Search results for: reliable cash flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6676

Search results for: reliable cash flow

4846 An Investigation Enhancing E-Voting Application Performance

Authors: Aditya Verma

Abstract:

E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.

Keywords: blockchain, parallel bft, consensus algorithms, performance

Procedia PDF Downloads 164
4845 Aerodynamic Devices Development for Model Aircraft Control and Wind-Driven Bicycle

Authors: Yuta Moriyama, Tsuyoshi Yamazaki, Etsuo Morishita

Abstract:

Several aerodynamic devices currently attract engineers and research students. The plasma actuator is one of them, and it is very effective to control the flow. The actuator recovers a separated flow to an attached one. The actuator is also inversely applied to a spoiler. The model aircraft might be controlled by this actuator. We develop a model aircraft with the plasma actuator. Another interesting device is the Wells turbine which rotates in one direction. The present authors propose a bicycle with the Wells turbine in the wheels. Power reduction is measured when the turbine is driven by an electric motor at the exit of a wind tunnel. Several Watts power reduction might be possible. This means that the torque of the bike can be augmented by the turbine in the cross wind. These devices are tested in the wind tunnel with a three-component balance and the aerodynamic forces and moment are obtained. In this paper, we introduce these devices and their aerodynamic characteristics. The control force and moment of the plasma actuator are clarified and the power reduction of the bicycle is quantified.

Keywords: aerodynamics, model aircraft, plasma actuator, Wells turbine

Procedia PDF Downloads 238
4844 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications

Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana

Abstract:

A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.

Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons

Procedia PDF Downloads 242
4843 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water

Authors: Moosa Mazloom, Hojjat Hatami

Abstract:

The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.

Keywords: magnetic water, self-compacting light weight concrete, silica fume, superplasticizer

Procedia PDF Downloads 364
4842 One Dimensional Unsteady Boundary Layer Flow in an Inclined Wavy Wall of a Nanofluid with Convective Boundary Condition

Authors: Abdulhakeem Yusuf, Yomi Monday Aiyesimi, Mohammed Jiya

Abstract:

The failure in an ordinary heat transfer fluid to meet up with today’s industrial cooling rate has resulted in the development of high thermal conductivity fluid which nanofluids belongs. In this work, the problem of unsteady one dimensional laminar flow of an incompressible fluid within a parallel wall is considered with one wall assumed to be wavy. The model is presented in its rectangular coordinate system and incorporates the effects of thermophoresis and Brownian motion. The local similarity solutions were also obtained which depends on Soret number, Dufour number, Biot number, Lewis number, and heat generation parameter. The analytical solution is obtained in a closed form via the Adomian decomposition method. It was found that the method has a good agreement with the numerical method, and it is also established that the heat generation parameter has to be kept low so that heat energy are easily evacuated from the system.

Keywords: Adomian decomposition method, Biot number, Dufour number, nanofluid

Procedia PDF Downloads 321
4841 Financial Inclusion as Twig of Internally Generated Revenue From Entrepreneurial Venture: A University Funding Alternate

Authors: Anifowose Oluwafemi Dele, Ngah Rohana, Hasni Abdulahi

Abstract:

The economic crisis, which resulted in university funding cuts with an astronomically devastating impact on teaching and research around the world. Sequel to this, Nigerian universities are in disarray due to insufficient government funding and are under pressure to discover new financial streams of Internally Generated Revenue (IGR) to disentangle finance-related teething problems and most tangible means of outsourcing finance inclusively for the creation of more entrepreneurial ventures through the possibilities of prudent IGR management. To the best of our knowledge, one way to address this still-unknown or underappreciated cog is through the strategic use of IGR and the outsourcing of financing for the launch of entrepreneurial ventures. As a result, it is critical to investigate and evaluate financial inclusion through prudently managed IGR to achieve greater financial inclusion for more long-term entrepreneurial ventures. Justifying the need to look inward and devise mechanisms for strong instruments internal fund raising and managing cash inflows to benefit university entrepreneurial ventures to increase the University's IGR for the benefit of the university and its stakeholders. The paper concludes that University Managers must fully accept the use of genuine means of boosting IGR through financial inclusion of in-house funds to aggressively established IGR boosting and the creation of entrepreneurial ventures that could serve as an alternative to inadequate government funding.

Keywords: government funding, university managers, financial inclusion, entrepreneurial venture

Procedia PDF Downloads 77
4840 Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field

Authors: Buruk Kitachew Wossenyeleh

Abstract:

Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model.

Keywords: Ter Kamerenbos, groundwater modelling, WetSpass, climate change, well operation

Procedia PDF Downloads 147
4839 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics

Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic

Abstract:

Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.

Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress

Procedia PDF Downloads 219
4838 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm

Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad

Abstract:

Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data.

Keywords: equation of state, modification, ammonia, genetic algorithm

Procedia PDF Downloads 374
4837 Computational Fluid Dynamics Model of Various Types of Rocket Engine Nozzles

Authors: Konrad Pietrykowski, Michal Bialy, Pawel Karpinski, Radoslaw Maczka

Abstract:

The nozzle is an element of the rocket engine in which the conversion of the potential energy of gases generated during combustion into the kinetic energy of the gas stream takes place. The design parameters of the nozzle have a decisive influence on the ballistic characteristics of the engine. Designing a nozzle assembly is, therefore, one of the most responsible stages in developing a rocket engine design. The paper presents the results of the simulation of three types of rocket propulsion nozzles. Calculations were made using CFD (Computational Fluid Dynamics) in ANSYS Fluent software. The next types of nozzles differ in shape. The analysis was made of a conical nozzle, a bell type nozzle with a conical supersonic part and a bell type nozzle. Calculation results are presented in the form of pressure, velocity and kinetic energy distributions of turbulence in the longitudinal section. The courses of these values along the nozzles are also presented. The results show that the cone nozzle generates strong turbulence in the critical section. Which negatively affect the flow of the working medium. In the case of a bell nozzle, the transformation of the wall caused the elimination of flow disturbances in the critical section. This reduces the probability of waves forming before or after the trailing edge. The most sophisticated construction is the bell type nozzle. It allows you to maximize performance without adding extra weight. The bell type nozzle can be used as a starter and auxiliary engine nozzle due to its advantages. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: computational fluid dynamics, nozzle, rocket engine, supersonic flow

Procedia PDF Downloads 151
4836 Despiking of Turbulent Flow Data in Gravel Bed Stream

Authors: Ratul Das

Abstract:

The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.

Keywords: acoustic doppler velocimeter, gravel-bed, spike removal, reynolds shear stress, near-bed turbulence, velocity power spectra

Procedia PDF Downloads 298
4835 Gamification of eHealth Business Cases to Enhance Rich Learning Experience

Authors: Kari Björn

Abstract:

Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.

Keywords: engineering education, integrated curriculum, learning experience, learning outcomes

Procedia PDF Downloads 238
4834 Models of Environmental, Crack Propagation of Some Aluminium Alloys (7xxx)

Authors: H. A. Jawan

Abstract:

This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state.

Keywords: microstructure, environmental, propagation, mechanism

Procedia PDF Downloads 415
4833 A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem

Authors: G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh

Abstract:

This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.

Keywords: distributed permutation flow shop, scheduling, makespan, general variable neighborhood search algorithm

Procedia PDF Downloads 349
4832 Analysing the Interactive Effects of Factors Influencing Sand Production on Drawdown Time in High Viscosity Reservoirs

Authors: Gerald Gwamba, Bo Zhou, Yajun Song, Dong Changyin

Abstract:

The challenges that sand production presents to the oil and gas industry, particularly while working in poorly consolidated reservoirs, cannot be overstated. From restricting production to blocking production tubing, sand production increases the costs associated with production as it elevates the cost of servicing production equipment over time. Production in reservoirs that present with high viscosities, flow rate, cementation, clay content as well as fine sand contents is even more complex and challenging. As opposed to the one-factor at a-time testing, investigating the interactive effects arising from a combination of several factors offers increased reliability of results as well as representation of actual field conditions. It is thus paramount to investigate the conditions leading to the onset of sanding during production to ensure the future sustainability of hydrocarbon production operations under viscous conditions. We adopt the Design of Experiments (DOE) to analyse, using Taguchi factorial designs, the most significant interactive effects of sanding. We propose an optimized regression model to predict the drawdown time at sand production. The results obtained underscore that reservoirs characterized by varying (high and low) levels of viscosity, flow rate, cementation, clay, and fine sand content have a resulting impact on sand production. The only significant interactive effect recorded arises from the interaction between BD (fine sand content and flow rate), while the main effects included fluid viscosity and cementation, with percentage significances recorded as 31.3%, 37.76%, and 30.94%, respectively. The drawdown time model presented could be useful for predicting the time to reach the maximum drawdown pressure under viscous conditions during the onset of sand production.

Keywords: factorial designs, DOE optimization, sand production prediction, drawdown time, regression model

Procedia PDF Downloads 145
4831 An Inviscid Compressible Flow Solver Based on Unstructured OpenFOAM Mesh Format

Authors: Utkan Caliskan

Abstract:

Two types of numerical codes based on finite volume method are developed in order to solve compressible Euler equations to simulate the flow through forward facing step channel. Both algorithms have AUSM+- up (Advection Upstream Splitting Method) scheme for flux splitting and two-stage Runge-Kutta scheme for time stepping. In this study, the flux calculations differentiate between the algorithm based on OpenFOAM mesh format which is called 'face-based' algorithm and the basic algorithm which is called 'element-based' algorithm. The face-based algorithm avoids redundant flux computations and also is more flexible with hybrid grids. Moreover, some of OpenFOAM’s preprocessing utilities can be used on the mesh. Parallelization of the face based algorithm for which atomic operations are needed due to the shared memory model, is also presented. For several mesh sizes, 2.13x speed up is obtained with face-based approach over the element-based approach.

Keywords: cell centered finite volume method, compressible Euler equations, OpenFOAM mesh format, OpenMP

Procedia PDF Downloads 312
4830 Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation

Authors: Jiya Mohammed, Tsadu Shuaib, Yusuf Abdulhakeem

Abstract:

The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer.

Keywords: MHD, Adomian decomposition, boundary layer, viscous dissipation

Procedia PDF Downloads 545
4829 Efficient GIS Based Public Health System for Disease Prevention

Authors: K. M. G. T. R. Waidyarathna, S. M. Vidanagamachchi

Abstract:

Public Health System exists in Sri Lanka has a satisfactory complete information flow when compared to other systems in developing countries. The availability of a good health information system contributed immensely to achieve health indices that are in line with the developed countries like US and UK. The health information flow at the moment is completely paper based. In Sri Lanka, the fields like banking, accounting and engineering have incorporated information and communication technology to the same extent that can be observed in any other country. The field of medicine has behind those fields throughout the world mainly due to its complexity, issues like privacy, confidentially and lack of people with knowledge in both fields of Information Technology (IT) and Medicine. Sri Lanka’s situation is much worse and the gap is rapidly increasing with huge IT initiatives by private-public partnerships in all other countries. The major goal of the framework is to support minimizing the spreading diseases. To achieve that a web based framework should be implemented for this application domain with web mapping. The aim of this GIS based public health system is a secure, flexible, easy to maintain environment for creating and maintaining public health records and easy to interact with relevant parties.

Keywords: DHIS2, GIS, public health, Sri Lanka

Procedia PDF Downloads 559
4828 Multiphysic Coupling Between Hypersonc Reactive Flow and Thermal Structural Analysis with Ablation for TPS of Space Lunchers

Authors: Margarita Dufresne

Abstract:

This study devoted to development TPS for small space re-usable launchers. We have used SIRIUS design for S1 prototype. Multiphysics coupling for hypersonic reactive flow and thermos-structural analysis with and without ablation is provided by -CCM+ and COMSOL Multiphysics and FASTRAN and ACE+. Flow around hypersonic flight vehicles is the interaction of multiple shocks and the interaction of shocks with boundary layers. These interactions can have a very strong impact on the aeroheating experienced by the flight vehicle. A real gas implies the existence of a gas in equilibrium, non-equilibrium. Mach number ranged from 5 to 10 for first stage flight.The goals of this effort are to provide validation of the iterative coupling of hypersonic physics models in STAR-CCM+ and FASTRAN with COMSOL Multiphysics and ACE+. COMSOL Multiphysics and ACE+ are used for thermal structure analysis to simulate Conjugate Heat Transfer, with Conduction, Free Convection and Radiation to simulate Heat Flux from hypersonic flow. The reactive simulations involve an air chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination probabilities calculation include in the Dunn/Kang mechanism. Forward reaction rate coefficients based on a modified Arrhenius equation are computed for each reaction. The algorithms employed to solve the reactive equations used the second-order numerical scheme is obtained by a “MUSCL” (Monotone Upstream-cantered Schemes for Conservation Laws) extrapolation process in the structured case. Coupled inviscid flux: AUSM+ flux-vector splitting The MUSCL third-order scheme in STAR-CCM+ provides third-order spatial accuracy, except in the vicinity of strong shocks, where, due to limiting, the spatial accuracy is reduced to second-order and provides improved (i.e., reduced) dissipation compared to the second-order discretization scheme. initial unstructured mesh is refined made using this initial pressure gradient technique for the shock/shock interaction test case. The suggested by NASA turbulence models are the K-Omega SST with a1 = 0.355 and QCR (quadratic) as the constitutive option. Specified k and omega explicitly in initial conditions and in regions – k = 1E-6 *Uinf^2 and omega = 5*Uinf/ (mean aerodynamic chord or characteristic length). We put into practice modelling tips for hypersonic flow as automatic coupled solver, adaptative mesh refinement to capture and refine shock front, using advancing Layer Mesher and larger prism layer thickness to capture shock front on blunt surfaces. The temperature range from 300K to 30 000 K and pressure between 1e-4 and 100 atm. FASTRAN and ACE+ are coupled to provide high-fidelity solution for hot hypersonic reactive flow and Conjugate Heat Transfer. The results of both approaches meet the CIRCA wind tunnel results.

Keywords: hypersonic, first stage, high speed compressible flow, shock wave, aerodynamic heating, conugate heat transfer, conduction, free convection, radiation, fastran, ace+, comsol multiphysics, star-ccm+, thermal protection system (tps), space launcher, wind tunnel

Procedia PDF Downloads 60
4827 Development of a Mechanical Ventilator Using A Manual Artificial Respiration Unit

Authors: Isomar Lima da Silva, Alcilene Batalha Pontes, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Context: Mechanical ventilators are medical devices that help provide oxygen and ventilation to patients with respiratory difficulties. This equipment consists of a manual breathing unit that can be operated by a doctor or nurse and a mechanical ventilator that controls the airflow and pressure in the patient's respiratory system. This type of ventilator is commonly used in emergencies and intensive care units where it is necessary to provide breathing support to critically ill or injured patients. Objective: In this context, this work aims to develop a reliable and low-cost mechanical ventilator to meet the demand of hospitals in treating people affected by Covid-19 and other severe respiratory diseases, offering a chance of treatment as an alternative to mechanical ventilators currently available in the market. Method: The project presents the development of a low-cost auxiliary ventilator with a controlled ventilatory system assisted by integrated hardware and firmware for respiratory cycle control in non-invasive mechanical ventilation treatments using a manual artificial respiration unit. The hardware includes pressure sensors capable of identifying positive expiratory pressure, peak inspiratory flow, and injected air volume. The embedded system controls the data sent by the sensors. It ensures efficient patient breathing through the operation of the sensors, microcontroller, and actuator, providing patient data information to the healthcare professional (system operator) through the graphical interface and enabling clinical parameter adjustments as needed. Results: The test data of the developed mechanical ventilator presented satisfactory results in terms of performance and reliability, showing that the equipment developed can be a viable alternative to commercial mechanical ventilators currently available, offering a low-cost solution to meet the increasing demand for respiratory support equipment.

Keywords: mechanical fans, breathing, medical equipment, COVID-19, intensive care units

Procedia PDF Downloads 60
4826 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks

Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee

Abstract:

Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.

Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)

Procedia PDF Downloads 93
4825 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube

Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour

Abstract:

In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.

Keywords: mixed convection, heat transfer, nanofluid, vertical tube, microfin tube

Procedia PDF Downloads 375
4824 Viscoelastic Cell Concentration in a High Aspect Ratio Microchannel Using a Non-Powered Air Compressor

Authors: Jeonghun Nam, Seonggil Kim, Hyunjoo Choi, Chae Seung Lim

Abstract:

Quantification and analysis of rare cells are challenging in clinical applications and cell biology due to its extremely small number in blood. In this work, we propose a viscoelastic microfluidic device for continuous cell concentration without sheath flows. Due to the viscoelastic effect on suspending cells, cells with the blockage ratio higher than 0.1 could be tightly focused at the center of the microchannel. The blockage ratio was defined as the particle diameter divided by the channel width. Finally, cells were concentrated through the center outlet and the additional suspending medium was removed to the side outlets. Since viscoelastic focusing is insensitive to the flow rate higher than 10 μl/min, the non-powered hand pump sprayer could be used with no accurate control of the flow rate, which is suitable for clinical settings in resource-limited developing countries. Using multiple concentration processes, high-throughput concentration of white blood cells in lysed blood sample was achieved by ~ 300-fold.

Keywords: cell concentration, high-throughput, non-powered, viscoelastic fluid

Procedia PDF Downloads 284
4823 Performance of Slot-Entry Hybrid Worn Journal Bearing under Turbulent Lubrication

Authors: Nathi Ram, Saurabh K. Yadav

Abstract:

In turbomachinery, the turbulent flow occurs due to the use of high velocity of low kinematic viscosity lubricants and used in many industrial applications. In the present work, the performance of symmetric slot-entry hybrid worn journal bearing under laminar and turbulent lubrication has been investigated. For turbulent lubrication, the Reynolds equation has been modified using Constantinescu turbulent model. This modified equation has been solved using the finite element method. The effect of turbulent lubrication on bearing’s performance has been presented for symmetric hybrid journal bearing. The slot-entry hybrid worn journal bearing under turbulent/laminar regimes have been investigated. It has been observed that the stiffness and damping coefficients are more for the bearing having slot width ratio (SWR) of 0.25 than the bearing with SWR of 0.5 and 0.75 under the turbulent regime. Further, it is also observed that for constant wear depth parameter, stability threshold speed gets increased for bearing operates at slot width ratio 0.25 under turbulent lubrication.

Keywords: hydrostatic bearings, journal bearings, restrictors, turbulent flow models, finite element technique

Procedia PDF Downloads 158
4822 Rotary Entrainment in Two Phase Stratified Gas-Liquid Layers: An Experimental Study

Authors: Yagya Sharma, Basanta K. Rana, Arup K. Das

Abstract:

Rotary entrainment is a phenomenon in which the interfaces of two immiscible fluids are subjected to external flux in the form of rotation. Present work reports the experimental study on rotary motion of a horizontal cylinder between the interface of air and water to observe the penetration of gas inside the liquid. Experiments have been performed to establish entrainment of air mass in water alongside the cylindrical surface. The movement of tracer and seeded particles have been tracked to calculate the speed and path of the entrained air inside water. Simplified particle image velocimetry technique has been used to trace the movement of particles/tracers at the moment they are injected inside the entrainment zone and suspended beads have been used to replicate the particle movement with respect to time in order to determine the flow dynamics of the fluid along the cylinder. Present paper establishes a thorough experimental analysis of the rotary entrainment phenomenon between air and water keeping in interest the extent to which we can intermix the two and also to study its entrainment trajectories.

Keywords: entrainment, gas-liquid flow, particle image velocimetry, stratified layer mixing

Procedia PDF Downloads 333
4821 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 163
4820 Managerial Overconfidence, Payout Policy, and Corporate Governance: Evidence from UK Companies

Authors: Abdullah AlGhazali, Richard Fairchild, Yilmaz Guney

Abstract:

We examine the effect of managerial overconfidence on UK firms’ payout policy for the period 2000 to 2012. The analysis incorporates, in addition to common firm-specific factors, a wide range of corporate governance factors and managerial characteristics that have been documented to affect the relationship between overconfidence and payout policy. Our results are robust to several estimation considerations. The findings show that the influence of overconfident CEOs on the amount of, and the propensity to pay, dividends is significant within the UK context. Specifically, we detect that there is a reduction in dividend payments in firms managed by overconfident managers compared to their non-overconfident counterparts. Moreover, we affirm that cash flows, firm size and profitability are positively correlated, while leverage, firm growth and investment are negatively correlated with the amount of and propensity to pay dividends. Interestingly, we demonstrate that firms with the potential for undervaluation reduce dividend payments. Some of the corporate governance factors are shown to motivate firms to pay more dividends while these factors seem to have no influence on the propensity to pay dividends. The results also show that in general higher overconfidence leads to more share repurchases but the lower total payout. Overall, managerial overconfidence should be considered as an important factor influencing payout policy in addition to other known factors.

Keywords: dividends, repurchases, UK firms, overconfidence, corporate governance, undervaluation

Procedia PDF Downloads 262
4819 A Comparative Study of Primary Revenue Sources in the U.S. Professional Sports, Intercollegiate Sports, and Sporting Goods Industry

Authors: Chenghao Ma

Abstract:

This paper mainly examines and compares the primary revenue sources in the professional sports, intercollegiate sports, and sporting goods industries in the U.S. In the professional team sport, revenues may come from different resources, including broadcasting rights, ticket sales, corporate partnerships, naming rights, licensed merchandise, luxury suites, club seating, ancillary activities, and transfer fees. Many universities use university budgets and student fees to cover the cost of collegiate athletics. Other sources of revenue include ticket sales, broadcast rights, concessions, corporate partnerships, cash contributions from alumni, and others. Revenues in the sporting goods industry are very different compared with professional sports teams and collegiate athletics. Sporting goods companies mainly sell a line of products and equipment to generate revenue. Revenues are critical for sports organizations, including professional sports teams, intercollegiate athletics, and sporting goods companies. There are similarities and differences among these areas. Sports managers are looking for new ways to generate revenues, and there are many changes of sources because of the development of the internet and technology. Compared with intercollegiate athletics, professional sport and sporting goods companies will create more revenue opportunities globally.

Keywords: revenue sources, professional sports, intercollegiate athletics, sporting goods industry

Procedia PDF Downloads 215
4818 Investigating Convective Boiling Heat Transfer Characteristics of R-1234ze and R-134a Refrigerants in a Microfin and Smooth Tube

Authors: Kaggwa Abdul, Chi-Chuan Wang

Abstract:

This research is based on R-1234ze that is considered to substitute R-134a due to its low global warming potential in a microfin tube with outer diameter 9.52 mm, number of fins 70, and fin height 0.17 mm. In comparison, a smooth tube with similar geometries was used to study pressure drop and heat transfer coefficients related to the two fluids. The microfin tube was brazed inside a stainless steel tube and heated electrically. T-type thermocouples used to measure the temperature distribution during the phase change process. The experimental saturation temperatures and refrigerant mass velocities varied from 10 – 20°C and 50 – 300 kg/m2s respectively. The vapor quality from 0.1 to 0.9, and heat flux ranged from 5 – 11kW/m2. The results showed that heat transfer performance of R-134a in both microfin and smooth tube was better than R-1234ze especially at mass velocities above G = 50 kg/m2s. However, at low mass velocities below G = 100 kg/m2s R-1234ze yield better heat transfer coefficients than R-134a. The pressure gradient of R-1234ze was markedly higher than that of R-134a at all mass flow rates.

Keywords: R-1234ze and R-134a, horizontal flow boiling, pressure drop, heat transfer coefficients, micro-fin and smooth tubes

Procedia PDF Downloads 278
4817 Comprehensive Experimental Study to Determine Energy Dissipation of Nappe Flows on Stepped Chutes

Authors: Abdollah Ghasempour, Mohammad Reza Kavianpour, Majid Galoie

Abstract:

This study has investigated the fundamental parameters which have effective role on energy dissipation of nappe flows on stepped chutes in order to estimate an empirical relationship using dimensional analysis. To gain this goal, comprehensive experimental study on some large-scale physical models with various step geometries, slopes, discharges, etc. were carried out. For all models, hydraulic parameters such as velocity, pressure, water depth, flow regime and etc. were measured precisely. The effective parameters, then, could be determined by analysis of experimental data. Finally, a dimensional analysis was done in order to estimate an empirical relationship for evaluation of energy dissipation of nappe flows on stepped chutes. Because of using the large-scale physical models in this study, the empirical relationship is in very good agreement with the experimental results.

Keywords: nappe flow, energy dissipation, stepped chute, dimensional analysis

Procedia PDF Downloads 357