Search results for: hybrid capture
1112 Evaluation of Toxic Metals in Water Hyacinth (Eichhornia crassipes) from Valsequillo Reservoir, Puebla, Central Mexico
Authors: Jacobo Tabla, P. F. Rodriguez-Espinosa, M. E. Perez-Lopez
Abstract:
Valsequillo reservoir located in Puebla City, Central Mexico receives water from the Atoyac River (Northwest) and from Alseseca River in the north. It has been the receptacle of municipal and industrial wastes for the past few decades affecting the water quality lethally. As a result, there is an outburst of water hyacinths (Eichhornia crassipes) in the reservoir occupying around 50 % of the total area. Therefore, the aim of the present work was to assess the concentration levels of toxic metals (Co, Zn, Ni, Cu and As) in the water hyacinths and the ambient waters during the dry season. Fourteen water samples and three water hyacinth samples were procured from the Valsequillo reservoir. The collected samples of water hyacinth (roots, rhizome, stems and leaves) were analyzed using an Inductively coupled plasma mass spectrometry (ICP-MS) Ultramass 700 (Varian Inc.) to determine the metal levels. Results showed that water hyacinth presented an exhaustion in metal capture from the inlet to outlet of the reservoir. The maximum bioaccumulation factors (BF) of Co, Zn, Ni, Cu and As were 5000, 47474, 4929, 17090 and 74000 respectively. On the other hand, the maximum Translocation Factor (TF) of 0.85 was observed in Zn, whilst Co presented the minimum TF of 0.059. Thus, the results presented the fact that water hyacinth in Valsequillo reservoir proves to be an important environmental utility for efficiently accumulating and translocating heavy metals from the ambient waters to its organelles (stems and leaves).Keywords: bioaccumulation factor, toxic metals, translocation factor, water hyacinth
Procedia PDF Downloads 2561111 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 1371110 Macrocycles Enable Tuning of Uranyl Electrochemistry by Lewis Acids
Authors: Amit Kumar, Davide Lionetti, Victor Day, James Blakemore
Abstract:
Capture and activation of the water-soluble uranyl dication (UO22+) remains a challenging problem, as few rational approaches are available for modulating the reactivity of this species. Here, we report the divergent synthesis of heterobimetallic complexes in which UO22+ is held in close proximity to a range of redox-inactive metals by tailored macrocyclic ligands. Crystallographic and spectroscopic studies confirm assembly of homologous UVI(μ-OAr)2Mn+ cores with a range of mono-, di-, and trivalent Lewis acids (Mn+). X-ray diffraction (XRD) and cyclic voltammetry (CV) data suggest preferential binding of K+ in an 18-crown-6-like cavity and Na+ in a 15-crown-5-like cavity, both appended to Schiff-base type sites that selectively bind UO22+. CV data demonstrate that the UVI/UV reduction potential in these complexes shifts positive and the rate of electron transfer decreases with increasing Lewis acidity of the incorporated redox-inactive metals. Moreover, spectroelectrochemical studies confirm the formation of [UV] species in the case of monometallic UO22+ complex, consistent with results from prior studies. However, unique features were observed during spectroelectrochemical studies in the presence of the K+ ion, suggesting new insights into electronic structure may be accessible with the heterobimetallic complexes. Overall, these findings suggest that interactions with Lewis acids could be effectively leveraged for rational tuning of the electronic and thermochemical properties of the 5f elements, reminiscent of strategies more commonly employed with 3d transition metals.Keywords: electrochemistry, Lewis acid, macrocycle, uranyl
Procedia PDF Downloads 1421109 Climate Adaptive Building Shells for Plus-Energy-Buildings, Designed on Bionic Principles
Authors: Andreas Hammer
Abstract:
Six peculiar architecture designs from the Frankfurt University will be discussed within this paper and their future potential of the adaptable and solar thin-film sheets implemented facades will be shown acting and reacting on climate/solar changes of their specific sites. The different aspects, as well as limitations with regard to technical and functional restrictions, will be named. The design process for a “multi-purpose building”, a “high-rise building refurbishment” and a “biker’s lodge” on the river Rheine valley, has been critically outlined and developed step by step from an international studentship towards an overall energy strategy, that firstly had to push the design to a plus-energy building and secondly had to incorporate bionic aspects into the building skins design. Both main parameters needed to be reviewed and refined during the whole design process. Various basic bionic approaches have been given [e.g. solar ivyᵀᴹ, flectofinᵀᴹ or hygroskinᵀᴹ, which were to experiment with, regarding the use of bendable photovoltaic thin film elements being parts of a hybrid, kinetic façade system.Keywords: bionic and bioclimatic design, climate adaptive building shells [CABS], energy-strategy, harvesting façade, high-efficiency building skin, photovoltaic in building skins, plus-energy-buildings, solar gain, sustainable building concept
Procedia PDF Downloads 4301108 Investigating the Impact of Super Bowl Participation on Local Economy: A Perspective of Stock Market
Authors: Rui Du
Abstract:
This paper attempts to assess the impact of a major sporting event —the Super Bowl on the local economies. The identification strategy is to compare the winning and losing cities at the National Football League (NFL) conference finals under the assumption of similar pre-treatment trends. The stock market performances of companies headquartered in these cities are used to capture the sudden changes in local economic activities during a short time span. The exogenous variations in the football game outcome allow a straightforward difference-in-differences approach to identify the effect. This study finds that the post-event trends in winning and losing cities diverge despite the fact that both cities have economically and statistically similar pre-event trends. Empirical analysis provides suggestive evidence of a positive, significant local economic impact of conference final wins, possibly through city image enhancement. Further empirical evidence shows the presence of heterogeneous effects across industrial sectors, suggesting that city image enhancing the effect of the Super Bowl participation is empirically relevant for the changes in the composition of local industries. Also, this study also adopts a similar strategy to examine the local economic impact of Super Bowl successes, however, finds no statistically significant effect.Keywords: Super Bowl Participation, local economies, city image enhancement, difference-in-differences, industrial sectors
Procedia PDF Downloads 2401107 Engaging Local Communities on Large-Scale Construction Project
Authors: Melissa Teo
Abstract:
It is increasingly important that project managers develop greater capabilities to better manage the social, cultural, political, environmental and economic impacts on proposed construction projects. These challenges are best resolved in consultation with communities rather than in conflict with them. This is particularly important on controversial projects which are projects that have obtained government sanctioned ‘development approval’ but not ‘community approval’. While a rich body of research and intellectual frameworks exist in the fields of urban geography and planning to understand and manage community concerns during the pre-development approval stages of new projects, current theoretical frameworks guiding community engagement in project management are inadequate. A new and innovative research agenda is needed to guide thinking about the role of local communities in the construction process and is an important research gap that needs to be filled. Within this context, this research aims to assess the effectiveness of strategies adopted by project teams to engage with local communities so as to capture lessons learnt to apply to future projects. This paper reports a research methodology which uses Arnstein’s model of participation to better understand how power differentials between the project team and local communities can influence the adoption of community engagement strategies. A case study approach is utilizing interviews and documentary analysis of a large-scale controversial construction project in Queensland, Australia is presented. The findings will result in a number of recommendations to guide community engagement practices on future projects.Keywords: community engagement, construction, case study, project management
Procedia PDF Downloads 2531106 ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend
Authors: Abubakar Uba Ibrahim, Ibrahim Haruna Shanono
Abstract:
Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities.Keywords: communication technology between appliances, demand response, load monitoring, smart appliances, smart grid
Procedia PDF Downloads 6131105 Cloning of Strawberry’s Malonyltransferase Genes and Characterisation of Their Enzymes
Authors: Xiran Wang, Johanna Trinkl, Thomas Hoffmann, Wilfried Schwab
Abstract:
Malonyltransferases (MATs) are enzymes that play a key role in the biosynthesis of secondary metabolites in plants, such as flavonoids and anthocyanins. As a kind of flavonoid-rich fruit, strawberries are an ideal model to study MATs. From Goodberry metabolome data, in the hybrid generation of 2 strawberries various, Fragaria × ananassa cv. 'Senga Sengana' and 'Candonga', we found the malonylated flavonoid concentration is significantly higher in 'Senga Sengana' compared with 'Candonga'. Therefore, we aimed to identify and characterize the malonyltransferases responsible for the different malonylated flavonoid concentrations in two different strawberry cultivars. In this study, we have found 6 MATs via genome mapping, metabolome analysis, gene cloning, and enzyme assay from strawberries, which catalyzed the malonylation of flavonoid substrates: quercetin-3-glucoside, kaempferol-3-glucoside, pelargonidin-3-glucoside, and cyanidin-3-glucoside. All four compounds reacted with FaMATs to varying degrees. These MATs have important implication into strawberries’ flavonoid biosynthesis, and also provide insights into insights into flavonoid biosynthesis, potential applications in agriculture, plant science, and pharmacy, and information on the regulation of secondary metabolism in plants.Keywords: malonyltransferase, strawberry, flavonoid biosynthesis, enzyme assay
Procedia PDF Downloads 1351104 Breaking the Barrier of Service Hostility: A Lean Approach to Achieve Operational Excellence
Authors: Mofizul Islam Awwal
Abstract:
Due to globalization, industries are rapidly growing throughout the world which leads to many manufacturing organizations. But recently, service industries are beginning to emerge in large numbers almost in all parts of the world including some developing countries. In this context, organizations need to have strong competitive advantage over their rivals to achieve their strategic business goals. Manufacturing industries are adopting many methods and techniques in order to achieve such competitive edge. Over the last decades, manufacturing industries have been successfully practicing lean concept to optimize their production lines. Due to its huge success in manufacturing context, lean has made its way into the service industry. Very little importance has been addressed to service in the area of operations management. Service industries are far behind than manufacturing industries in terms of operations improvement. It will be a hectic job to transfer the lean concept from production floor to service back/front office which will obviously yield possible improvement. Service processes are not as visible as production processes and can be very complex. Lack of research in this area made it quite difficult for service industries as there are no standardized frameworks for successfully implementing lean concept in service organization. The purpose of this research paper is to capture the present scenario of service industry in terms of lean implementation. Thorough analysis of past literature will be done on the applicability and understanding of lean in service structure. Classification of research papers will be done and critical factors will be unveiled for implementing lean in service industry to achieve operational excellence.Keywords: lean service, lean literature classification, lean implementation, service industry, service excellence
Procedia PDF Downloads 3751103 High Order Block Implicit Multi-Step (Hobim) Methods for the Solution of Stiff Ordinary Differential Equations
Authors: J. P. Chollom, G. M. Kumleng, S. Longwap
Abstract:
The search for higher order A-stable linear multi-step methods has been the interest of many numerical analysts and has been realized through either higher derivatives of the solution or by inserting additional off step points, supper future points and the likes. These methods are suitable for the solution of stiff differential equations which exhibit characteristics that place a severe restriction on the choice of step size. It becomes necessary that only methods with large regions of absolute stability remain suitable for such equations. In this paper, high order block implicit multi-step methods of the hybrid form up to order twelve have been constructed using the multi-step collocation approach by inserting one or more off step points in the multi-step method. The accuracy and stability properties of the new methods are investigated and are shown to yield A-stable methods, a property desirable of methods suitable for the solution of stiff ODE’s. The new High Order Block Implicit Multistep methods used as block integrators are tested on stiff differential systems and the results reveal that the new methods are efficient and compete favourably with the state of the art Matlab ode23 code.Keywords: block linear multistep methods, high order, implicit, stiff differential equations
Procedia PDF Downloads 3581102 The Methods of Immobilization of Laccase for Direct Transfer in an Enzymatic Fuel Cell
Authors: Afshin Farahbakhsh, Hoda Khodadadi
Abstract:
In this paper, we compare five methods of biological fuel cell fabrication by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. As a result of biofuel cell laccase with graphite nanofibers, carbon surface (PAMAN) on the pt/hpg electrode, graphite sheets MWCNT and with (PG) and (MWCNT) showed, respectively. Describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. When the device was fed with transdermal extracts, containing only 30μM of glucose, the average peak power was proportionally lower (0.004mW). The result of biofuel cell with graphite nanofibers showed the enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol and the maximum current density observed for E2electrode was 228.94mAcm.Keywords: enzymatic electrode, fuel cell, immobilization, laccase
Procedia PDF Downloads 2621101 The Motivating and Limiting Factors of Learners’ Engagement in an Online Discussion Forum
Authors: K. Durairaj, I. N. Umar
Abstract:
Lately, asynchronous discussion forum is integrated in higher educational institutions as it may increase learning process, learners’ understanding, achievement and knowledge construction. Asynchronous discussion forum is used to complement the traditional, face-to-face learning session in hybrid learning courses. However, studies have proven that students’ engagement in online forum are still unconvincing. Thus, the aim of this study is to investigate the motivating factors and obstacles that affect the learners’ engagement in asynchronous discussion forum. This study is carried out in one of the public higher educational institutions in Malaysia with 18 postgraduate students as samples. The authors have developed a 40-items questionnaire based on literature review. The results indicate several factors that have encouraged or limited students’ engagement in asynchronous discussion forum: (a) the practices or behaviors of peers, or instructors, (b) the needs for the discussions, (c) the learners’ personalities, (d) constraints in continuing the discussion forum, (e) lack of ideas, (f) the level of thoughts, (g) the level of knowledge construction, (h) technical problems, (i) time constraints and (j) misunderstanding. This study suggests some recommendations to increase the students’ engagement in online forums. Finally, based upon the findings, some implications are proposed for further research.Keywords: asynchronous discussion forum, engagement, factors, motivating, limiting
Procedia PDF Downloads 3281100 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 1171099 Stakeholders Perceptions of the Linkage between Reproductive Rights and Environmental Sustainability: Environmental Mainstreaming, Injustice and Population Reductionism
Authors: Celine Delacroix
Abstract:
Analyses of global emission scenarios demonstrate that slowing population growth could lead to substantial emissions reductions and play an important role to avoid dangerous climate change. For this reason, the advancement of individual reproductive rights might represent a valid climate change mitigation and adaptation option. With this focus, we reflected on population ethics and the ethical dilemmas associated with environmental degradation and climate change. We conducted a mixed-methods qualitative data study consisting of an online survey followed by in-depth interviews with stakeholders of the reproductive health and rights and environmental sustainability movements to capture the ways in which the linkages between family planning, population growth, and environmental sustainability are perceived by these actors. We found that the multi-layered marginalization of this issue resulted in two processes, the polarization of opinions and its eschewal from the public fora through population reductionism. Our results indicate that stakeholders of the reproductive rights and environmental sustainability movements find that population size and family planning influence environmental sustainability and overwhelmingly find that the reproductive health and rights ideological framework should be integrated in a wider sustainability frame reflecting environmental considerations. This position, whilst majoritarily shared by all participants, was more likely to be adopted by stakeholders of the environmental sustainability sector than those from the reproductive health and rights sector. We conclude that these processes, taken in the context of a context of a climate emergency, threaten to weaken the reproductive health and rights movement.Keywords: environmental sustainability, family planning, population growth, population ethics, reproductive rights
Procedia PDF Downloads 1631098 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate
Authors: Neetu Manocha
Abstract:
Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI
Procedia PDF Downloads 1411097 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic
Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi
Abstract:
In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing
Procedia PDF Downloads 2991096 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 671095 Data Security and Privacy Challenges in Cloud Computing
Authors: Amir Rashid
Abstract:
Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode.Keywords: cloud security, IaaS, cloud data privacy and integrity, hybrid cloud
Procedia PDF Downloads 2991094 Development of 3D Neck Muscle to Analyze the Effect of Active Muscle Contraction in Whiplash Injury
Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert
Abstract:
Whiplash Injuries are mostly experienced in car accidents. Symptoms of whiplash are commonly reported in studies, neck pain and headaches are two most common symptoms observed. The whiplash Injury mechanism is poorly understood. In present study, hybrid neck muscle model were developed with a combination of solid tetrahedral elements and 1D beam elements. Solid tetrahedral elements represents passive part of the muscle whereas, 1D beam elements represents active part. To simulate the active behavior of the muscle, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Some important muscles were then inserted into THUMS (Total Human Model for Safety) THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.Keywords: finite element model, muscle activation, THUMS, whiplash injury mechanism
Procedia PDF Downloads 3341093 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring
Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie
Abstract:
Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement
Procedia PDF Downloads 111092 Developing a Modular Architecture of Apparel Product
Authors: Yu Zhao, Mengqin Sun, Yahui Zhang
Abstract:
Apparel products (or apparel) with the sense of aesthetics, usability (ergonomics) and function are fundamental and varied in people’s daily life. The numerous apparel thus produced by apparel industry, have been triggered many issues, such as the waste of sources and the environmental pollutions. In this study, a hybrid architecture called modular architecture of apparel (MAA) has been proposed to deal with the variety of apparel, and thus to overcome the aforementioned issues. Generally, the establishment of MAA takes advantage of the modular design of a general product that a product is assembled with many modules through their modular interface connector. The development of MAA is to first analyze the structure of apparel in terms of the necessity to form an apparel and the aesthetics, ergonomics, and function of apparel; then to divide apparel into many segments (or module in product design) based on the structure of apparel; to develop modular interfaces and modular interface connectors in terms of the features of apparel’s modules. It is noted that in the general product design, modules of a product are only about the function and ergonomics, but in MAA, the module of aesthetics is developed. Further, an apparel design with employing the MAA is carried out to validate its usefulness and efficiency. There are three contributions out of this study, the first is to overcome the aforementioned issues (i.e. waste of source and environmental pollutions); the second is the improvement of the modular design for product by considering aesthetics; the third is to add the value in realizing the personalized mass production of apparel in the near future.Keywords: apparel, architecture, modular design, segment
Procedia PDF Downloads 2831091 SAMRA: Dataset in Al-Soudani Arabic Maghrebi Script for Recognition of Arabic Ancient Words Handwritten
Authors: Sidi Ahmed Maouloud, Cheikh Ba
Abstract:
Much of West Africa’s cultural heritage is written in the Al-Soudani Arabic script, which was widely used in West Africa before the time of European colonization. This Al-Soudani Arabic script is an African version of the Maghrebi script, in particular, the Al-Mebssout script. However, the local African qualities were incorporated into the Al-Soudani script in a way that gave it a unique African diversity and character. Despite the existence of several Arabic datasets in Oriental script, allowing for the analysis, layout, and recognition of texts written in these calligraphies, many Arabic scripts and written traditions remain understudied. In this paper, we present a dataset of words from Al-Soudani calligraphy scripts. This dataset consists of 100 images selected from three different manuscripts written in Al-Soudani Arabic script by different copyists. The primary source for this database was the libraries of Boston University and Cambridge University. This dataset highlights the unique characteristics of the Al-Soudani Arabic script as well as the new challenges it presents in terms of automatic word recognition of Arabic manuscripts. An HTR system based on a hybrid ANN (CRNN-CTC) is also proposed to test this dataset. SAMRA is a dataset of annotated Arabic manuscript words in the Al-Soudani script that can help researchers automatically recognize and analyze manuscript words written in this script.Keywords: dataset, CRNN-CTC, handwritten words recognition, Al-Soudani Arabic script, HTR, manuscripts
Procedia PDF Downloads 1301090 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction
Authors: Jun Wang, Tingcun Wei
Abstract:
The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.Keywords: DPWM, digitally-controlled DC-DC switching converter, FPGA, PLL megafunction, time resolution
Procedia PDF Downloads 4801089 The Response of the Central Bank to the Exchange Rate Movement: A Dynamic Stochastic General Equilibrium-Vector Autoregressive Approach for Tunisian Economy
Authors: Abdelli Soulaima, Belhadj Besma
Abstract:
The paper examines the choice of the central bank toward the movements of the nominal exchange rate and evaluates its effects on the volatility of the output growth and the inflation. The novel hybrid method of the dynamic stochastic general equilibrium called the DSGE-VAR is proposed for analyzing this policy experiment in a small scale open economy in particular Tunisia. The contribution is provided to the empirical literature as we apply the Tunisian data with this model, which is rarely used in this context. Note additionally that the issue of treating the degree of response of the central bank to the exchange rate in Tunisia is special. To ameliorate the estimation, the Bayesian technique is carried out for the sample 1980:q1 to 2011 q4. Our results reveal that the central bank should not react or softly react to the exchange rate. The variance decomposition displayed that the overall inflation volatility is more pronounced with the fixed exchange rate regime for most of the shocks except for the productivity and the interest rate. The output volatility is also higher with this regime with the majority of the shocks exempting the foreign interest rate and the interest rate shocks.Keywords: DSGE-VAR modeling, exchange rate, monetary policy, Bayesian estimation
Procedia PDF Downloads 2981088 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration
Authors: C. Iraklis, G. Evmiridis, A. Iraklis
Abstract:
Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid
Procedia PDF Downloads 4451087 A Human Centered Design of an Exoskeleton Using Multibody Simulation
Authors: Sebastian Kölbl, Thomas Reitmaier, Mathias Hartmann
Abstract:
Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined.Keywords: assistive devices, ergonomic design, inverse dynamics, inverse kinematics, multibody simulation
Procedia PDF Downloads 1621086 Accelerating Decision-Making in Oil and Gas Wells: 'A Digital Transformation Journey for Rapid and Precise Insights from Well History Data'
Authors: Linung Kresno Adikusumo, Ivan Ramos Sampe Immanuel, Liston Sitanggang
Abstract:
An excellent, well work program in the oil and gas industry can have numerous positive business impacts, contributing to operational efficiency, increased production, enhanced safety, and improved financial performance. In summary, an excellent, well work program not only ensures the immediate success of specific projects but also has a broader positive impact on the overall business performance and reputation of the oil and gas company. It positions the company for long-term success in a competitive and dynamic industry. Nevertheless, a number of challenges were encountered when developing a good work program, such as the poor quality and lack of integration of well documentation, the incompleteness of the well history, and the low accessibility of well documentation. As a result, the well work program was delivered less accurately, plus well damage was managed slowly. Our solution implementing digital technology by developing a web-based database and application not only solves those issues but also provides an easy-to-access report and user-friendly display for management as well as engineers to analyze the report’s content. This application aims to revolutionize the documentation of well history in the field of oil and gas exploration and production. The current lack of a streamlined and comprehensive system for capturing, organizing, and accessing well-related data presents challenges in maintaining accurate and up-to-date records. Our innovative solution introduces a user-friendly and efficient platform designed to capture well history documentation seamlessly.Keywords: digital, drilling, well work, application
Procedia PDF Downloads 761085 The Influence of Imposter Phenomenon on the Experiences of Intimacy in Non-Binary Young Adults
Authors: Muskan Jain, Baiju Gopal
Abstract:
Objectives: Intimacy in interpersonal relationships is integral to psychological health and everyday wellbeing; the focus is on intimacy, which can be described as feelings of closeness, connection, and belonging within relationships, which is influenced by an individual's gender identity as well as life experiences. The study aims to explore the experiences of intimacy of the non-binary gender; this marginalized community has increased risks of developing the imposter phenomenon. The study explores the influence of IP on the development and sustenance of intimacy in relationships. Methods: The present study accumulates detailed narratives from 10 non-binary young adults ages 18 to 25 in metropolitan cities of India. Thematic analysis was used for the data analysis. Results: Seven major themes have emerged revolving around internalized criticism and self-depreciating behavior, which causes distance between partners. The four themes that result in the internalization of criticism are lack of social stability, invalidation by social units, adverse life experiences, and estrangement due to gender identity. Three themes that encapsulate major difficulties in relationships are limited self-disclosure, inhibition of physical needs, and fear of taking space. The findings have been critically compared and contrasted with the existing body of literature in the domain, which sets the agenda for further inquiry. Conclusion: It is important for future studies to capture the experiences of non-binary genders in India to provide better therapeutic support in order to assist them in forming meaningful and authentic relationships, thus increasing overall wellbeing.Keywords: imposter phenomenon, intimacy, internalized criticism, marginalized community
Procedia PDF Downloads 591084 Thermodynamic and Spectroscopic Investigation of Binary 2,2-Dimethyl-1-Propanol+ CO₂ Gas Hydrates
Authors: Seokyoon Moon, Yun-Ho Ahn, Heejoong Kim, Sujin Hong, Yunseok Lee, Youngjune Park
Abstract:
Gas hydrate is a non-stoichiometric crystalline compound consisting of host water-framework and low molecular weight guest molecules. Small gaseous molecules such as CH₄, CO₂, and N₂ can be captured in the host water framework lattices of the gas hydrate with specific temperature and pressure conditions. The three well-known crystal structures of structure I (sI), structure II (sII), and structure H (sH) are determined by the size and shape of guest molecules. In this study, we measured the phase equilibria of binary (2,2-dimethyl-1-propanol + CO₂, CH₄, N₂) hydrates to explore their fundamental thermodynamic characteristics. We identified the structure of the binary gas hydrate by employing synchrotron high-resolution powder diffraction (HRPD), and the guest distributions in the lattice of gas hydrate were investigated via dispersive Raman and ¹³C solid-state nuclear magnetic resonance (NMR) spectroscopies. The end-to-end distance of 2,2-dimethyl-1-propanol was calculated to be 7.76 Å, which seems difficult to be enclathrated in large cages of sI or sII. However, due to the flexibility of the host water framework, binary hydrates of sI or sII types can be formed with the help of small gas molecule. Also, the synchrotron HRPD patterns revealed that the binary hydrate structure highly depends on the type of help gases; a cubic Fd3m sII hydrate was formed with CH₄ or N₂, and a cubic Pm3n sI hydrate was formed with CO₂. Interestingly, dispersive Raman and ¹³C NMR spectra showed that the unique tuning phenomenon occurred in binary (2,2-dimethyl-1-propanol + CO₂) hydrate. By optimizing the composition of NPA, we can achieve both thermodynamic stability and high CO₂ storage capacity for the practical application to CO₂ capture.Keywords: clathrate, gas hydrate, neopentyl alcohol, CO₂, tuning phenomenon
Procedia PDF Downloads 2391083 The Proposal for a Framework to Face Opacity and Discrimination ‘Sins’ Caused by Consumer Creditworthiness Machines in the EU
Authors: Diogo José Morgado Rebelo, Francisco António Carneiro Pacheco de Andrade, Paulo Jorge Freitas de Oliveira Novais
Abstract:
Not everything in AI-power consumer credit scoring turns out to be a wonder. When using AI in Creditworthiness Assessment (CWA), opacity and unfairness ‘sins’ must be considered to the task be deemed Responsible. AI software is not always 100% accurate, which can lead to misclassification. Discrimination of some groups can be exponentiated. A hetero personalized identity can be imposed on the individual(s) affected. Also, autonomous CWA sometimes lacks transparency when using black box models. However, for this intended purpose, human analysts ‘on-the-loop’ might not be the best remedy consumers are looking for in credit. This study seeks to explore the legality of implementing a Multi-Agent System (MAS) framework in consumer CWA to ensure compliance with the regulation outlined in Article 14(4) of the Proposal for an Artificial Intelligence Act (AIA), dated 21 April 2021 (as per the last corrigendum by the European Parliament on 19 April 2024), Especially with the adoption of Art. 18(8)(9) of the EU Directive 2023/2225, of 18 October, which will go into effect on 20 November 2026, there should be more emphasis on the need for hybrid oversight in AI-driven scoring to ensure fairness and transparency. In fact, the range of EU regulations on AI-based consumer credit will soon impact the AI lending industry locally and globally, as shown by the broad territorial scope of AIA’s Art. 2. Consequently, engineering the law of consumer’s CWA is imperative. Generally, the proposed MAS framework consists of several layers arranged in a specific sequence, as follows: firstly, the Data Layer gathers legitimate predictor sets from traditional sources; then, the Decision Support System Layer, whose Neural Network model is trained using k-fold Cross Validation, provides recommendations based on the feeder data; the eXplainability (XAI) multi-structure comprises Three-Step-Agents; and, lastly, the Oversight Layer has a 'Bottom Stop' for analysts to intervene in a timely manner. From the analysis, one can assure a vital component of this software is the XAY layer. It appears as a transparent curtain covering the AI’s decision-making process, enabling comprehension, reflection, and further feasible oversight. Local Interpretable Model-agnostic Explanations (LIME) might act as a pillar by offering counterfactual insights. SHapley Additive exPlanation (SHAP), another agent in the XAI layer, could address potential discrimination issues, identifying the contribution of each feature to the prediction. Alternatively, for thin or no file consumers, the Suggestion Agent can promote financial inclusion. It uses lawful alternative sources such as the share of wallet, among others, to search for more advantageous solutions to incomplete evaluation appraisals based on genetic programming. Overall, this research aspires to bring the concept of Machine-Centered Anthropocentrism to the table of EU policymaking. It acknowledges that, when put into service, credit analysts no longer exert full control over the data-driven entities programmers have given ‘birth’ to. With similar explanatory agents under supervision, AI itself can become self-accountable, prioritizing human concerns and values. AI decisions should not be vilified inherently. The issue lies in how they are integrated into decision-making and whether they align with non-discrimination principles and transparency rules.Keywords: creditworthiness assessment, hybrid oversight, machine-centered anthropocentrism, EU policymaking
Procedia PDF Downloads 34