Guiana

Authors: Rafael Alvarenga, Hubert Herbaux, Laurent Linguet

Abstract:

The uncertainty concerning the power production of intermittent renewable energy is one of the main barriers to the integration of such assets into the power grid. Efforts have thus been made to develop methods to quantify this uncertainty, allowing producers to ensure more reliable and profitable engagements related to their future power delivery. Even though a diversity of probabilistic approaches was proposed in the literature giving promising results, the added value of adopting such methods for scheduling intermittent power plants is still unclear. In this study, the profits obtained by a decision-making model used to optimally schedule an existing PV power plant connected to batteries are compared when the model is fed with deterministic and probabilistic forecasts generated with two of the most recent methods proposed in the literature. Moreover, deterministic forecasts with different accuracy levels were used in the experiments, testing the utility and the capability of probabilistic methods of modeling the progressively increasing uncertainty. Even though probabilistic approaches are unquestionably developed in the recent literature, the results obtained through a study case show that deterministic forecasts still provide the best performance if accurate, ensuring a gain of 14% on final profits compared to the average performance of probabilistic models conditioned to the same forecasts. When the accuracy of deterministic forecasts progressively decreases, probabilistic approaches start to become competitive options until they completely outperform deterministic forecasts when these are very inaccurate, generating 73% more profits in the case considered compared to the deterministic approach.

Keywords: PV power forecasting, uncertainty quantification, optimal scheduling, power systems

Procedia PDF Downloads 86