Search results for: fracture classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2778

Search results for: fracture classification

948 Using Trip Planners in Developing Proper Transportation Behavior

Authors: Grzegorz Sierpiński, Ireneusz Celiński, Marcin Staniek

Abstract:

The article discusses multi modal mobility in contemporary societies as a main planning and organization issue in the functioning of administrative bodies, a problem which really exists in the space of contemporary cities in terms of shaping modern transport systems. The article presents classification of available resources and initiatives undertaken for developing multi modal mobility. Solutions can be divided into three groups of measures–physical measures in the form of changes of the transport network infrastructure, organizational ones (including transport policy) and information measures. The latter ones include in particular direct support for people travelling in the transport network by providing information about ways of using available means of transport. A special measure contributing to this end is a trip planner. The article compares several selected planners. It includes a short description of the Green Travelling Project, which aims at developing a planner supporting environmentally friendly solutions in terms of transport network operation. The article summarizes preliminary findings of the project.

Keywords: mobility, modal split, multimodal trip, multimodal platforms, sustainable transport

Procedia PDF Downloads 412
947 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 42
946 A Geographical Framework for Studying the Territorial Sustainability Based on Land Use Change

Authors: Miguel Ramirez, Ivan Lizarazo

Abstract:

The emergence of various interpretations of sustainability, including weak and strong paradigms, can be traced back to the definition of sustainable development provided in the 1987 Brundtland report and the subsequent evolution of the sustainability concept. However, there has been limited scholarly attention given to clarifying the concept of sustainability within the theoretical and conceptual framework of geography. The discipline has predominantly been focused on understanding the diverse conceptions of sustainability within its epistemological boundaries, resulting in tensions between sustainability paradigms and their associated dimensions, including the incorporation of political perspectives, with particular emphasis on environmental geography's epistemology. In response to this gap, a conceptual framework for sustainability is proposed, effectively integrating spatial and territorial concepts. This framework aims to enhance geography's role in contributing to sustainability by utilizing the land system theory, which is based on the dynamics of land use change. Such an integrated conceptual framework enables incorporating methodological tools such as remote sensing, encompassing various earth observations and fusion methods, and supervised classification techniques. Additionally, it looks for better integration of socioecological information, thereby capturing essential population-related features.

Keywords: geography, sustainability, land change science, territorial sustainability

Procedia PDF Downloads 86
945 Meta-Instruction Theory in Mathematics Education and Critique of Bloom’s Theory

Authors: Abdollah Aliesmaeili

Abstract:

The purpose of this research is to present a different perspective on the basic math teaching method called meta-instruction, which reverses the learning path. Meta-instruction is a method of teaching in which the teaching trajectory starts from brain education into learning. This research focuses on the behavior of the mind during learning. In this method, students are not instructed in mathematics, but they are educated. Another goal of the research is to "criticize Bloom's classification in the cognitive domain and reverse it", because it cannot meet the educational and instructional needs of the new generation and "substituting math education instead of math teaching". This is an indirect method of teaching. The method of research is longitudinal through four years. Statistical samples included students ages 6 to 11. The research focuses on improving the mental abilities of children to explore mathematical rules and operations by playing only with eight measurements (any years 2 examinations). The results showed that there is a significant difference between groups in remembering, understanding, and applying. Moreover, educating math is more effective than instructing in overall learning abilities.

Keywords: applying, Bloom's taxonomy, brain education, mathematics teaching method, meta-instruction, remembering, starmath method, understanding

Procedia PDF Downloads 24
944 Investigation of the Mechanical and Thermal Properties of a Silver Oxalate Nanoporous Structured Sintered Joint for Micro-joining in Relation to the Sintering Process Parameters

Authors: L. Vivet, L. Benabou, O. Simon

Abstract:

With highly demanding applications in the field of power electronics, there is an increasing need to have interconnection materials with properties that can ensure both good mechanical assembly and high thermal/electrical conductivities. So far, lead-free solders have been considered an attractive solution, but recently, sintered joints based on nano-silver paste have been used for die attach and have proved to be a promising solution offering increased performances in high-temperature applications. In this work, the main parameters of the bonding process using silver oxalates are studied, i.e., the heating rate and the bonding pressure mainly. Their effects on both the mechanical and thermal properties of the sintered layer are evaluated following an experimental design. Pairs of copper substrates with gold metallization are assembled through the sintering process to realize the samples that are tested using a micro-traction machine. In addition, the obtained joints are examined through microscopy to identify the important microstructural features in relation to the measured properties. The formation of an intermetallic compound at the junction between the sintered silver layer and the gold metallization deposited on copper is also analyzed. Microscopy analysis exhibits a nanoporous structure of the sintered material. It is found that higher temperature and bonding pressure result in higher densification of the sintered material, with higher thermal conductivity of the joint but less mechanical flexibility to accommodate the thermo-mechanical stresses arising during service. The experimental design allows hence the determination of the optimal process parameters to reach sufficient thermal/mechanical properties for a given application. It is also found that the interphase formed between silver and gold metallization is the location where the fracture occurred after the mechanical testing, suggesting that the inter-diffusion mechanism between the different elements of the assembly leads to the formation of a relatively brittle compound.

Keywords: nanoporous structure, silver oxalate, sintering, mechanical strength, thermal conductivity, microelectronic packaging

Procedia PDF Downloads 94
943 Designing Cultural-Creative Products with the Six Categories of Hanzi (Chinese Character Classification)

Authors: Pei-Jun Xue, Ming-Yu Hsiao

Abstract:

Chinese characters, or hanzi, represent a process of simplifying three-dimensional signs into plane signifiers. From pictograms at the beginning to logograms today, a Han linguist thus classified them into six categories known as the six categories of Chinese characters. Design is a process of signification, and cultural-creative design is a process translating ideas into design with creativity upon culture. Aiming to investigate the process of cultural-creative design transforming cultural text into cultural signs, this study analyzed existing cultural-creative products with the six categories of Chinese characters by treating such products as representations which accurately communicate the designer’s ideas to users through the categorization, simplification, and interpretation of sign features. This is a two-phase pilot study on designing cultural-creative products with the six categories of Chinese characters. Phase I reviews the related literature on the theory of the six categories of Chinese characters investigated and concludes with the process and principles of character evolution. Phase II analyzes the design of existing cultural-creative products with the six categories of Chinese characters and explores the conceptualization of product design.

Keywords: six categories of Chinese characters, cultural-creative product design, cultural signs, cultural product

Procedia PDF Downloads 344
942 Variation in the Morphology of Soft Palate

Authors: Hema Lattupalli

Abstract:

Introduction: The palate forms a partition between the oral cavity and nasal cavity. The palate is made up of two parts hard palate and soft palate. The Hard palate forms the anterior part of the palate, the soft palate forms a movable muscular fold covered by mucous membrane that is suspended from the posterior border of a hard palate. Aim and Objectives: Soft palate morphological variations have a great paucity in the literature. It’s also believed that the soft palate has no such important anatomical variations. There is a variable presentation of the soft palate morphology in the lateral cephalograms. The aim of this study is to identify the velar morphology. Materials and Methods: 100 normal subjects between the age group of 20 – 35 were taken for the study. Method: Lateral Cephalogram (radiologic study). Results: Different shapes of the soft palate were observed in the lateral cephalograms. The morphology of soft palate was classified into six types 1.Leaf like (50 cases) most common type, 2.Straight line (20 cases), 3.S shaped (4 cases) very rare, 4.Butt like (10 cases), 5. Rat tail (6 cases), 6. Hook shaped (10 cases). Conclusion: This classification helps us to understand the better diversity of the velar morphology in mid-sagittal plane. These findings help us to understand the etiology of OSAS.

Keywords: soft palate, cephalometric radiographs, morphology, cleft palate, obstructive sleep apnoea syndrome

Procedia PDF Downloads 363
941 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 484
940 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 471
939 Hate Speech Detection in Tunisian Dialect

Authors: Helmi Baazaoui, Mounir Zrigui

Abstract:

This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.

Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation

Procedia PDF Downloads 16
938 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 130
937 To Determine the Effects of Regulatory Food Safety Inspections on the Grades of Different Categories of Retail Food Establishments across the Dubai Region

Authors: Shugufta Mohammad Zubair

Abstract:

This study explores the Effect of the new food System Inspection system also called the new inspection color card scheme on reduction of critical & major food safety violations in Dubai. Data was collected from all retail food service establishments located in two zones in the city. Each establishment was visited twice, once before the launch of the new system and one after the launch of the system. In each visit, the Inspection checklist was used as the evaluation tool for observation of the critical and major violations. The old format of the inspection checklist was concerned with scores based on the violations; but the new format of the checklist for the new inspection color card scheme is divided into administrative, general major and critical which gives a better classification for the inspectors to identify the critical and major violations of concerned. The study found that there has been a better and clear marking of violations after the launch of new inspection system wherein the inspectors are able to mark and categories the violations effectively. There had been a 10% decrease in the number of food establishment that was previously given A grade. The B & C grading were also considerably dropped by 5%.

Keywords: food inspection, risk assessment, color card scheme, violations

Procedia PDF Downloads 324
936 Global Differences in Job Satisfaction of Healthcare Professionals

Authors: Jonathan H. Westover, Ruthann Cunningham, Jaron Harvey

Abstract:

Purpose: Job satisfaction is one of the most critical attitudes among employees. Understanding whether employees are satisfied with their jobs and what is driving that satisfaction is important for any employer, but particularly for healthcare organizations. This study looks at the question of job satisfaction and drivers of job satisfaction among healthcare professionals at a global scale, looking for trends that generalize across 37 countries. Study: This study analyzed job satisfaction responses to the 2015 Work Orientations IV wave of the International Social Survey Programme (ISSP) to understand differences in antecedents for and levels of job satisfaction among healthcare professionals. A total of 18,716 respondents from 37 countries participated in the annual survey. Findings: Respondents self-identified their occupational category based on corresponding International Standard Classification of Occupations (ISCO-08) codes. Results suggest that mean overall job satisfaction was highest among health service managers and generalist medical practitioners and lowest among environmental hygiene professionals and nursing professionals. Originality: Many studies have addressed the issue of job satisfaction in healthcare, examining small samples of specific healthcare workers. In this study, using a large international dataset, we are able to examine questions of job satisfaction across large groups of healthcare workers in different occupations within the healthcare field.

Keywords: job satisfaction, healthcare industry, global comparisons, workplace

Procedia PDF Downloads 146
935 Review and Classification of the Indicators and Trends Used in Bridge Performance Modeling

Authors: S. Rezaei, Z. Mirzaei, M. Khalighi, J. Bahrami

Abstract:

Bridges, as an essential part of road infrastructures, are affected by various deterioration mechanisms over time due to the changes in their performance. As changes in performance can have many negative impacts on society, it is essential to be able to evaluate and measure the performance of bridges throughout their life. This evaluation includes the development or the choice of the appropriate performance indicators, which, in turn, are measured based on the selection of appropriate models for the existing deterioration mechanism. The purpose of this article is a statistical study of indicators and deterioration mechanisms of bridges in order to discover further research capacities in bridges performance assessment. For this purpose, some of the most common indicators of bridge performance, including reliability, risk, vulnerability, robustness, and resilience, were selected. The researches performed on each index based on the desired deterioration mechanisms and hazards were comprehensively reviewed. In addition, the formulation of the indicators and their relationship with each other were studied. The research conducted on the mentioned indicators were classified from the point of view of deterministic or probabilistic method, the level of study (element level, object level, etc.), and the type of hazard and the deterioration mechanism of interest. For each of the indicators, a number of challenges and recommendations were presented according to the review of previous studies.

Keywords: bridge, deterioration mechanism, lifecycle, performance indicator

Procedia PDF Downloads 105
934 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak

Abstract:

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity

Procedia PDF Downloads 162
933 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants

Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka

Abstract:

The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.

Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset

Procedia PDF Downloads 104
932 Decision Tree Analysis of Risk Factors for Intravenous Infiltration among Hospitalized Children: A Retrospective Study

Authors: Soon-Mi Park, Ihn Sook Jeong

Abstract:

This retrospective study was aimed to identify risk factors of intravenous (IV) infiltration for hospitalized children. The participants were 1,174 children for test and 424 children for validation, who admitted to a general hospital, received peripheral intravenous injection therapy at least once and had complete records. Data were analyzed with frequency and percentage or mean and standard deviation were calculated, and decision tree analysis was used to screen for the most important risk factors for IV infiltration for hospitalized children. The decision tree analysis showed that the most important traditional risk factors for IV infiltration were the use of ampicillin/sulbactam, IV insertion site (lower extremities), and medical department (internal medicine) both in the test sample and validation sample. The correct classification was 92.2% in the test sample and 90.1% in the validation sample. More careful attention should be made to patients who are administered ampicillin/sulbactam, have IV site in lower extremities and have internal medical problems to prevent or detect infiltration occurrence.

Keywords: decision tree analysis, intravenous infiltration, child, validation

Procedia PDF Downloads 177
931 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison

Authors: Saugata Bose, Ritambhra Korpal

Abstract:

The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.

Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram

Procedia PDF Downloads 359
930 Mineralogy and Classification of Altered Host Rocks in the Zaghia Iron Oxide Deposit, East of Bafq, Central Iran

Authors: Azat Eslamizadeh, Neda Akbarian

Abstract:

The Zaghia Iron ore, in 15 km east of a town named Bafq, is located in Precambrian formation of Central Iran in form of a small local deposit. The Volcano-sedimentary rocks of Precambrian-Cambrian age, belonging to Rizu series have spread through the region. Substantial portion of the deposit is covered by alluvial deposits. The rocks hosting the Zaghia iron ore have a main combination of rhyolitic tuffs along with clastic sediments, carbonate include sandstone, limestone, dolomite, conglomerate and is somewhat metamorphed causing them to have appeared as slate and phyllite. Moreover, carbonate rocks are in existence as skarn compound of marble bearing tremolite with mineralization of magnetite-hematite. The basic igneous rocks have dramatically altered into green rocks consist of actinolite-tremolite and chlorite along with amount of iron (magnetite + Martite). The youngest units of ore-bearing rocks in the area are found as dolerite - diabase dikes. The dikes are cutting the rhyolitic tuffs and carbonate rocks.

Keywords: Zaghia, iron ore deposite, mineralogy, petrography Bafq, Iran

Procedia PDF Downloads 526
929 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 169
928 Recovery of Dredged Sediments With Lime or Cement as Platform Materials for Use in a Roadway

Authors: Abriak Yassine, Zri Abdeljalil, Benzerzour Mahfoud., Hadj Sadok Rachid, Abriak Nor-Edine

Abstract:

In this study, firstly, the study of the capacity reuse of dredged sediments and treated sediments with lime or cement were used in an establishment layer and the base layer of the roadway. Also, the analysis of mineral changes caused by the addition of lime or cement on the way as described in the mechanical results of stabilised sediments. After determining the quantity of lime and cement required to stabilise the sediment, the compaction characteristics were studied using the modified Proctor method. Then the evolution of the three parameters, that is, ideal water content and maximum dry density had been determined. Mechanical exhibitions can be assessed across the resistance to compression, flexibility modulus and the resistance under traction. The resistance of the formulation treated with cement addition (ROLAC®645) increase with the quantity of ROLAC®645. Traction resistances and the elastic modulus were utilized to assess the potential of the formulation as road construction materials utilizing classification diagram. The results show the various formulations with ROLAC® 645may be employed in subgrades and foundation layers for roads.

Keywords: cement, dredged, sediment, foundation layer, resistance

Procedia PDF Downloads 101
927 Decomposition of Funds Transfer Pricing Components in Islamic Bank: The Exposure Effect of Shariah Non-Compliant Event Rectification Process

Authors: Azrul Azlan Iskandar Mirza

Abstract:

The purpose of Funds Transfer Pricing (FTP) for Islamic Bank is to promote prudent liquidity risk-taking behavior of business units. The acquirer of stable deposits will be rewarded whilst a business unit that generates long-term assets will be charged for added liquidity funding risks. In the end, it promotes risk-adjusted pricing by incorporating profit rate risk and liquidity risk component in the product pricing. However, in the event of Shariah non-compliant (SNCE), FTP components will be examined in the rectification plan especially when Islamic banks need to purify the non-compliance income. The finding shows that the determination between actual and provision cost will defer the decision among Shariah committee in Islamic banks. This paper will review each of FTP components to ensure the classification of actual and provision costs reflect the decision on rectification process on SNCE. This will benefit future decision and its consistency of Islamic banks.

Keywords: fund transfer pricing, Islamic banking, Islamic finance, shariah non-compliant event

Procedia PDF Downloads 195
926 Second-Order Complex Systems: Case Studies of Autonomy and Free Will

Authors: Eric Sanchis

Abstract:

Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.

Keywords: autonomy, free will, synthetic property, vaporous complex systems

Procedia PDF Downloads 205
925 Facies, Diagenetic Analysis and Sequence Stratigraphy of Habib Rahi Formation Dwelling in the Vicinity of Jacobabad Khairpur High, Southern Indus Basin, Pakistan

Authors: Muhammad Haris, Syed Kamran Ali, Mubeen Islam, Tariq Mehmood, Faisal Shah

Abstract:

Jacobabad Khairpur High, part of a Sukkur rift zone, is the separating boundary between Central and Southern Indus Basin, formed as a result of Post-Jurassic uplift after the deposition of Middle Jurassic Chiltan Formation. Habib Rahi Formation of Middle to Late Eocene outcrops in the vicinity of Jacobabad Khairpur High, a section at Rohri near Sukkur is measured in detail for lithofacies, microfacies, diagenetic analysis and sequence stratigraphy. Habib Rahi Formation is richly fossiliferous and consists of mostly limestone with subordinate clays and marl. The total thickness of the formation in this section is 28.8m. The bottom of the formation is not exposed, while the upper contact with the Sirki Shale of the Middle Eocene age is unconformable in some places. A section is measured using Jacob’s Staff method, and traverses were made perpendicular to the strike. Four different lithofacies were identified based on outcrop geology which includes coarse-grained limestone facies (HR-1 to HR-5), massive bedded limestone facies (HR-6 HR-7), and micritic limestone facies (HR-8 to HR-13) and algal dolomitic limestone facie (HR-14). Total 14 rock samples were collected from outcrop for detailed petrographic studies, and thin sections of respective samples were prepared and analyzed under the microscope. On the basis of Dunham’s (1962) classification systems after studying textures, grain size, and fossil content and using Folk’s (1959) classification system after reviewing Allochems type, four microfacies were identified. These microfacies include HR-MF 1: Benthonic Foraminiferal Wackstone/Biomicrite Microfacies, HR-MF 2: Foramineral Nummulites Wackstone-Packstone/Biomicrite Microfacies HR-MF 3: Benthonic Foraminiferal Packstone/Biomicrite Microfacies, HR-MF 4: Bioclasts Carbonate Mudstone/Micrite Microfacies. The abundance of larger benthic Foraminifera’s (LBF), including Assilina sp., A. spiral abrade, A. granulosa, A. dandotica, A. laminosa, Nummulite sp., N. fabiani, N. stratus, N. globulus, Textularia, Bioclasts, and Red algae indicates shallow marine (Tidal Flat) environment of deposition. Based on variations in rock types, grain size, and marina fauna Habib Rahi Formation shows progradational stacking patterns, which indicates coarsening upward cycles. The second order of sea-level rise is identified (spanning from Y-Persian to Bartonian age) that represents the Transgressive System Tract (TST) and a third-order Regressive System Tract (RST) (spanning from Bartonian to Priabonian age). Diagenetic processes include fossils replacement by mud, dolomitization, pressure dissolution associated stylolites features and filling with dark organic matter. The presence of the microfossils includes Nummulite. striatus, N. fabiani, and Assilina. dandotica, signify Bartonian to Priabonian age of Habib Rahi Formation.

Keywords: Jacobabad Khairpur High, Habib Rahi Formation, lithofacies, microfacies, sequence stratigraphy, diagenetic history

Procedia PDF Downloads 473
924 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 241
923 Defining Unconventional Hydrocarbon Parameter Using Shale Play Concept

Authors: Rudi Ryacudu, Edi Artono, Gema Wahyudi Purnama

Abstract:

Oil and gas consumption in Indonesia is currently on the rise due to its nation economic improvement. Unfortunately, Indonesia’s domestic oil production cannot meet it’s own consumption and Indonesia has lost its status as Oil and Gas exporter. Even worse, our conventional oil and gas reserve is declining. Unwilling to give up, the government of Indonesia has taken measures to invite investors to invest in domestic oil and gas exploration to find new potential reserve and ultimately increase production. Yet, it has not bear any fruit. Indonesia has taken steps now to explore new unconventional oil and gas play including Shale Gas, Shale Oil and Tight Sands to increase domestic production. These new plays require definite parameters to differentiate each concept. The purpose of this paper is to provide ways in defining unconventional hydrocarbon reservoir parameters in Shale Gas, Shale Oil and Tight Sands. The parameters would serve as an initial baseline for users to perform analysis of unconventional hydrocarbon plays. Some of the on going concerns or question to be answered in regards to unconventional hydrocarbon plays includes: 1. The TOC number, 2. Has it been well “cooked” and become a hydrocarbon, 3. What are the permeability and the porosity values, 4. Does it need a stimulation, 5. Does it has pores, and 6. Does it have sufficient thickness. In contrast with the common oil and gas conventional play, Shale Play assumes that hydrocarbon is retained and trapped in area with very low permeability. In most places in Indonesia, hydrocarbon migrates from source rock to reservoir. From this case, we could derive a theory that Kitchen and Source Rock are located right below the reservoir. It is the starting point for user or engineer to construct basin definition in relation with the tectonic play and depositional environment. Shale Play concept requires definition of characteristic, description and reservoir identification to discover reservoir that is technically and economically possible to develop. These are the steps users and engineers has to do to perform Shale Play: a. Calculate TOC and perform mineralogy analysis using water saturation and porosity value. b. Reconstruct basin that accumulate hydrocarbon c. Brittlenes Index calculated form petrophysical and distributed based on seismic multi attributes d. Integrated natural fracture analysis e. Best location to place a well.

Keywords: unconventional hydrocarbon, shale gas, shale oil tight sand reservoir parameters, shale play

Procedia PDF Downloads 407
922 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System

Authors: Kaoutar Ben Azzou, Hanaa Talei

Abstract:

Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.

Keywords: automated recruitment, candidate screening, machine learning, human resources management

Procedia PDF Downloads 57
921 The Contact between a Rigid Substrate and a Thick Elastic Layer

Authors: Nicola Menga, Giuseppe Carbone

Abstract:

Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.

Keywords: contact mechanics, adhesion, friction, thick layer

Procedia PDF Downloads 513
920 Performance Measurement of Logistics Systems for Thailand's Wholesales and Retails Industries by Data Envelopment Analysis

Authors: Pornpimol Chaiwuttisak

Abstract:

The study aims to compare the performance of the logistics for Thailand’s wholesale and retail trade industries (except motor vehicles, motorcycle, and stalls) by using data (data envelopment analysis). Thailand Standard Industrial Classification in 2009 (TSIC - 2009) categories that industries into sub-group no. 45: wholesale and retail trade (except for the repair of motor vehicles and motorcycles), sub-group no. 46: wholesale trade (except motor vehicles and motorcycles), and sub-group no. 47: retail trade (except motor vehicles and motorcycles. Data used in the study is collected by the National Statistical Office, Thailand. The study consisted of four input factors include the number of companies, the number of personnel in logistics, the training cost in logistics, and outsourcing logistics management. Output factor includes the percentage of enterprises having inventory management. The results showed that the average relative efficiency of small-sized enterprises equals to 27.87 percent and 49.68 percent for the medium-sized enterprises.

Keywords: DEA, wholesales and retails, logistics, Thailand

Procedia PDF Downloads 417
919 Image Segmentation: New Methods

Authors: Flaurence Benjamain, Michel Casperance

Abstract:

We present in this paper, first, a comparative study of three mathematical theories to achieve the fusion of information sources. This study aims to identify the characteristics inherent in theories of possibilities, belief functions (DST) and plausible and paradoxical reasoning to establish a strategy of choice that allows us to adopt the most appropriate theory to solve a problem of fusion in order, taking into account the acquired information and imperfections that accompany them. Using the new theory of plausible and paradoxical reasoning, also called Dezert-Smarandache Theory (DSmT), to fuse information multi-sources needs, at first step, the generation of the composites events witch is, in general, difficult. Thus, we present in this paper a new approach to construct pertinent paradoxical classes based on gray levels histograms, which also allows to reduce the cardinality of the hyper-powerset. Secondly, we developed a new technique for order and coding generalized focal elements. This method is exploited, in particular, to calculate the cardinality of Dezert and Smarandache. Then, we give an experimentation of classification of a remote sensing image that illustrates the given methods and we compared the result obtained by the DSmT with that resulting from the use of the DST and theory of possibilities.

Keywords: segmentation, image, approach, vision computing

Procedia PDF Downloads 278