Search results for: replacement time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18773

Search results for: replacement time

353 Mesenchymal Stem Cells (MSC)-Derived Exosomes Could Alleviate Neuronal Damage and Neuroinflammation in Alzheimer’s Disease (AD) as Potential Therapy-Carrier Dual Roles

Authors: Huan Peng, Chenye Zeng, Zhao Wang

Abstract:

Alzheimer’s disease (AD) is an age-related neurodegenerative disease that is a leading cause of dementia syndromes and has become a huge burden on society and families. The main pathological features of AD involve excessive deposition of β-amyloid (Aβ) and Tau proteins in the brain, resulting in loss of neurons, expansion of neuroinflammation, and cognitive dysfunction in patients. Researchers have found effective drugs to clear the brain of error-accumulating proteins or to slow the loss of neurons, but their direct administration has key bottlenecks such as single-drug limitation, rapid blood clearance rate, impenetrable blood-brain barrier (BBB), and poor ability to target tissues and cells. Therefore, we are committed to seeking a suitable and efficient delivery system. Inspired by the possibility that exosomes may be involved in the secretion and transport mechanism of many signaling molecules or proteins in the brain, exosomes have attracted extensive attention as natural nanoscale drug carriers. We selected exosomes derived from bone marrow mesenchymal stem cells (MSC-EXO) with low immunogenicity and exosomes derived from hippocampal neurons (HT22-EXO) that may have excellent homing ability to overcome the deficiencies of oral or injectable pathways and bypass the BBB through nasal administration and evaluated their delivery ability and effect on AD. First, MSC-EXO and HT22 cells were isolated and cultured, and MSCs were identified by microimaging and flow cytometry. Then MSC-EXO and HT22-EXO were obtained by gradient centrifugation and qEV SEC separation column, and a series of physicochemical characterization were performed by transmission electron microscope, western blot, nanoparticle tracking analysis and dynamic light scattering. Next, exosomes labeled with lipophilic fluorescent dye were administered to WT mice and APP/PS1 mice to obtain fluorescence images of various organs at different times. Finally, APP/PS1 mice were administered intranasally with two exosomes 20 times over 40 days and 20 μL each time. Behavioral analysis and pathological section analysis of the hippocampus were performed after the experiment. The results showed that MSC-EXO and HT22-EXO were successfully isolated and characterized, and they had good biocompatibility. MSC-EXO showed excellent brain enrichment in APP/PS1 mice after intranasal administration, could improve the neuronal damage and reduce inflammation levels in the hippocampus of APP/PS1 mice, and the improvement effect was significantly better than HT22-EXO. However, intranasal administration of the two exosomes did not cause depression and anxious-like phenotypes in APP/PS1 mice, nor significantly improved the short-term or spatial learning and memory ability of APP/PS1 mice, and had no significant effect on the content of Aβ plaques in the hippocampus, which also meant that MSC-EXO could use their own advantages in combination with other drugs to clear Aβ plaques. The possibility of realizing highly effective non-invasive synergistic treatment for AD provides new strategies and ideas for clinical research.

Keywords: Alzheimer’s disease, exosomes derived from mesenchymal stem cell, intranasal administration, therapy-carrier dual roles

Procedia PDF Downloads 58
352 A Corpus-Based Study on the Lexical, Syntactic and Sequential Features across Interpreting Types

Authors: Qianxi Lv, Junying Liang

Abstract:

Among the various modes of interpreting, simultaneous interpreting (SI) is regarded as a ‘complex’ and ‘extreme condition’ of cognitive tasks while consecutive interpreters (CI) do not have to share processing capacity between tasks. Given that SI exerts great cognitive demand, it makes sense to posit that the output of SI may be more compromised than that of CI in the linguistic features. The bulk of the research has stressed the varying cognitive demand and processes involved in different modes of interpreting; however, related empirical research is sparse. In keeping with our interest in investigating the quantitative linguistic factors discriminating between SI and CI, the current study seeks to examine the potential lexical simplification, syntactic complexity and sequential organization mechanism with a self-made inter-model corpus of transcribed simultaneous and consecutive interpretation, translated speech and original speech texts with a total running word of 321960. The lexical features are extracted in terms of the lexical density, list head coverage, hapax legomena, and type-token ratio, as well as core vocabulary percentage. Dependency distance, an index for syntactic complexity and reflective of processing demand is employed. Frequency motif is a non-grammatically-bound sequential unit and is also used to visualize the local function distribution of interpreting the output. While SI is generally regarded as multitasking with high cognitive load, our findings evidently show that CI may impose heavier or taxing cognitive resource differently and hence yields more lexically and syntactically simplified output. In addition, the sequential features manifest that SI and CI organize the sequences from the source text in different ways into the output, to minimize the cognitive load respectively. We reasoned the results in the framework that cognitive demand is exerted both on maintaining and coordinating component of Working Memory. On the one hand, the information maintained in CI is inherently larger in volume compared to SI. On the other hand, time constraints directly influence the sentence reformulation process. The temporal pressure from the input in SI makes the interpreters only keep a small chunk of information in the focus of attention. Thus, SI interpreters usually produce the output by largely retaining the source structure so as to relieve the information from the working memory immediately after formulated in the target language. Conversely, CI interpreters receive at least a few sentences before reformulation, when they are more self-paced. CI interpreters may thus tend to retain and generate the information in a way to lessen the demand. In other words, interpreters cope with the high demand in the reformulation phase of CI by generating output with densely distributed function words, more content words of higher frequency values and fewer variations, simpler structures and more frequently used language sequences. We consequently propose a revised effort model based on the result for a better illustration of cognitive demand during both interpreting types.

Keywords: cognitive demand, corpus-based, dependency distance, frequency motif, interpreting types, lexical simplification, sequential units distribution, syntactic complexity

Procedia PDF Downloads 175
351 Cyber-Victimization among Higher Education Students as Related to Academic and Personal Factors

Authors: T. Heiman, D. Olenik-Shemesh

Abstract:

Over the past decade, with the rapid growth of electronic communication, the internet and, in particular, social networking has become an inseparable part of people's daily lives. Along with its benefits, a new type of online aggression has emerged, defined as cyber bullying, a form of interpersonal aggressive behavior that takes place through electronic means. Cyber-bullying is characterized by repetitive behavior over time of maladaptive authority and power usage using computers and cell phones via sending insulting messages and hurtful pictures. Preliminary findings suggest that the prevalence of involvement in cyber-bullying among higher education students varies between 10 and 35%. As to date, universities are facing an uphill effort in trying to restrain online misbehavior. As no studies examined the relationships between cyber-bullying involvement with personal aspects, and its impacts on academic achievement and work functioning, this present study examined the nature of cyber-bullying involvement among 1,052 undergraduate students (mean age = 27.25, S.D = 4.81; 66.2% female), coping with, as well as the effects of social support, perceived self-efficacy, well-being, and body-perception, in relation to cyber-victimization. We assume that students in higher education are a vulnerable population and at high risk of being cyber-victims. We hypothesize that social support might serve as a protective factor and will moderate the relationships between the socio-emotional variables and the occurrence of cyber- victimization. The findings of this study will present the relationships between cyber-victimization and the social-emotional aspects, which constitute risk and protective factors. After receiving approval from the Ethics Committee of the University, a Google Drive questionnaire was sent to a random sample of students, studying in the various University study centers. Students' participation was voluntary, and they completed the five questionnaires anonymously: Cyber-bullying, perceived self-efficacy, subjective well-being, social support and body perception. Results revealed that 11.6% of the students reported being cyber-victims during last year. Examining the emotional and behavioral reactions to cyber-victimization revealed that female emotional and behavioral reactions were significantly greater than the male reactions (p < .001). Moreover, females reported on a significant higher social support compared to men; male reported significantly on a lower social capability than female; and men's body perception was significantly more positive than women's scores. No gender differences were observed for subjective well-being scale. Significant positive correlations were found between cyber-victimization and fewer friends, lower grades, and work ineffectiveness (r = 0.37- .40, p < 0 .001). The results of the Hierarchical regression indicated significantly that cyber-victimization can be predicted by lower social support, lower body perception, and gender (female), that explained 5.6% of the variance (R2 = 0.056, F(5,1047) = 12.47, p < 0.001). The findings deepen our understanding of the students' involvement in cyber-bullying, and present the relationships of the social-emotional and academic aspects on cyber-victim students. In view of our findings, higher education policy could help facilitate coping with cyber-bullying incidents, and student support units could develop intervention programs aimed at reducing cyber-bullying and its impacts.

Keywords: academic and personal factors, cyber-victimization, social support, higher education

Procedia PDF Downloads 288
350 DSF Elements in High-Rise Timber Buildings

Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih

Abstract:

The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.

Keywords: glass, high-rise buildings, numerical analysis, timber

Procedia PDF Downloads 44
349 Gamification of eHealth Business Cases to Enhance Rich Learning Experience

Authors: Kari Björn

Abstract:

Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.

Keywords: engineering education, integrated curriculum, learning experience, learning outcomes

Procedia PDF Downloads 239
348 The Assessment of Infiltrated Wastewater on the Efficiency of Recovery Reuse and Irrigation Scheme: North Gaza Emergency Sewage Treatment Project as a Case Study

Authors: Yaser S. Kishawi, Sadi R. Ali

Abstract:

Part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line and infiltration basins-IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme–RRS– to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m, and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection.

Keywords: soil aquifer treatment, recovery reuse scheme, infiltration basins, North Gaza

Procedia PDF Downloads 203
347 Using Low-Calorie Gas to Generate Heat and Electricity

Authors: Аndrey Marchenko, Oleg Linkov, Alexander Osetrov, Sergiy Kravchenko

Abstract:

The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat.

Keywords: gas engine, low-calorie gas, methane, pre-combustion chamber, utilization

Procedia PDF Downloads 264
346 Emerging Identities: A Transformative ‘Green Zone’

Authors: Alessandra Swiny, Yiorgos Hadjichristou

Abstract:

There exists an on-going geographical scar creating a division through the Island of Cyprus and its capital, Nicosia. The currently amputated city center is accessed legally by the United Nations convoys, infiltrated only by Turkish and Greek Cypriot army scouts and illegal traders and scavengers. On Christmas day 1963 in Nicosia, Captain M. Hobden of the British Army took a green chinagraph pencil and on a large scale Joint Army-RAF map ‘marked’ the division. From then on this ‘buffer zone’ was called the ‘green line.' This once dividing form, separating the main communities of Greek and Turkish Cypriots from one another, has now been fully reclaimed by an autonomous intruder. It's currently most captivating inhabitant is nature. She keeps taking over, for the past fifty years indigenous and introduced fauna and flora thrive; trees emerge from rooftops and plants, bushes and flowers grow randomly through the once bustling market streets, allowing this ‘no man’s land’ to teem with wildlife. And where are its limits? The idea of fluidity is ever present; it encroaches into the urban and built environment that surrounds it, and notions of ownership and permanence are questioned. Its qualities have contributed significantly in the search for new ‘identities,' expressed in the emergence of new living conditions, be they real or surreal. Without being physically reachable, it can be glimpsed at through punctured peepholes, military bunker windows that act as enticing portals into an emotional and conceptual level of inhabitation. The zone is mystical and simultaneously suspended in time, it triggers people’s imagination, not just that of the two prevailing communities but also of immigrants, refugees, and visitors; it mesmerizes all who come within its proximity. The paper opens a discussion on the issues and the binary questions raised. What is natural and artificial; what is private and public; what is ephemeral and permanent? The ‘green line’ exists in a central fringe condition and can serve in mixing generations and groups of people; mingling functions of living with work and social interaction; merging nature and the human being in a new-found synergy of human hope and survival, allowing thus for new notions of place to be introduced. Questions seek to be answered, such as, “Is the impossibility of dwelling made possible, by interweaving these ‘in-between conditions’ into eloquently traced spaces?” The methodologies pursued are developed through academic research, professional practice projects, and students’ research/design work. Realized projects, case studies and other examples cited both nationally and internationally hold global and local applications. Both paths of the research deal with the explorative understanding of the impossibility of dwelling, testing the limits of its autonomy. The expected outcome of the experience evokes in the user a sense of a new urban landscape, created from human topographies that echo the voice of an emerging identity.

Keywords: urban wildlife, human topographies, buffer zone, no man’s land

Procedia PDF Downloads 198
345 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions

Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake

Abstract:

One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.

Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology

Procedia PDF Downloads 224
344 Via ad Reducendam Intensitatem Energiae Industrialis in Provincia Sino ad Conservationem Energiae

Authors: John Doe

Abstract:

This paper presents the research project “Escape Through Culture”, which is co-funded by the European Union and national resources through the Operational Programme “Competitiveness, Entrepreneurship and Innovation” 2014-2020 and the Single RTDI State Aid Action "RESEARCH - CREATE - INNOVATE". The project implementation is assumed by three partners, (1) the Computer Technology Institute and Press "Diophantus" (CTI), experienced with the design and implementation of serious games, natural language processing and ICT in education, (2) the Laboratory of Environmental Communication and Audiovisual Documentation (LECAD), part of the University of Thessaly, Department of Architecture, which is experienced with the study of creative transformation and reframing of the urban and environmental multimodal experiences through the use of AR and VR technologies, and (3) “Apoplou”, an IT Company with experience in the implementation of interactive digital applications. The research project proposes the design of innovative infrastructure of digital educational escape games for mobile devices and computers, with the use of Virtual Reality and Augmented Reality for the promotion of Greek cultural heritage in Greece and abroad. In particular, the project advocates the combination of Greek cultural heritage and literature, digital technologies advancements and the implementation of innovative gamifying practices. The cultural experience of the players will take place in 3 layers: (1) In space: the digital games produced are going to utilize the dual character of the space as a cultural landscape (the real space - landscape but also the space - landscape as presented with the technologies of augmented reality and virtual reality). (2) In literary texts: the selected texts of Greek writers will support the sense of place and the multi-sensory involvement of the user, through the context of space-time, language and cultural characteristics. (3) In the philosophy of the "escape game" tool: whether played in a computer environment, indoors or outdoors, the spatial experience is one of the key components of escape games. The innovation of the project lies both in the junction of Augmented/Virtual Reality with the promotion of cultural points of interest, as well as in the interactive, gamified practices of literary texts. The digital escape game infrastructure will be highly interactive, integrating the projection of Greek landscape cultural elements and digital literary text analysis, supporting the creation of escape games, establishing and highlighting new playful ways of experiencing iconic cultural places, such as Elefsina, Skiathos etc. The literary texts’ content will relate to specific elements of the Greek cultural heritage depicted by prominent Greek writers and poets. The majority of the texts will originate from Greek educational content available in digital libraries and repositories developed and maintained by CTI. The escape games produced will be available for use during educational field trips, thematic tourism holidays, etc. In this paper, the methodology adopted for infrastructure development will be presented. The research is based on theories of place, gamification, gaming development, making use of corpus linguistics concepts and digital humanities practices for the compilation and the analysis of literary texts.

Keywords: escape games, cultural landscapes, gamification, digital humanities, literature

Procedia PDF Downloads 244
343 Understanding What People with Epilepsy and Their Care-Partners Value about an Electronic Patient Portal

Authors: K. Power, M. White, B. Dunleavey, E. Comerford, C. Doherty, N. Delanty, R. Corbridge, M. Fitzsimons

Abstract:

Introduction: Providing people with access to their own healthcare information and engaging them as co-authors of their health record can promote better transparency, trust, and inclusivity in the healthcare system. With the advent of electronic health records, there is a move towards involving patients as partners in their healthcare by providing them with access to their own health data via electronic patient portals (ePortal). For example, a recently developed ePortal to the Irish National Epilepsy Electronic Patient Record (EPR) provides access to summary medical records, tools for Patient Reported Outcomes (PROM), health goal-setting and preparation for clinical appointments. Aim: To determine what people with epilepsy (their families/carers) value about the Irish epilepsy ePortal. Methods: A socio-technical process was employed recruiting 30 families of people with epilepsy who also have an intellectual disability (ID). Family members who are a care partner of the person with epilepsy (PWE) were invited to co-design, develop and implement the ePortal. Family members engaged in usability and utility testing which involved a face to face meeting to learn about the ePortal, register for a user account and evaluate its structure and content. Family members were instructed to login to the portal on at least two separate occasions following the meeting and to complete a self-report evaluation tool during this time. The evaluation tool, based on a Usability Questionnaire (Lewis, 1993), consists of a short assessment of comfort using technology, instructions for using the ePortal and some tasks to complete. Tasks included validating summary record details, assessing ePortal ease of use, evaluation of information presented. Participants were asked for suggestions on how to improve the portal and make it more applicable to PWE who also have an ID. Results: Family members responded positively to the ePortal and valued the ability to share information between clinicians and care partners; use the ePortal as a passport between different healthcare settings (e.g., primary care to hospital). In the context of elderly parents of PWE, the ePortal is valued as a tool for supporting shared care between family members. Participants welcomed the facility to log lists of questions and goals to discuss with the clinician at the next clinical appointment as a means of improving quality of care. Participants also suggested further enhancements to the ePortal such as access to clinic letters which can provide an aide memoir in terms of the careplan agreed with the clinical team. For example, through the ePortal, people could see what investigations or therapies are scheduled. Conclusion: The Epilepsy Patient Portal is accessible via a range of devices such as smartphones and tablets. ePortals have the potential to help personalise care, improve patient involvement in clinical decision making, engage them as quality and safety partners, and help clinicians be more responsive to patient needs. Acknowledgement: The epilepsy ePortal project is part of PISCES, a Lighthouse Project funded by eHealth Ireland and HSE to help build an understanding of the benefits of eHealth technologies in the Irish Healthcare System.

Keywords: electronic patient portal, electronic patient record, epilepsy, intellectual disability, usability testing

Procedia PDF Downloads 339
342 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease

Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette

Abstract:

Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.

Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment

Procedia PDF Downloads 337
341 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane

Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato

Abstract:

Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.

Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell

Procedia PDF Downloads 152
340 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province

Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab

Abstract:

Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.

Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province

Procedia PDF Downloads 73
339 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 200
338 To Smile or Not to Smile: How Engendered Facial Cues affect Hiring Decisions

Authors: Sabrina S. W. Chan, Emily Schwartzman, Nicholas O. Rule

Abstract:

Past literature showed mixed findings on how smiling affects a person’s chance of getting hired. On one hand, smiling suggests enthusiasm, cooperativeness, and enthusiasm, which can elicit positive impressions. On the other hand, smiling can suggest weaker professionalism or a filler to hide nervousness, which can lower a candidate’s perceived competence. Emotion expressions can also be perceived differently depending on the person’s gender and can activate certain gender stereotypes. Women especially face a double bind with respect to hiring decisions and smiling. Because women are socially expected to smile more, those who do not smile will be considered stereotype incongruent. This becomes a noisy signal to employers and may lower their chance of being hired. However, women’s smiling as a formality may also be an obstacle. They are more likely to put on fake smiles; but if they do, they are also likely to be perceived as inauthentic and over-expressive. This paper sought to investigate how smiling affects hiring decisions, and whether this relationship is moderated by gender. In Study 1, participants were shown a series of smiling and emotionally neutral face images, incorporated into fabricated LinkedIn profiles. Participants were asked to rate how hireable they thought that candidate was. Results showed that participants rated smiling candidates as more hireable than nonsmiling candidates, and that there was no difference in gender. Moreover, individuals who did not study business were more biased in their perceptions than those who did. Since results showed a trending favoritism over female targets, in suspect of desirability bias, a second study was conducted to collect implicit measures behind the decision-making process. In Study 2, a mouse-tracking design was adopted to explore whether participants’ implicit attitudes were different from their explicit responses on hiring. Participants asked to respond whether they would offer an interview to a candidate. Findings from Study 1 was replicated in that smiling candidates received more offers than neutral-faced candidates. Results also showed that female candidates received significantly more offers than male candidates but was associated with higher attractiveness ratings. There were no significant findings in reaction time or change of decisions. However, stronger hesitation was detected for responses made towards neutral targets when participants perceived the given position as masculine, implying a conscious attempt of making situational judgments (e.g., considering candidate’s personality and job fit) to override automatic processing (evaluations based on attractiveness). Future studies would look at how these findings differ for positions which are stereotypically masculine (e.g., surgeons) and stereotypically feminine (e.g., kindergarten teachers). Current findings have strong implications for developing bias-free hiring policies in workplace, especially for organizations who maintain online/hybrid working arrangements in the post-pandemic era. This also bridges the literature gap between face perception and gender discrimination, highlighting how engendered facial cues can affect individual’s career development and organization’s success in diversity and inclusion.

Keywords: engendered facial cues, face perception, gender stereotypes, hiring decisions, smiling, workplace discrimination

Procedia PDF Downloads 133
337 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.

Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals

Procedia PDF Downloads 374
336 A Randomized, Controlled Trial to Test Behavior Change Techniques to Improve Low Intensity Physical Activity in Older Adults

Authors: Ciaran Friel, Jerry Suls, Mark Butler, Patrick Robles, Samantha Gordon, Frank Vicari, Karina W. Davidson

Abstract:

Physical activity guidelines focus on increasing moderate-intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence supports that any increase in physical activity is positively correlated with health benefits. Behavior change techniques (BCTs) have demonstrated effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a Personalized Trials (N-of-1) design to evaluate the efficacy of using four BCTs to promote an increase in low-intensity physical activity (2,000 steps of walking per day) in adults aged 45-75 years old. The 4 BCTs tested were goal setting, action planning, feedback, and self-monitoring. BCTs were tested in random order and delivered by text message prompts requiring participant engagement. The study recruited health system employees in the target age range, without mobility restrictions and demonstrating interest in increasing their daily activity by a minimum of 2,000 steps per day for a minimum of five days per week. Participants were sent a Fitbit® fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7 but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by Fitbit for two weeks. In the 8-week intervention phase of the study, participants received each of the four BCTs, in random order, for a two-week period. Text message prompts were delivered daily each morning at a consistent time. All prompts required participant engagement to acknowledge receipt of the BCT message. Engagement is dependent upon the BCT message and may have included recording that a detailed plan for walking has been made or confirmed a daily step goal (action planning, goal setting). Additionally, participants may have been directed to a study dashboard to view their step counts or compare themselves to their baseline average step count (self-monitoring, feedback). At the end of each two-week testing interval, participants were asked to complete the Self-Efficacy for Walking Scale (SEW_Dur), a validated measure that assesses the participant’s confidence in walking incremental distances, and a survey measuring their satisfaction with the individual BCT that they tested. At the end of their trial, participants received a personalized summary of their step data in response to each individual BCT. The analysis will examine the novel individual-level heterogeneity of treatment effect made possible by N-of-1 design and pool results across participants to efficiently estimate the overall efficacy of the selected behavioral change techniques in increasing low-intensity walking by 2,000 steps, five days per week. Self-efficacy will be explored as the likely mechanism of action prompting behavior change. This study will inform the providers and demonstrate the feasibility of an N-of-1 study design to effectively promote physical activity as a component of healthy aging.

Keywords: aging, exercise, habit, walking

Procedia PDF Downloads 91
335 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction

Procedia PDF Downloads 309
334 The Immunology Evolutionary Relationship between Signal Transducer and Activator of Transcription Genes from Three Different Shrimp Species in Response to White Spot Syndrome Virus Infection

Authors: T. C. C. Soo, S. Bhassu

Abstract:

Unlike the common presence of both innate and adaptive immunity in vertebrates, crustaceans, in particular, shrimps, have been discovered to possess only innate immunity. This further emphasizes the importance of innate immunity within shrimps in pathogenic resistance. Under the study of pathogenic immune challenge, different shrimp species actually exhibit varying degrees of immune resistance towards the same pathogen. Furthermore, even within the same shrimp species, different batches of challenged shrimps can have different strengths of immune defence. Several important pathways are activated within shrimps during pathogenic infection. One of them is JAK-STAT pathway that is activated during bacterial, viral and fungal infections by which STAT(Signal Transducer and Activator of Transcription) gene is the core element of the pathway. Based on theory of Central Dogma, the genomic information is transmitted in the order of DNA, RNA and protein. This study is focused in uncovering the important evolutionary patterns present within the DNA (non-coding region) and RNA (coding region). The three shrimp species involved are Macrobrachium rosenbergii, Penaeus monodon and Litopenaeus vannamei which all possess commercial significance. The shrimp species were challenged with a famous penaeid shrimp virus called white spot syndrome virus (WSSV) which can cause serious lethality. Tissue samples were collected during time intervals of 0h, 3h, 6h, 12h, 24h, 36h and 48h. The DNA and RNA samples were then extracted using conventional kits from the hepatopancreas tissue samples. PCR technique together with designed STAT gene conserved primers were utilized for identification of the STAT coding sequences using RNA-converted cDNA samples and subsequent characterization using various bioinformatics approaches including Ramachandran plot, ProtParam and SWISS-MODEL. The varying levels of immune STAT gene activation for the three shrimp species during WSSV infection were confirmed using qRT-PCR technique. For one sample, three biological replicates with three technical replicates each were used for qRT-PCR. On the other hand, DNA samples were important for uncovering the structural variations within the genomic region of STAT gene which would greatly assist in understanding the STAT protein functional variations. The partially-overlapping primers technique was used for the genomic region sequencing. The evolutionary inferences and event predictions were then conducted through the Bayesian Inference method using all the acquired coding and non-coding sequences. This was supplemented by the construction of conventional phylogenetic trees using Maximum likelihood method. The results showed that adaptive evolution caused STAT gene sequence mutations between different shrimp species which led to evolutionary divergence event. Subsequently, the divergent sites were correlated to the differing expressions of STAT gene. Ultimately, this study assists in knowing the shrimp species innate immune variability and selection of disease resistant shrimps for breeding purpose. The deeper understanding of STAT gene evolution from the perspective of both purifying and adaptive approaches not only can provide better immunological insight among shrimp species, but also can be used as a good reference for immunological studies in humans or other model organisms.

Keywords: gene evolution, JAK-STAT pathway, immunology, STAT gene

Procedia PDF Downloads 150
333 Microplastics in Urban Environment – Coimbra City Case Study

Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen

Abstract:

Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.

Keywords: microplastics, cities, sources, pathways, vegetation

Procedia PDF Downloads 59
332 New Territories: Materiality and Craft from Natural Systems to Digital Experiments

Authors: Carla Aramouny

Abstract:

Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.

Keywords: digital fabrication, design and craft, materiality, natural systems

Procedia PDF Downloads 123
331 Exploring Empathy Through Patients’ Eyes: A Thematic Narrative Analysis of Patient Narratives in the UK

Authors: Qudsiya Baig

Abstract:

Empathy yields an unparalleled therapeutic value within patient physician interactions. Medical research is inundated with evidence to support that a physician’s ability to empathise with patients leads to a greater willingness to report symptoms, an improvement in diagnostic accuracy and safety, and a better adherence and satisfaction with treatment plans. Furthermore, the Institute of Medicine states that empathy leads to a more patient-centred care, which is one of the six main goals of a 21st century health system. However, there is a paradox between the theoretical significance of empathy and its presence, or lack thereof, in clinical practice. Recent studies have reported that empathy declines amongst students and physicians over time. The three most impactful contributors to this decline are: (1) disagreements over the definitions of empathy making it difficult to implement it into practice (2) poor consideration or regulation of empathy leading to burnout and thus, abandonment altogether, and (3) the lack of diversity in the curriculum and the influence of medical culture, which prioritises science over patient experience, limiting some physicians from using ‘too much’ empathy in the fear of losing clinical objectivity. These issues were investigated by conducting a fully inductive thematic narrative analysis of patient narratives in the UK to evaluate the behaviours and attitudes that patients associate with empathy. The principal enquiries underpinning this study included uncovering the factors that affected experience of empathy within provider-patient interactions and to analyse their effects on patient care. This research contributes uniquely to this discourse by examining the phenomenon of empathy directly from patients’ experiences, which were systematically extracted from a repository of online patient narratives of care titled ‘CareOpinion UK’. Narrative analysis was specifically chosen as the methodology to examine narratives from a phenomenological lens to focus on the particularity and context of each story. By enquiring beyond the superficial who-whatwhere, the study of narratives prescribed meaning to illness by highlighting the everyday reality of patients who face the exigent life circumstances created by suffering, disability, and the threat of life. The following six themes were found to be the most impactful in influencing the experience of empathy: dismissive behaviours, judgmental attitudes, undermining patients’ pain or concerns, holistic care and failures and successes of communication or language. For each theme there were overarching themes relating to either a failure to understand the patient’s perspective or a success in taking a person-centred approach. An in-depth analysis revealed that a lack of empathy was greatly associated with an emotive-cognitive imbalance, which disengaged physicians with their patients’ emotions. This study hereby concludes that competent providers require a combination of knowledge, skills, and more importantly empathic attitudes to help create a context for effective care. The crucial elements of that context involve (a) identifying empathy clues within interactions to engage with patients’ situations, (b) attributing a perspective to the patient through perspective-taking and (c) adapting behaviour and communication according to patient’s individual needs. Empathy underpins that context, as does an appreciation of narrative, and the two are interrelated.

Keywords: empathy, narratives, person-centred, perspective, perspective-taking

Procedia PDF Downloads 137
330 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 240
329 Analysis of the Interests, Conflicts and Power Resources in the Urban Development in the Megacity of Sao Paulo

Authors: A. G. Back

Abstract:

Urban planning is a relevant tool to address, in a systemic way, several sectoral policies capable of linking the urban agenda with the reduction of socio-environmental risks. The Sao Paulo’s master plan (2014) presents innovations capable of promoting the transition to sustainability in the urban space, with a view to its regulatory instruments related to i) promotion of density in the axes of mass transport involving the mixture of commercial, residential, services, and leisure uses (principles related to the compact city); ii) vulnerabilities reduction based on housing policies including regular sources of funds for social housing and land reservation in urbanized areas; iii) reserve of green areas in the city to create parks and environmental regulations for new buildings focused on reducing the effects of heat island and improving urban drainage. However, its long-term implementation involves distributive conflicts and can undergo changes in different political, economic, and social contexts over time. Thus, the main objective of this paper is to identify and analyze the dynamics of conflicts of interest between social groups in the implementation of Sao Paulo’s urban development policy, particularly in relation to recent attempts at a (re) interpretation of the Master Plan guidelines, in view of the proposals for revision of the urban zoning law. In this sense, we seek to identify the demands, narratives of urban actors, including the real estate market, middle-class neighborhood associations ('not in my backyard' movements), and social housing rights movements. And we seek to analyze the power resources that these actors mobilize to influence the decision-making process, involving five categories: social capital, political access; discursive resource; media, juridical resource. The major findings of this research suggest that the interests and demands of the real estate market do not always prevail in urban regulation. After all, other actors also press for the definition of urban law with interests opposite to those of the real estate market. This is the case of associations of middle-class neighborhoods, which work to protect the characteristics of the locality, acting, in general, to prevent constructive and population densification in neighborhoods well located near the center, in São Paulo. One of the main demands of these “not in my backyard” movements is the delimitation of exclusively residential areas in the central region of the city, which is not only contrary to the interests of the real state market but also contrary to the principles of the compact city. On the other hand, social housing rights movements have also made progress in delimiting special areas of social interest in well-located and valued areas in the city dedicated to building social housing, also contrary to the interests of the real estate market. An urban development that follows the principles of the compact city must take into account the insertion of low-income populations in well-located regions; otherwise, such a development model may continue to push the less favored to the peripheries towards the preservation areas and/or risk areas.

Keywords: interest groups, Sao Paulo, sustainable urban development, urban policies implementation

Procedia PDF Downloads 109
328 Satellite Connectivity for Sustainable Mobility

Authors: Roberta Mugellesi Dow

Abstract:

As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.

Keywords: sustainability, connectivity, mobility, satellites

Procedia PDF Downloads 133
327 Bridging Educational Research and Policymaking: The Development of Educational Think Tank in China

Authors: Yumei Han, Ling Li, Naiqing Song, Xiaoping Yang, Yuping Han

Abstract:

Educational think tank is agreeably regarded as significant part of a nation’s soft power to promote the scientific and democratic level of educational policy making, and it plays critical role of bridging educational research in higher institutions and educational policy making. This study explores the concept, functions and significance of educational think tank in China, and conceptualizes a three dimensional framework to analyze the approaches of transforming research-based higher institutions into effective educational think tanks to serve educational policy making in the nation wide. Since 2014, the Ministry of Education P.R. China has been promoting the strategy of developing new type of educational think tanks in higher institutions, and such a strategy has been put into the agenda for the 13th Five Year Plan for National Education Development released in 2017.In such context, increasing scholars conduct studies to put forth strategies of promoting the development and transformation of new educational think tanks to serve educational policy making process. Based on literature synthesis, policy text analysis, and analysis of theories about policy making process and relationship between educational research and policy-making, this study constructed a three dimensional conceptual framework to address the following questions: (a) what are the new features of educational think tanks in the new era comparing traditional think tanks, (b) what are the functional objectives of the new educational think tanks, (c) what are the organizational patterns and mechanism of the new educational think tanks, (d) in what approaches traditional research-based higher institutions can be developed or transformed into think tanks to effectively serve the educational policy making process. The authors adopted case study approach on five influential education policy study centers affiliated with top higher institutions in China and applied the three dimensional conceptual framework to analyze their functional objectives, organizational patterns as well as their academic pathways that researchers use to contribute to the development of think tanks to serve education policy making process.Data was mainly collected through interviews with center administrators, leading researchers and academic leaders in the institutions. Findings show that: (a) higher institution based think tanks mainly function for multi-level objectives, providing evidence, theoretical foundations, strategies, or evaluation feedbacks for critical problem solving or policy-making on the national, provincial, and city/county level; (b) higher institution based think tanks organize various types of research programs for different time spans to serve different phases of policy planning, decision making, and policy implementation; (c) in order to transform research-based higher institutions into educational think tanks, the institutions must promote paradigm shift that promotes issue-oriented field studies, large data mining and analysis, empirical studies, and trans-disciplinary research collaborations; and (d) the five cases showed distinguished features in their way of constructing think tanks, and yet they also exposed obstacles and challenges such as independency of the think tanks, the discourse shift from academic papers to consultancy report for policy makers, weakness in empirical research methods, lack of experience in trans-disciplinary collaboration. The authors finally put forth implications for think tank construction in China and abroad.

Keywords: education policy-making, educational research, educational think tank, higher institution

Procedia PDF Downloads 157
326 Correlation of Clinical and Sonographic Findings with Cytohistology for Diagnosis of Ovarian Tumours

Authors: Meenakshi Barsaul Chauhan, Aastha Chauhan, Shilpa Hurmade, Rajeev Sen, Jyotsna Sen, Monika Dalal

Abstract:

Introduction: Ovarian masses are common forms of neoplasm in women and represent 2/3rd of gynaecological malignancies. A pre-operative suggestion of malignancy can guide the gynecologist to refer women with suspected pelvic mass to a gynecological oncologist for appropriate therapy and optimized treatment, which can improve survival. In the younger age group preoperative differentiation into benign or malignant pathology can decide for conservative or radical surgery. Imaging modalities have a definite role in establishing the diagnosis. By using International Ovarian Tumor Analysis (IOTA) classification with sonography, costly radiological methods like Magnetic Resonance Imaging (MRI) / computed tomography (CT) scan can be reduced, especially in developing countries like India. Thus, this study is being undertaken to evaluate the role of clinical methods and sonography for diagnosis of the nature of the ovarian tumor. Material And Methods: This prospective observational study was conducted on 40 patients presenting with ovarian masses, in the Department of Obstetrics and Gynaecology, at a tertiary care center in northern India. Functional cysts were excluded. Ultrasonography and color Doppler were performed on all the cases.IOTA rules were applied, which take into account locularity, size, presence of solid components, acoustic shadow, dopper flow etc . Magnetic Resonance Imaging (MRI) / computed tomography (CT) scans abdomen and pelvis were done in cases where sonography was inconclusive. In inoperable cases, Fine needle aspiration cytology (FNAC) was done. The histopathology report after surgery and cytology report after FNAC was correlated statistically with the pre-operative diagnosis made clinically and sonographically using IOTA rules. Statistical Analysis: Descriptive measures were analyzed by using mean and standard deviation and the Student t-test was applied and the proportion was analyzed by applying the chi-square test. Inferential measures were analyzed by sensitivity, specificity, negative predictive value, and positive predictive value. Results: Provisional diagnosis of the benign tumor was made in 16(42.5%) and of the malignant tumor was made in 24(57.5%) patients on the basis of clinical findings. With IOTA simple rules on sonography, 15(37.5%) were found to be benign, while 23 (57.5%) were found to be malignant and findings were inconclusive in 2 patients (5%). FNAC/Histopathology reported that benign ovarian tumors were 14 (35%) and 26(65%) were malignant, which was taken as the gold standard. The clinical finding alone was found to have a sensitivity of 66.6% and a specificity of 90.9%. USG alone had a sensitivity of 86% and a specificity of 80%. When clinical findings and IOTA simple rules of sonography were combined (excluding inconclusive masses), the sensitivity and specificity were 83.3% and 92.3%, respectively. While including inconclusive masses, sensitivity came out to be 91.6% and specificity was 89.2. Conclusion: IOTA's simple sonography rules are highly sensitive and specific in the prediction of ovarian malignancy and also easy to use and easily reproducible. Thus, combining clinical examination with USG will help in the better management of patients in terms of time, cost and better prognosis. This will also avoid the need for costlier modalities like CT, and MRI.

Keywords: benign, international ovarian tumor analysis classification, malignant, ovarian tumours, sonography

Procedia PDF Downloads 78
325 Gendered Water Insecurity: a Structural Equation Approach for Female-Headed Households in South Africa

Authors: Saul Ngarava, Leocadia Zhou, Nomakhaya Monde

Abstract:

Water crises have the fourth most significant societal impact after weapons of mass destruction, climate change, and extreme weather conditions, ahead of natural disasters. Intricacies between women and water are central to achieving the 2030 Sustainable Development Goals (SDGs). The majority of the 1.2 billion poor people worldwide, with two-thirds being women, and mostly located in Sub Sahara Africa (SSA) and South Asia, do not have access to safe and reliable sources of water. There exist gendered differences in water security based on the division of labour associating women with water. Globally, women and girls are responsible for water collection in 80% of the households which have no water on their premises. Women spend 16 million hours a day collecting water, while men and children spend 6 million and 4 million per day, respectively, which is time foregone in the pursuit of other livelihood activities. Due to their proximity and activities concerning water, women are vulnerable to water insecurity through exposures to water-borne diseases, fatigue from physically carrying water, and exposure to sexual and physical harassment, amongst others. Proximity to treated water and their wellbeing also has an effect on their sensitivity and adaptive capacity to water insecurity. The great distances, difficult terrain and heavy lifting expose women to vulnerabilities of water insecurity. However, few studies have quantified the vulnerabilities and burdens on women, with a few taking a phenomenological qualitative approach. Vulnerability studies have also been scanty in the water security realm, with most studies taking linear forms of either quantifying exposures, sensitivities or adaptive capacities in climate change studies. The current study argues for the need for a water insecurity vulnerability assessment, especially for women into research agendas as well as policy interventions, monitoring, and evaluation. The study sought to identify and provide pathways through which female-headed households were water insecure in South Africa, the 30th driest country in the world. This was through linking the drinking water decision as well as the vulnerability frameworks. Secondary data collected during the 2016 General Household Survey (GHS) was utilised, with a sample of 5928 female-headed households. Principal Component Analysis and Structural Equation Modelling were used to analyse the data. The results show dynamic relationships between water characteristics and water treatment. There were also associations between water access and wealth status of the female-headed households. Association was also found between water access and water treatment as well as between wealth status and water treatment. The study concludes that there are dynamic relationships in water insecurity (exposure, sensitivity, and adaptive capacity) for female-headed households in South Africa. The study recommends that a multi-prong approach is required in tackling exposures, sensitivities, and adaptive capacities to water insecurity. This should include capacitating and empowering women for wealth generation, improve access to water treatment equipment as well as prioritising the improvement of infrastructure that brings piped and safe water to female-headed households.

Keywords: gender, principal component analysis, structural equation modelling, vulnerability, water insecurity

Procedia PDF Downloads 120
324 Possible Involvement of DNA-methyltransferase and Histone Deacetylase in the Regulation of Virulence Potential of Acanthamoeba castellanii

Authors: Yi H. Wong, Li L. Chan, Chee O. Leong, Stephen Ambu, Joon W. Mak, Priyadashi S. Sahu

Abstract:

Background: Acanthamoeba is a free-living opportunistic protist which is ubiquitously distributed in the environment. Virulent Acanthamoeba can cause fatal encephalitis in immunocompromised patients and potential blinding keratitis in immunocompetent contact lens wearers. Approximately 24 species have been identified but only the A. castellanii, A. polyphaga and A. culbertsoni are commonly associated with human infections. Until to date, the precise molecular basis for Acanthamoeba pathogenesis remains unclear. Previous studies reported that Acanthamoeba virulence can be diminished through prolonged axenic culture but revived through serial mouse passages. As no clear explanation on this reversible pathogenesis is established, hereby, we postulate that the epigenetic regulators, DNA-methyltransferases (DNMT) and histone-deacetylases (HDAC), could possibly be involved in granting the virulence plasticity of Acanthamoeba spp. Methods: Four rounds of mouse passages were conducted to revive the virulence potential of the virulence-attenuated Acanthamoeba castellanii strain (ATCC 50492). Briefly, each mouse (n=6/group) was inoculated intraperitoneally with Acanthamoebae cells (2x 105 trophozoites/mouse) and incubated for 2 months. Acanthamoebae cells were isolated from infected mouse organs by culture method and subjected to subsequent mouse passage. In vitro cytopathic, encystment and gelatinolytic assays were conducted to evaluate the virulence characteristics of Acanthamoebae isolates for each passage. PCR primers which targeted on the 2 members (DNMT1 and DNMT2) and 5 members (HDAC1 to 5) of the DNMT and HDAC gene families respectively were custom designed. Quantitative real-time PCR (qPCR) was performed to detect and quantify the relative expression of the two gene families in each Acanthamoeba isolates. Beta-tubulin of A. castellanii (Genbank accession no: XP_004353728) was included as housekeeping gene for data normalisation. PCR mixtures were also analyzed by electrophoresis for amplicons detection. All statistical analyses were performed using the paired one-tailed Student’s t test. Results: Our pathogenicity tests showed that the virulence-reactivated Acanthamoeba had a higher degree of cytopathic effect on vero cells, a better resistance to encystment challenge and a higher gelatinolytic activity which was catalysed by serine protease. qPCR assay showed that DNMT1 expression was significantly higher in the virulence-reactivated compared to the virulence-attenuated Acanthamoeba strain (p ≤ 0.01). The specificity of primers which targeted on DNMT1 was confirmed by sequence analysis of PCR amplicons, which showed a 97% similarity to the published DNA-methyltransferase gene of A. castellanii (GenBank accession no: XM_004332804.1). Out of the five primer pairs which targeted on the HDAC family genes, only HDAC4 expression was significantly difference between the two variant strains. In contrast to DNMT1, HDAC4 expression was much higher in the virulence-attenuated Acanthamoeba strain. Conclusion: Our mouse passages had successfully restored the virulence of the attenuated strain. Our findings suggested that DNA-methyltransferase (DNMT1) and histone deacetylase (HDAC4) expressions are associated with virulence potential of Acanthamoeba spp.

Keywords: acanthamoeba, DNA-methyltransferase, histone deacetylase, virulence-associated proteins

Procedia PDF Downloads 287