Search results for: prediction modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3907

Search results for: prediction modelling

2077 Application of UAS in Forest Firefighting for Detecting Ignitions and 3D Fuel Volume Estimation

Authors: Artur Krukowski, Emmanouela Vogiatzaki

Abstract:

The article presents results from the AF3 project “Advanced Forest Fire Fighting” focused on Unmanned Aircraft Systems (UAS)-based 3D surveillance and 3D area mapping using high-resolution photogrammetric methods from multispectral imaging, also taking advantage of the 3D scanning techniques from the SCAN4RECO project. We also present a proprietary embedded sensor system used for the detection of fire ignitions in the forest using near-infrared based scanner with weight and form factors allowing it to be easily deployed on standard commercial micro-UAVs, such as DJI Inspire or Mavic. Results from real-life pilot trials in Greece, Spain, and Israel demonstrated added-value in the use of UAS for precise and reliable detection of forest fires, as well as high-resolution 3D aerial modeling for accurate quantification of human resources and equipment required for firefighting.

Keywords: forest wildfires, surveillance, fuel volume estimation, firefighting, ignition detectors, 3D modelling, UAV

Procedia PDF Downloads 142
2076 A Taxonomy Proposal on Criterion Structure for Evaluating Freight Village Concepts in Early-Stage Design Projects

Authors: Rıza Gürhan Korkut, Metin Çelik, Süleyman Özkaynak

Abstract:

The early-stage design and development projects for the freight village initiatives require a comprehensive analysis of both qualitative and quantitative data. Considering the literature review on structural and operational management requirements, this study proposed an original taxonomy on criterion structure to assess freight village conceptualization. The potential challenges and uncertainties of the developed taxonomy are extended. Besides requirement analysis, this study is also expected to contribute to forthcoming research on benchmarking of freight villages in different regions. The methodology used in this research is a systematic review on several articles as per their modelling approaches, sustainability, entities and decisions made together with the uncertainties and features of their models taken into consideration. The major findings of the study that are the categories for assessing the projects attributes on their environmental, socio-economical, accessibility and location aspects.

Keywords: logistics centers, freight village, operational management, taxonomy

Procedia PDF Downloads 185
2075 Mean Velocity Modeling of Open-Channel Flow with Submerged Vegetation

Authors: Mabrouka Morri, Amel Soualmia, Philippe Belleudy

Abstract:

Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.

Keywords: analytic models, comparison, mean velocity, vegetation

Procedia PDF Downloads 277
2074 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching

Authors: Gianna Zou

Abstract:

Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.

Keywords: BART, Bayesian, matching, regression

Procedia PDF Downloads 149
2073 Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease

Authors: Elizabeth Stojanovski

Abstract:

Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance, and within study variance and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.

Keywords: random-effects, meta-analysis, Bayesian, variation

Procedia PDF Downloads 160
2072 Application Water Quality Modelling In Total Maximum Daily Load (TMDL) Management: A Review

Authors: S. A. Che Osmi, W. M. F. W. Ishak, S. F. Che Osmi

Abstract:

Nowadays the issues of water quality and water pollution have been a major problem across the country. A lot of management attempt to develop their own TMDL database in order to control the river pollution. Over the past decade, the mathematical modeling has been used as the tool for the development of TMDL. This paper presents the application of water quality modeling to develop the total maximum daily load (TMDL) information. To obtain the reliable database of TMDL, the appropriate water quality modeling should choose based on the available data provided. This paper will discuss on the use of several water quality modeling such as QUAL2E, QUAL2K, and EFDC to develop TMDL. The attempts to integrate several modeling are also being discussed in this paper. Based on this paper, the differences in the application of water quality modeling based on their properties such as one, two or three dimensional are showing their ability to develop the modeling of TMDL database.

Keywords: TMDL, water quality modeling, QUAL2E, EFDC

Procedia PDF Downloads 441
2071 Hydro-Mechanical Behavior of Calcareous Soils in Arid Region

Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat

Abstract:

This paper presents the study of hydro mechanical behavior of this optimal mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying- wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.

Keywords: tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction

Procedia PDF Downloads 507
2070 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System

Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen

Abstract:

This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.

Keywords: artificial immune system, collaborative filtering, recommendation system, similarity

Procedia PDF Downloads 536
2069 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus

Authors: Majid Forghani, Michael Khachay

Abstract:

In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.

Keywords: antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition

Procedia PDF Downloads 158
2068 Micromechanical Determination of the Mechanical Properties of Carbon Nanotube-Polymer Composites with a Functionally Graded Interphase

Authors: Vahidullah Tac, Ercan Gurses

Abstract:

There have been numerous attempts at modelling carbon nanotube – polymer composites micromechanically in recent years, albeit to limited success. One of the major setbacks of the models used in the scientific community is the lack of regard to the different phases present in a nanocomposite. We employ a multi-phase micromechanical model that allows functionally grading certain phases to determine the mechanical properties of nanocomposites. The model has four distinct phases; the nanotube, the interface between the nanotube and polymer, the interphase, and the bulk matrix. Among the four phases, the interphase is functionally graded such that its moduli gradually decrease from some predetermined values to those of the bulk polymer. We find that the interface plays little role in stiffening/softening of the polymer per se , but instead, it is responsible for load transfer between the polymer and the carbon nanotube. Our results indicate that the carbon nanotube, as well as the interphase, have significant roles in stiffening the composite. The results are then compared to experimental findings and the interphase is tuned accordingly.

Keywords: carbon nanotube, composite, interphase, micromechanical modeling

Procedia PDF Downloads 166
2067 A Comparative Study on Compliment Response between Indonesian EFL Students and English Native Speakers

Authors: Maria F. Seran

Abstract:

In second language interaction, an EFL student always carries his knowledge of targeted language and sometimes gets influenced by his first language cultures which makes him transfer his utterances from the first language to the second language. The influence of L1 cultures somehow can lead to face-threatening act when it comes to responding on speech act, for instance, compliment. A speaker praises a compliment to show gratitude, and in return, he expects for compliment respond uttered by the hearer. While Western people use more acceptance continuum on compliment response, Indonesians utter more denial continuum which can somehow put the speakers into a face-threating situation and offense. This study investigated compliment response employed by EFL students and English native speakers. The study was distinct as none compliment response studies had been conducted to compare the compliment response between English native speakers and two different Indonesian EFL proficiency groups in which this research sought to meet this need. This study was significant for EFL teachers because it gave insight on cross-cultural understanding and brought pedagogical implication on explicit pragmatic instruction. Two research questions were set, 1. How do Indonesian EFL students and English native speakers respond compliments? 2. Is there any correlation between Indonesia EFL students’ proficiency and their compliment response use in English? The study involved three groups of participants; 5 English native speakers, 10 high-proficiency and 10 low-proficiency Indonesian EFL university students. The research instruments used in this study were as follows, an online TOEFL prediction test, focusing on grammar skill which was modified from Barron TOEFL exercise test, and a discourse completion task (DCT), consisting of 10 compliment respond items. Based on the research invitation, 20 second-year university students majoring in English education at Widya Mandira Catholic University, Kupang, East Nusa Tenggara, Indonesia who willingly participated in the research took the TOEFL prediction test online from the link provided. Students who achieved score 75-100 in test were categorized as high-proficiency students, while, students who attained score below 74 were considered as low-proficiency students. Then, the DCT survey was administered to these EFL groups and the native speaker group. Participants’ responses were coded and analyzed using categories of compliment response framework proposed by Tran. The study found out that 5 native speakers applied more compliment upgrades and appreciation token in compliment response, whereas, Indonesian EFL students combined some compliment response strategies in their utterance, such as, appreciation token, return and compliment downgrade. There is no correlation between students’ proficiency level and their CR responds as most EFL students in both groups produced less varied compliment responses and only 4 Indonesian high-proficiency students uttered more varied and were similar to the native speakers. The combination strategies used by EFL students can be explained as the influence of pragmatic transfer from L1 to L2; therefore, EFL teachers should explicitly teach more compliment response strategies to raise students’ awareness on English culture and elaborate their speaking to be more competence as close to native speakers as possible.

Keywords: compliment response, English native speakers, Indonesian EFL students, speech acts

Procedia PDF Downloads 149
2066 Fiber Orientation Measurements in Reinforced Thermoplastics

Authors: Ihsane Modhaffar

Abstract:

Fiber orientation is essential for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually known and widely used to predict the behavior of the material. In this work, we propose an image processing approach to estimate true principal directions and fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Numerical techniques for the prediction of fiber orientation are also considered for concentrated situations. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The governing equations, of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 534
2065 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City

Procedia PDF Downloads 353
2064 Hydrodynamics of Shear Layers at River Confluences by Formation of Secondary Circulation

Authors: Ali Aghazadegan, Ali Shokri, Julia Mullarney

Abstract:

River confluences are areas where there is a lot of mixing, which is often caused by the formation of shear layers and helical motions. The hydrodynamics of secondary circulation at river confluences with low flow discharge ratios and a 90° junction angle are investigated in this study. The analysis is based on Delft 3D modelling, which includes a three-dimensional time-averaged velocity field, turbulence, and water surface levels that have been validated using laboratory data. Confluence structure was characterized by shear layer, secondary circulation, and mixing at the junction and post confluence channel. This study analysis formation of the shear layer by generation of secondary circulations in variation discharge ratios. The values of streamwise, cross-wise, and vertical components are used to estimate the secondary circulation observed within and downstream of the tributary mouth. These variables are estimated for three horizontal planes at Z = [0.14; 0.07; 0.02] and for eight cross-sections at X = [-0.1; 0.00; 0.10; 0.2; 0.30; 0.4; 0.5; 0.6] within a range of 0.05 Y 0.30.

Keywords: river confluence, shear layer, secondary circulation, hydrodynamics

Procedia PDF Downloads 97
2063 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 184
2062 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 155
2061 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: neural network, self-organizing map, rule extraction, rule insertion

Procedia PDF Downloads 173
2060 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 263
2059 Shock Compressibility of Iron Alloys Calculated in the Framework of Quantum-Statistical Models

Authors: Maxim A. Kadatskiy, Konstantin V. Khishchenko

Abstract:

Iron alloys are widespread components in various types of structural materials which are exposed to intensive thermal and mechanical loads. Various quantum-statistical cell models with the approximation of self-consistent field can be used for the prediction of the behavior of these materials under extreme conditions. The application of these models is even more valid, the higher the temperature and the density of matter. Results of Hugoniot calculation for iron alloys in the framework of three quantum-statistical (the Thomas–Fermi, the Thomas–Fermi with quantum and exchange corrections and the Hartree–Fock–Slater) models are presented. Results of quantum-statistical calculations are compared with results from other reliable models and available experimental data. It is revealed a good agreement between results of calculation and experimental data for terra pascal pressures. Advantages and disadvantages of this approach are shown.

Keywords: alloy, Hugoniot, iron, terapascal pressure

Procedia PDF Downloads 345
2058 Dynamic Analysis of Turbo Machinery Foundation for Different Rotating Speed

Authors: Sungyani Tripathy, Atul Desai

Abstract:

Turbo machinery Frame Foundation is very important for power generation, gas, steam, hydro, geothermal and nuclear power plants. The Turbo machinery Foundation system was simulated in SAP: 2000 software and dynamic response of foundation was analysed. In this paper, the detailed study of turbo machinery foundation with different running speed has considered. The different revolution per minute considered in this study is 4000 rpm, 6000 rpm, 8000 rpm, 1000 rpm and 12000 rpm. The above analysis has been carried out considering Winkler spring soil model, solid finite element modelling and dynamic analysis of Turbo machinery foundations. The comparison of frequency and time periods at various mode shapes are addressed in this study. Current work investigates the effect of damping on the response spectra curve at the foundation top deck, considering the dynamic machine load. It has been found that turbo generator foundation with haunches remains more elastic during seismic action for different running speeds.

Keywords: turbo machinery, SAP: 2000, response spectra, running speeds

Procedia PDF Downloads 256
2057 PSS®E Based Modelling, Simulation and Synchronous Interconnection of Eastern Grid and North-Eastern Regional Grid of India

Authors: Toushik Maiti, Saibal Chatterjee, Kamaljyoti Gogoi, Arijit Basuray

Abstract:

Eastern Regional(ER) Grid and North Eastern Regional (NER) Grid are two major grids of Eastern Part of India. Both of the grid consists of voltage level 765kV, 400 kV, 220 kV and numerous buses at lower voltage range. Eastern Regional Grid and North Eastern Regional Grid are not only connected among themselves but are also connected to various other grids of India. ER and NER Grid having various HVDC lines or back to back systems which form the total network. The studied system comprises of 340 buses of different voltage levels and transmission lines running over a length of 32089 km. The validation of load flow has been done using IEEE STANDARD 30 bus system. The power flow simulation analysis has been performed after synchronizing both the Eastern Grid and North-Eastern Regional Grid of India using Power System Simulators for Engineering (PSS®E) Important inferences has been drawn from the study.

Keywords: HVDC, load flow, PSS®E, unsymmetrical and symmetrical faults

Procedia PDF Downloads 383
2056 Analysis and Forecasting of Bitcoin Price Using Exogenous Data

Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka

Abstract:

Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.

Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance

Procedia PDF Downloads 355
2055 Micro-Oscillator: Passive Production and Manipulation of Microdrops

Authors: Khelfaoui Rachid, Chekifi Tawfiq, Dennai Brahim, Maazouzi A. Hak

Abstract:

A numerical and experimental studies of passive micro drops production have been presented. This paper focuses on the modeling of micro-oscillators systems which are composed by passive amplifier without moving part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design that is based on a bistable fluidic amplifier is proposed. The characteristic size of the channels is generally about 35 microns of depth. The numerical results indicate that the production and manipulation of microdrops are possible with passive device within a typical oscillators chamber of 2.25 mm diameter and 0.20 mm length when the Reynolds number is Re = 490. The novel micro drops method that is presented in this study provides a simple solution about the production of microdrops problems in micro system. We undertake an experimental step. The first part is based on the realisation of sample oscillator; the second part is consisted of visualization, production and manipulation of microdrops.

Keywords: modelling, miscible, micro drops, production, oscillator sample, capillary

Procedia PDF Downloads 383
2054 Risk Factors’ Analysis on Shanghai Carbon Trading

Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu

Abstract:

First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.

Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model

Procedia PDF Downloads 391
2053 Assessment of Pollution of the Rustavi City’s Atmosphere with Microaerosols

Authors: Natia Gigauri, Aleksandre Surmava

Abstract:

According to observational data, experimental measurements, and numerical modeling, is assessed pollution of one of the industrial centers of Georgia, Rustavi city’s atmosphere with microaerosols. Monthly, daily and hourly changes of the concentrations of PM2.5 and PM10 in the city atmosphere are analyzed. It is accepted that PM2.5 concentrations are always lower than PM10 concentrations, but their change curve is the same. In addition, it has been noted that the maximum concentrations of particles in the atmosphere of Rustavi city will be reached at any part of the day, which is determined by the total impact of the traffic flow and industrial facilities. By numerical modeling has calculated the influence of background western light air and gentle and fresh breeze on the distribution of PM particles in the atmosphere. Calculations showed that background light air and gentle breeze lead to an increase the concentrations of microaerosols in the city's atmosphere, while fresh breeze contribute to the dispersion of dusty clouds. As a result, the level of dust in the city is decreasing, but the distribution area is expanding.

Keywords: pollution, modelling, PM2.5, PM10, experimental measurement

Procedia PDF Downloads 89
2052 A Network-Theorical Perspective on Music Analysis

Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria

Abstract:

The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.

Keywords: computational musicology, mathematical music modelling, music analysis, style classification

Procedia PDF Downloads 104
2051 A Review of Methods for Handling Missing Data in the Formof Dropouts in Longitudinal Clinical Trials

Authors: A. Satty, H. Mwambi

Abstract:

Much clinical trials data-based research are characterized by the unavoidable problem of dropout as a result of missing or erroneous values. This paper aims to review some of the various techniques to address the dropout problems in longitudinal clinical trials. The fundamental concepts of the patterns and mechanisms of dropout are discussed. This study presents five general techniques for handling dropout: (1) Deletion methods; (2) Imputation-based methods; (3) Data augmentation methods; (4) Likelihood-based methods; and (5) MNAR-based methods. Under each technique, several methods that are commonly used to deal with dropout are presented, including a review of the existing literature in which we examine the effectiveness of these methods in the analysis of incomplete data. Two application examples are presented to study the potential strengths or weaknesses of some of the methods under certain dropout mechanisms as well as to assess the sensitivity of the modelling assumptions.

Keywords: incomplete longitudinal clinical trials, missing at random (MAR), imputation, weighting methods, sensitivity analysis

Procedia PDF Downloads 417
2050 Towards Incorporating Context Awareness into Business Process Management

Authors: Xiaohui Zhao, Shahan Mafuz

Abstract:

Context-aware technologies provide system applications with the awareness of environmental conditions, customer behaviour, object movements, etc. Further, with such capability system applications can be smart to adapt intelligently their responses to the changing conditions. Concerning business operations, this promises businesses that their business processes can run more intelligently, adaptively and flexibly, and thereby either improve customer experience, enhance reliability of service delivery, or lower operational cost, to make the business more competitive and sustainable. Aiming at realizing such context-aware business process management, this paper firstly explores its potential benefit and then identifies some gaps between the current business process management support and the expected. In addition, some preliminary solutions are also discussed with context definition, rule-based process execution, run-time process evolution, etc. A framework is also presented to give a conceptual architecture of context-aware business process management system to guide system implementation.

Keywords: business process adaptation, business process evolution, business process modelling, and context awareness

Procedia PDF Downloads 415
2049 Partially-Averaged Navier-Stokes for Computations of Flow Around Three-Dimensional Ahmed Bodies

Authors: Maryam Mirzaei, Sinisa Krajnovic´

Abstract:

The paper reports a study about the prediction of flows around simplified vehicles using Partially-Averaged Navier-Stokes (PANS). Numerical simulations are performed for two simplified vehicles: A slanted-back Ahmed body at Re=30 000 and a square back Ahmed body at Re=300 000. A comparison of the resolved and modeled physical flow scales is made with corresponding LES and experimental data for a better understanding of the performance of the PANS model. The PANS model is compared for coarse and fine grid resolutions and it is indicated that even a coarse-grid PANS simulation is able to produce fairly close flow predictions to those from a well-resolved LES simulation. The results indicate the possibility of improvement of the predictions by employing a finer grid resolution.

Keywords: partially-averaged Navier-Stokes, large eddy simulation, PANS, LES, Ahmed body

Procedia PDF Downloads 601
2048 Hominin Niche in the Times of Climate Change

Authors: Emilia Hunt, Sally C. Reynolds, Fiona Coward, Fabio Parracho Silva, Philip Hopley

Abstract:

Ecological niche modeling is widely used in conservation studies, but application to the extinct hominin species is a relatively new approach. Being able to understand what ecological niches were occupied by respective hominin species provides a new perspective into influences on evolutionary processes. Niche separation or overlap can tell us more about specific requirements of the species within the given timeframe. Many of the ancestral species lived through enormous climate changes: glacial and interglacial periods, changes in rainfall, leading to desertification or flooding of regions and displayed impressive levels of adaptation necessary for their survival. This paper reviews niche modeling methodologies and their application to hominin studies. Traditional conservation methods might not be directly applicable to extinct species and are not comparable to hominins. Hominin niche also includes aspects of technologies, use of fire and extended communication, which are not traditionally used in building conservation models. Future perspectives on how to improve niche modeling for extinct hominin species will be discussed.

Keywords: hominin niche, climate change, evolution, adaptation, ecological niche modelling

Procedia PDF Downloads 191