Search results for: high-dimensional process control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23836

Search results for: high-dimensional process control

5506 Sustainable Reconstruction: Towards Guidelines of Post-Disaster Vulnerability Reduction for Permanent Informal Housing in Malaysia Due to Flooding

Authors: Ruhizal Roosli, Julaihi Wahid, Abu Hassan Abu Bakar, Faizal Baharum

Abstract:

This paper reports on the progress of a study on the reconstruction project after the ‘Yellow Flood’ disaster in Kelantan, Malaysia. Malaysia still does not have guidelines to build housing after a disaster especially in disaster-prone areas. At the international level, many guidelines have been prepared that is found suitable for post-disaster housing. Which guidelines can be adapted that best describes the situation in Malaysia? It was reported that the houses should be built on stilts, which can withstand certain level of impact during flooding. Unfortunately, until today no specific guideline was available to assist homeowners to rebuild their homes after disaster. In addition, there is also no clear operational procedure to monitor the progress of this construction work. This research is an effort to promoting resilient housing; safety and security; and secure tenure in a prone area. At the end of this study, key lessons will be emerged from the review process and data analysis. These inputs will then have influenced to the content that will be developed and presented as guidelines. An overall objective is to support humanitarian responses to disaster and conflicts for resilience house construction to flood prone area. Interviews with the field based staff were from recent post-disaster housing workforce (disaster management mechanism in Malaysia especially in Kelantan). The respondents were selected based on their experiences in disaster response particularly related to housing provision. These key lessons are perhaps the best practical (operational and technical) guidelines comparing to other International cases to be adapted to the national situations.

Keywords: disaster, guideline, housing, Malaysia, reconstruction

Procedia PDF Downloads 499
5505 Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration

Authors: Husnain Yousaf, Rudy Swennen, Hannes Claes, Muhammad Amjad

Abstract:

In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD.

Keywords: reservoir quality, diagenesis, porosity, permeability, depositional environments, Buntsandstein, Netherlands

Procedia PDF Downloads 53
5504 Predicting of Hydrate Deposition in Loading and Offloading Flowlines of Marine CNG Systems

Authors: Esam I. Jassim

Abstract:

The main aim of this paper is to demonstrate the prediction of the model capability of predicting the nucleation process, the growth rate, and the deposition potential of second phase particles in gas flowlines. The primary objective of the research is to predict the risk hazards involved in the marine transportation of compressed natural gas. However, the proposed model can be equally used for other applications including production and transportation of natural gas in any high-pressure flow-line. The proposed model employs the following three main components to approach the problem: computational fluid dynamics (CFD) technique is used to configure the flow field; the nucleation model is developed and incorporated in the simulation to predict the incipient hydrate particles size and growth rate; and the deposition of the gas/particle flow is proposed using the concept of the particle deposition velocity. These components are integrated in a comprehended model to locate the hydrate deposition in natural gas flowlines. The present research is prepared to foresee the deposition location of solid particles that could occur in a real application in Compressed Natural Gas loading and offloading. A pipeline with 120 m length and different sizes carried a natural gas is taken in the study. The location of particle deposition formed as a result of restriction is determined based on the procedure mentioned earlier and the effect of water content and downstream pressure is studied. The critical flow speed that prevents such particle to accumulate in the certain pipe length is also addressed.

Keywords: hydrate deposition, compressed natural gas, marine transportation, oceanography

Procedia PDF Downloads 474
5503 Wharton's Jelly-Derived Mesenchymal Stem Cells Modulate Heart Rate Variability and Improve Baroreflex Sensitivity in Septic Rats

Authors: Cóndor C. José, Rodrigues E. Camila, Noronha L. Irene, Dos Santos Fernando, Irigoyen M. Claudia, Andrade Lúcia

Abstract:

Sepsis induces alterations in hemodynamics and autonomic nervous system (ASN). The autonomic activity can be calculated by measuring heart rate variability (HRV) that represents the complex interplay between ASN and cardiac pacemaker cells. Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are known to express genes and secreted factors involved in neuroprotective and immunological effects, also to improve the survival in experimental septic animals. We hypothesized, that WJ-MSCs present an important role in the autonomic activity and in the hemodynamic effects in a cecal ligation and puncture (CLP) model of sepsis. Methods: We used flow cytometry to evaluate WJ-MSCs phenotypes. We divided Wistar rats into groups: sham (shamoperated); CLP; and CLP+MSC (106 WJ-MSCs, i.p., 6 h after CLP). At 24 h post-CLP, we recorded the systolic arterial pressure (SAP) and heart rate (HR) over 20 min. The spectral analysis of HR and SAP; also the spontaneous baroreflex sensitivity (measure by bradycardic and tachycardic responses) were evaluated after recording. The one-way ANOVA and the post hoc Student– Newman– Keuls tests (P< 0.05) were used to data comparison Results: WJ-MSCs were negative for CD3, CD34, CD45 and HLA-DR, whereas they were positive for CD73, CD90 and CD105. The CLP group showed a reduction in variance of overall variability and in high-frequency power of HR (heart parasympathetic activity); furthermore, there is a low-frequency reduction of SAP (blood vessels sympathetic activity). The treatment with WJ-MSCs improved the autonomic activity by increasing the high and lowfrequency power; and restore the baroreflex sensitive. Conclusions: WJ-MSCs attenuate the impairment of autonomic control of the heart and vessels and might therefore play a protective role in sepsis. (Supported by FAPESP).

Keywords: baroreflex response, heart rate variability, sepsis, wharton’s jelly-derived mesenchymal stem cells

Procedia PDF Downloads 283
5502 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)

Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim

Abstract:

This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.

Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm

Procedia PDF Downloads 387
5501 Light Sensitive Plasmonic Nanostructures for Photonic Applications

Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi

Abstract:

In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures

Procedia PDF Downloads 286
5500 The Effect of Primary Treatment on Histopathological Patterns and Choice of Neck Dissection in Regional Failure of Nasopharyngeal Carcinoma Patients

Authors: Ralene Sim, Stefan Mueller, N. Gopalakrishna Iyer, Ngian Chye Tan, Khee Chee Soo, R. Shetty Mahalakshmi, Hiang Khoon Tan

Abstract:

Background: Regional failure in nasopharyngeal carcinoma (NPC) is managed by salvage treatment in the form of neck dissection. Radical neck dissection (RND) is preferred over modified radical neck dissection (MRND) since it is traditionally believed to offer better long-term disease control. However, with the advent of more advanced imaging modalities like high-resolution Magnetic Resonance Imaging, Computed Tomography, and Positron Emission Tomography-CT scans, earlier detection is achieved. Additionally, concurrent chemotherapy also contributes to reduced tumour burden. Hence, there may be a lesser need for an RND and a greater role for MRND. With this retrospective study, the primary aim is to ascertain whether MRND, as opposed to RND, has similar outcomes and hence, whether there would be more grounds to offer a less aggressive procedure to achieve lower patient morbidity. Methods: This is a retrospective study of 66 NPC patients treated at Singapore General Hospital between 1994 to 2016 for histologically proven regional recurrence, of which 41 patients underwent RND and 25 who underwent MRND, based on surgeon preference. The type of ND performed, primary treatment mode, adjuvant treatment, and pattern of recurrence were reviewed. Overall survival (OS) was calculated using Kaplan-Meier estimate and compared. Results: Overall, the disease parameters such as nodal involvement and extranodal extension were comparable between the two groups. Comparing MRND and RND, the median (IQR) OS is 1.76 (0.58 to 3.49) and 2.41 (0.78 to 4.11) respectively. However, the p-value found is 0.5301 and hence not statistically significant. Conclusion: RND is more aggressive and has been associated with greater morbidity. Hence, with similar outcomes, MRND could be an alternative salvage procedure for regional failure in selected NPC patients, allowing similar salvage rates with lesser mortality and morbidity.

Keywords: nasopharyngeal carcinoma, neck dissection, modified neck dissection, radical neck dissection

Procedia PDF Downloads 156
5499 Mastering Test Automation: Bridging Gaps for Seamless QA

Authors: Rohit Khankhoje

Abstract:

The rapid evolution of software development practices has given rise to an increasing demand for efficient and effective test automation. The paper titled "Mastering Test Automation: Bridging Gaps for Seamless QA" delves into the crucial aspects of test automation, addressing the obstacles faced by organizations in achieving flawless quality assurance. The paper highlights the importance of bridging knowledge gaps within organizations, emphasizing the necessity for management to acquire a deeper comprehension of test automation scenarios, coverage, report trends, and the importance of communication. To tackle these challenges, this paper introduces innovative solutions, including the development of an automation framework that seamlessly integrates with test cases and reporting tools like TestRail and Jira. This integration facilitates the automatic recording of bugs in Jira, enhancing bug reporting and communication between manual QA and automation teams as well as TestRail have all newly added automated testcases as soon as it is part of the automation suite. The paper demonstrates how this framework empowers management by providing clear insights into ongoing automation activities, bug origins, trend analysis, and test case specifics. "Mastering Test Automation" serves as a comprehensive guide for organizations aiming to enhance their quality assurance processes through effective test automation. It not only identifies the common pitfalls and challenges but also offers practical solutions to bridge the gaps, resulting in a more streamlined and efficient QA process.

Keywords: automation framework, API integration, test automation, test management tools

Procedia PDF Downloads 56
5498 Axial, Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack

Authors: Rita Greco, Giuseppe Carlo Marano

Abstract:

Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standard impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate the residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.

Keywords: pitting corrosion, strength deterioration, diffusion coefficient, surface chloride concentration, concrete structures, marine environment

Procedia PDF Downloads 302
5497 Geospatial Assessments on Impacts of Land Use Changes and Climate Change in Nigeria Forest Ecosystems

Authors: Samuel O. Akande

Abstract:

The human-induced climate change is likely to have severe consequences on forest ecosystems in Nigeria. Recent discussions and emphasis on issues concerning the environment justify the need for this research which examined deforestation monitoring in Oban Forest, Nigeria using Remote Sensing techniques. The Landsat images from TM (1986), ETM+ (2001) and OLI (2015) sensors were obtained from Landsat online archive and processed using Erdas Imagine 2014 and ArcGIS 10.3 to obtain the land use/land cover and Normalized Differential Vegetative Index (NDVI) values. Ground control points of deforested areas were collected for validation. It was observed that the forest cover decreased in area by about 689.14 km² between 1986 and 2015. The NDVI was used to determine the vegetation health of the forest and its implications on agricultural sustainability. The result showed that the total percentage of the healthy forest cover has reduced to about 45.9% from 1986 to 2015. The results obtained from analysed questionnaires shown that there was a positive correlation between the causes and effects of deforestation in the study area. The coefficient of determination value was calculated as R² ≥ 0.7, to ascertain the level of anthropogenic activities, such as fuelwood harvesting, intensive farming, and logging, urbanization, and engineering construction activities, responsible for deforestation in the study area. Similarly, temperature and rainfall data were obtained from Nigerian Meteorological Agency (NIMET) for the period of 1986 to 2015 in the study area. It was observed that there was a significant increase in temperature while rainfall decreased over the study area. Responses from the administered questionnaires also showed that futile destruction of forest ecosystem in Oban forest could be reduced to its barest minimum if fuelwood harvesting is disallowed. Thus, the projected impacts of climate change on Nigeria’s forest ecosystems and environmental stability is better imagined than experienced.

Keywords: deforestation, ecosystems, normalized differential vegetative index, sustainability

Procedia PDF Downloads 175
5496 Analysis of Weld Crack of Main Steam Governing Valve Steam Turbine Case

Authors: Sarakorn Sukaviriya

Abstract:

This paper describes the inspection procedure, root cause analysis, the rectification of crack, and how to apply the procedure with other similar plants. During the operation of the steam turbine (620MW), instruments such as speed sensor of steam turbine, the servo valve of main stop valve and electrical wires were malfunction caused by leakage steam from main steam governing valve. Therefore, the power plant decided to shutdown steam turbines for figuring out the cause of leakage steam. Inspection techniques to be applied in this problem were microstructure testing (SEM), pipe stress analysis (FEM) and non-destructive testing. The crack was initially found on main governing valve’s weldment by visual inspection. To analyze more precisely, pipe stress analysis and microstructure testing were applied and results indicated that the crack was intergranular and originated from the weld defect. This weld defect caused the notch with high-stress concentration which created crack and then propagated to steam leakage. The major root cause of this problem was an inappropriate welding process, which created a weld defect. To repair this joint from damage, we used a welding technique by producing refinement of coarse grain HAZ and eliminating stress concentration. After the weldment was completely repaired, other adjacent weldments still had risk. Hence, to prevent any future cracks, non-destructive testing (NDT) shall be applied to all joints in order to ensure that there will be no indication of crack.

Keywords: steam-pipe leakage, steam leakage, weld crack analysis, weld defect

Procedia PDF Downloads 115
5495 Peer-Review as a Means to Improve Students' Translation Skills

Authors: Bahia Braktia, Ahlem Ghamri

Abstract:

Years ago, faculties and administrators realized that students entering college were not prepared for the academic sphere; however, as a type of collaborative learning, peer-review gave students a social context in which they could learn more efficiently. Peer-review has proven its effectiveness in higher education. Numerous studies have been conducted on peer review and its effects on the quality of students’ writing, and several publications recommended peer-review as part of the feedback process. Student writers showed a tendency towards making significant meaning-level revisions and surface-level revisions. Last but not least, studies reported that peer-review helps students develop their self-assessment skills as well as critical thinking. The use of peer-review has become well known and widely adopted to the L2 classroom environment. However, little is known about peer review on translation students. The purpose of this study was to investigate the students' perspective on peer-review, and whether this method affected the quality of their translation. A mixed method design was adopted. Students were requested to translate two texts from Arabic into English, and they gave and received structured feedback to their classmates' translations. A survey was administered, followed by semi-structured interviews, to examine the students' attitudes toward peer-review. The results of the study showed that peer-review was considered a good proofreading method for most students. The students also showed a positive attitude toward it, and they reported that they benefited from the interaction with their peers. The findings implied that the inclusion of peer-review can be an effective pedagogical practice for teaching translation and writing to foreign language learners.

Keywords: language teaching, feedback, peer-review, translation

Procedia PDF Downloads 186
5494 The Formulation of R&D Strategy for Biofuel Technology: A Case Study of the Aviation Industry in Iran

Authors: Maryam Amiri, Ali Rajabzade, Gholam Reza Goudarzi, Reza Heidari

Abstract:

Growth of technology and environmental changes are so fast and therefore, companies and industries have much tendency to do activities of R&D for active participation in the market and achievement to a competitive advantages. Aviation industry and its subdivisions have high level technology and play a special role in economic and social development of countries. So, in the aviation industry for getting new technologies and competing with other countries aviation industry, there is a requirement for capability in R&D. Considering of appropriate R&D strategy is supportive that day technologies of the world can be achieved. Biofuel technology is one of the newest technologies that has allocated discussion of the world in aviation industry to itself. The purpose of this research has been formulation of R&D strategy of biofuel technology in aviation industry of Iran. After reviewing of the theoretical foundations of the methods and R&D strategies, finally we classified R&D strategies in four main categories as follows: internal R&D, collaboration R&D, out sourcing R&D and in-house R&D. After a review of R&D strategies, a model for formulation of R&D strategy with the aim of developing biofuel technology in aviation industry in Iran was offered. With regard to the requirements and aracteristics of industry and technology in the model, we presented an integrated approach to R&D. Based on the techniques of decision making and analyzing of structured expert opinion, 4 R&D strategies for different scenarios and with the aim of developing biofuel technology in aviation industry in Iran were recommended. In this research, based on the common features of the implementation process of R&D, a logical classification of these methods are presented as R&D strategies. Then, R&D strategies and their characteristics was developed according to the experts. In the end, we introduced a model to consider the role of aviation industry and biofuel technology in R&D strategies. And lastly, for conditions and various scenarios of the aviation industry, we have formulated a specific R&D strategy.

Keywords: aviation industry, biofuel technology, R&D, R&D strategy

Procedia PDF Downloads 558
5493 Public Policy for Quality School Lunch Development in Thailand

Authors: W. Kongnoo, J. Loysongkroa, S. Chotivichien, N. Viriyautsahakul, N. Saiwongse

Abstract:

Obesity, stunting and wasting problems among Thai school-aged children are increasing due to inappropriate food consumption behavior and poor environments for desirable nutritional behavior. Because of a low school lunch budget of only 0.40 USD per person per day, food quality is not up to nutritional standards. Therefore, the Health Department with the Education Ministry and the Thai Health Promotion Foundation have developed a quality school lunch project during 2009–2013. The program objectives were development and management of public policy to increase school lunch budget. The methods used a healthy public policy motivation process and movement in 241 local administrative organizations and 538 schools. The problem and solution research was organized to study school food and nutrition management, create a best practice policy mobilization model and hold a public hearing to motivate an increase of school meal funding. The results showed that local public policy has been motivated during 2009-2011 to increase school meal budget using local budgets. School children with best food consumption behavior and exercise increased from 13.2% in 2009 to 51.6% in 2013 and stunting decreased from 6.0% in 2009 to 4.7% in 2013. As the result of national policy motivation (2012-2013), the cabinet meeting on October 22, 2013 has approved an increase of school lunch budget from 0.40 USD to 0.62 USD per person per day. Thus, 5,800,469 school children nationwide have benefited from the budget increase.

Keywords: public policy, quality school lunch, Thailand, obesity

Procedia PDF Downloads 335
5492 Islamic Perception of Modern Democratic System

Authors: Muhammad Khubaib

Abstract:

The Holy Quran purport is to establish a democratic system in which Allah has the right to special authority and He who has the supreme power or sovereignty. The supreme leader, Allah ceded the right to govern to his prophet and whoever would ever rule he would have to govern as a deputy of Prophet of Allah and he will not have the right to deviate from the basic rules of law and constitution. Centuries before the birth of prevailing democracy, Muslim scholars and researchers continuously keep using the term of “Jamhür” (majority) in their books. Islam gives the basic importance to the public opinion to establish a government and make the public confidence necessary for the government. The most effective way to gain the trust of the people in the present to build national institutions is through the vote. Vote testifies in favor of the candidate and majority tells us who is more honest and talented. Each voter stands at the position of trustworthy. To vote a cruel person would be tantamount to treason and even not to vote would be considered as a national offence. After transparent process, the selected member of government would be seemed a fine example of the saying of Muhammad (S.A.W) in which he said; the majority of my people will never be agreed at misleading. In short in this article, there would be discussed democracy in the Islamic perception, while elaborating the western democracy so that it can be cleared that in which way the Holy Quran supported the democracy and what gestures Muhammad (S.A.W) made to spread the democracy and on the basis of those gestures, and how come those gestures are being followed to choose the sacred caliphate. It's hoped that this research would be helpful to refine the democratic system and support to meet the challenges Muslim world are facing.

Keywords: democracy, modern democratic system, respect of majority opinion, vote casting

Procedia PDF Downloads 172
5491 Bottleneck Modeling in Information Technology Service Management

Authors: Abhinay Puvvala, Veerendra Kumar Rai

Abstract:

A bottleneck situation arises when the outflow is lesser than the inflow in a pipe-like setup. A more practical interpretation of bottlenecks emphasizes on the realization of Service Level Objectives (SLOs) at given workloads. Our approach detects two key aspects of bottlenecks – when and where. To identify ‘when’ we continuously poll on certain key metrics such as resource utilization, processing time, request backlog and throughput at a system level. Further, when the slope of the expected sojourn time at a workload is greater than ‘K’ times the slope of expected sojourn time at the previous step of the workload while the workload is being gradually increased in discrete steps, a bottleneck situation arises. ‘K’ defines the threshold condition and is computed based on the system’s service level objectives. The second aspect of our approach is to identify the location of the bottleneck. In multi-tier systems with a complex network of layers, it is a challenging problem to locate bottleneck that affects the overall system performance. We stage the system by varying workload incrementally to draw a correlation between load increase and system performance to the point where Service Level Objectives are violated. During the staging process, multiple metrics are monitored at hardware and application levels. The correlations are drawn between metrics and the overall system performance. These correlations along with the Service Level Objectives are used to arrive at the threshold conditions for each of these metrics. Subsequently, the same method used to identify when a bottleneck occurs is used on metrics data with threshold conditions to locate bottlenecks.

Keywords: bottleneck, workload, service level objectives (SLOs), throughput, system performance

Procedia PDF Downloads 216
5490 Biosorption of Lead (II) from Lead Acid Battery Industry Wastewater by Immobilized Dead Isolated Bacterial Biomass

Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati

Abstract:

Over the past many years, many sites in the world have been contaminated with heavy metals, which are the largest class of contaminants. Lead is one of the toxic heavy metals contaminated in the environment. Lead is not biodegradable, that’s why it is accumulated in the human body and impacts all the systems of the human body when it has been taken by humans. The accumulation of lead in the water environment has been showing adverse effects on the public health. So the removal of lead from the water environment by the biosorption process, which is emerged as a potential method for the lead removal, is an efficient approach. This work was focused to examine the removal of Lead [Pb (II)] ions from aqueous solution and effluent from battery industry. Lead contamination in water is a widespread problem throughout the world and mainly results from lead acid battery manufacturing effluent. In this work, isolated bacteria from wastewater of lead acid battery industry has been utilized for the removal of lead. First effluent from the lead acid battery industry was characterized by the inductively coupled plasma atomic emission spectrometry (ICP – AES). Then the bacteria was isolated from the effluent and used it’s immobilized dead mass for the biosorption of lead. Scanning electron microscopic (SEM) and Atomic force microscopy (AFM) studies clearly suggested that the Lead (Pb) was adsorbed efficiently. The adsorbed percentage of lead (II) from waste was 97.40 the concentration of lead (II) is measured by Atomic Absorption Spectroscopy (AAS). From the result of AAS it can be concluded that immobilized isolated dead mass was well efficient and useful for biosorption of lead contaminated waste water.

Keywords: biosorption, ICP-AES, lead (Pb), SEM

Procedia PDF Downloads 365
5489 Associations between Autistic and ADHD Traits and the Well-Being and Mental Health of Secondary School Students with focus on Anxiety and Depression

Authors: Japnoor Garcha, Andrew P. Smith

Abstract:

There has been a significant increase in the prevalence and estimates of neurodevelopmental disorders specially autism spectrum disorders in the last decade. The literature has seen increasing research on understanding well-being and mental health. The current studies have focused on seeing the impact of mental health and well-being in autism spectrum disorders and ADHD both with and without a diagnosis. To further understand the association and interaction of well-being and mental health with autism and ADHD a survey was given to 560 secondary school students. The survey used the well-being process questionnaire, the autism spectrum quotient, the ADHD self-report scale, and the strengths and difficulties questionnaire. The analysis conducted using SPSS showed that there was a significant correlation between anxiety, depression, AQ and ADHD. Anxiety and depression were also significantly correlated with all well-being and SDQ variables. The regression analysis showed that anxiety was significantly associated with positive well-being, negative well-being, emotional problems and prosocial behaviour whereas depression was significantly associated with positive well-being, negative well-being, physical health, flourishing, conduct problems, emotional problems and peer problems. This interaction led to the formation of a combined variable to see what impact the variables of anxiety, depression, AQ and ADHD would have coupled together. Further analysis showed that the combined variable was significantly correlated with all outcome variables. The regression analysis showed that the Combined variable was significantly correlated with emotional problems, and hyperactivity, stress, negative coping, psychological capital and sleepiness.

Keywords: AQ, adhd, sdq, well-being, combined variable

Procedia PDF Downloads 38
5488 Silicon-Photonic-Sensor System for Botulinum Toxin Detection in Water

Authors: Binh T. T. Nguyen, Zhenyu Li, Eric Yap, Yi Zhang, Ai-Qun Liu

Abstract:

Silicon-photonic-sensor system is an emerging class of analytical technologies that use evanescent field wave to sensitively measure the slight difference in the surrounding environment. The wavelength shift induced by local refractive index change is used as an indicator in the system. These devices can be served as sensors for a wide variety of chemical or biomolecular detection in clinical and environmental fields. In our study, a system including a silicon-based micro-ring resonator, microfluidic channel, and optical processing is designed, fabricated for biomolecule detection. The system is demonstrated to detect Clostridium botulinum type A neurotoxin (BoNT) in different water sources. BoNT is one of the most toxic substances known and relatively easily obtained from a cultured bacteria source. The toxin is extremely lethal with LD50 of about 0.1µg/70kg intravenously, 1µg/ 70 kg by inhalation, and 70µg/kg orally. These factors make botulinum neurotoxins primary candidates as bioterrorism or biothreat agents. It is required to have a sensing system which can detect BoNT in a short time, high sensitive and automatic. For BoNT detection, silicon-based micro-ring resonator is modified with a linker for the immobilization of the anti-botulinum capture antibody. The enzymatic reaction is employed to increase the signal hence gains sensitivity. As a result, a detection limit to 30 pg/mL is achieved by our silicon-photonic sensor within a short period of 80 min. The sensor also shows high specificity versus the other type of botulinum. In the future, by designing the multifunctional waveguide array with fully automatic control system, it is simple to simultaneously detect multi-biomaterials at a low concentration within a short period. The system has a great potential to apply for online, real-time and high sensitivity for the label-free bimolecular rapid detection.

Keywords: biotoxin, photonic, ring resonator, sensor

Procedia PDF Downloads 103
5487 Dental Pathologies and Diet in Pre-hispanic Populations of the Equatorial Pacific Coast: Literature Review

Authors: Ricardo Andrés Márquez Ortiz

Abstract:

Objective. The objective of this literature review is to compile updated information from studies that have addressed the association between dental pathologies and diet in prehistoric populations of the equatorial Pacific coast. Materials and method. The research carried out corresponds to a documentary study of ex post facto retrospective, historiographic and bibliometric design. A bibliographic review search was carried out in the libraries of the Colombian Institute of Anthropology and History (ICANH) and the National University of Colombia for books and articles on the archeology of the region. In addition, a search was carried out in databases and the Internet for books and articles on dental anthropology, archeology and dentistry on the relationship between dental pathologies and diet in prehistoric and current populations from different parts of the world. Conclusions. The complex societies (500 BC - 300 AD) of the equatorial Pacific coast used an agricultural system of intensive monoculture of corn (Zea mays). This form of subsistence was reflected in an intensification of dental pathologies such as dental caries, dental abscesses generated by cavities, and enamel hypoplasia associated with a lower frequency of wear. The Upper Formative period (800 A.D. -16th century A.D.) is characterized by the development of polyculture, slash-and-burn agriculture, as an adaptive agricultural strategy to the ecological damage generated by the intensive economic activity of complex societies. This process leads to a more varied diet, which generates better dental health.

Keywords: dental pathologies, nutritional diet, equatorial pacific coast, dental anthropology

Procedia PDF Downloads 35
5486 A Collaborative, Arts-Informed Action Research Investigation of Child-Led Assessment

Authors: Dragana Gnjatovic

Abstract:

Assessment is a burning topic in education policy and practice due to measurement-driven neoliberal agendas of quality and standardisation of assessment practice through high stakes standardised testing systems that are now influencing early childhood education. This paper presents a collaborative, arts-informed action research project which places children at the centre of their learning, with assessment as an integral part of play-based learning processes. It aims to challenge traditional approaches to assessment that are often teacher-led and decontextualised from the processes of learning through exploring approaches where children's voices are central, and their creative arts expressions are used to assess learning and development. The theoretical framework draws on Vygotsky's sociocultural theory and Freire's critical pedagogy, which indicate the importance of socially constructed reality where knowledge is the result of collaboration between children and adults. This reality perceives children as competent agents of their own learning processes. An interpretive-constructivist and critical-transformative paradigm underpin collaborative action research in a three to five-year-old setting, where creative methods like storytelling, play, drama, drawing are used to assess children's learning. As data collection and analysis are still in process, this paper will present the methodology and some data vignettes, with the aim of stimulating discussion about innovation in assessment and contribution of the collaborative enquiry in the field of Early Childhood Education and Care.

Keywords: assessment for learning, creative methodologies, collaborative action research, early childhood education and care

Procedia PDF Downloads 120
5485 Experimental Investigation on the Effect of Cross Flow on Discharge Coefficient of an Orifice

Authors: Mathew Saxon A, Aneeh Rajan, Sajeev P

Abstract:

Many fluid flow applications employ different types of orifices to control the flow rate or to reduce the pressure. Discharge coefficients generally vary from 0.6 to 0.95 depending on the type of the orifice. The tabulated value of discharge coefficients of various types of orifices available can be used in most common applications. The upstream and downstream flow condition of an orifice is hardly considered while choosing the discharge coefficient of an orifice. But literature shows that the discharge coefficient can be affected by the presence of cross flow. Cross flow is defined as the condition wherein; a fluid is injected nearly perpendicular to a flowing fluid. Most researchers have worked on water being injected into a cross-flow of water. The present work deals with water to gas systems in which water is injected in a normal direction into a flowing stream of gas. The test article used in the current work is called thermal regulator, which is used in a liquid rocket engine to reduce the temperature of hot gas tapped from the gas generator by injecting water into the hot gas so that a cooler gas can be supplied to the turbine. In a thermal regulator, water is injected through an orifice in a normal direction into the hot gas stream. But the injection orifice had been calibrated under backpressure by maintaining a stagnant gas medium at the downstream. The motivation of the present study aroused due to the observation of a lower Cd of the orifice in flight compared to the calibrated Cd. A systematic experimental investigation is carried out in this paper to study the effect of cross-flow on the discharge coefficient of an orifice in water to a gas system. The study reveals that there is an appreciable reduction in the discharge coefficient with cross flow compared to that without cross flow. It is found that the discharge coefficient greatly depends on the ratio of momentum of water injected to the momentum of the gas cross flow. The effective discharge coefficient of different orifices was normalized using the discharge coefficient without cross-flow and it is observed that normalized curves of effective discharge coefficient of different orifices with momentum ratio collapsing into a single curve. Further, an equation is formulated using the test data to predict the effective discharge coefficient with cross flow using the calibrated Cd value without cross flow.

Keywords: cross flow, discharge coefficient, orifice, momentum ratio

Procedia PDF Downloads 126
5484 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 131
5483 Non-Burn Treatment of Health Care Risk Waste

Authors: Jefrey Pilusa, Tumisang Seodigeng

Abstract:

This research discusses a South African case study for the potential of utilizing refuse-derived fuel (RDF) obtained from non-burn treatment of health care risk waste (HCRW) as potential feedstock for green energy production. This specific waste stream can be destroyed via non-burn treatment technology involving high-speed mechanical shredding followed by steam or chemical injection to disinfect the final product. The RDF obtained from this process is characterised by a low moisture, low ash, and high calorific value which means it can be potentially used as high-value solid fuel. Due to the raw feed of this RDF being classified as hazardous, the final RDF has been reported to be non-infectious and can blend with other combustible wastes such as rubber and plastic for waste to energy applications. This study evaluated non-burn treatment technology as a possible solution for on-site destruction of HCRW in South African private and public health care centres. Waste generation quantities were estimated based on the number of registered patient beds, theoretical bed occupancy. Time and motion study was conducted to evaluate the logistics viability of on-site treatment. Non-burn treatment technology for HCRW is a promising option for South Africa, and successful implementation of this method depends upon the initial capital investment, operational cost and environmental permitting of such technology; there are other influencing factors such as the size of the waste stream, product off-take price as well as product demand.

Keywords: autoclave, disposal, fuel, incineration, medical waste

Procedia PDF Downloads 161
5482 Government of Ghana’s Budget: An Assessment of Its Compliance with Fundamental Budgeting Principles

Authors: Mohammed Sani Abdulai

Abstract:

Public sector budgeting, all over the world, is underpinned by some universally accepted principles of sound budget management such as budget unity, universality, annuality, and a balanced budget. These traditional principles, though fundamental, had, in recent years, been augmented by the more modern principles of budgeting within fiscal objective, alignment with medium-term strategic plans as well as the observance of such related concepts as transparency, openness and accessibility. In this paper, we have endeavored to shed light, from literature and practice, on the meaning and purposes of such fundamental budgeting principles. We have also assessed the extent to which the Government of Ghana’s budget complies with the four traditional principles of budget unity, universality, annuality, and a balanced budget and the three out of the ten modern principles of budgetary governance of Organisation for Economic Co-operation and Development (OECD). We did so by using a qualitative method of review and analysis of existing documents and the performance assessment reports on Ghana’s Public Financial Management (PFM) measured using such frameworks as the Public Expenditure and Financial Accountability (PEFA), the Open Budget Survey (OBS) and its Index (OBI), the reports and action plans of Open Government Partnership (OGP) and the Global Initiative for Fiscal Transparency (GIFT). Other performance assessment reports that were relied on included, but not limited to, the Joint Evaluation Report of PFM in Ghana, 2001-2010, and the Joint Evaluation of Budget Support to Ghana, 2005-2015. We have, through this paper, brought to the fore the lessons that could be learned on how those budgetary principles undergird the Government of Ghana’s budget formulation, execution, accounting, control, and oversight. These lessons include, but are not limited to, the need for both scholars and practitioners in the PFM space to be aware of the impact of those principles on public sector budgeting.

Keywords: annulaity, balanced budget, budget unity, budgetary principles, OECD’s principles on budgetary governance, open budget index, public expenditure and financial accountability, universality

Procedia PDF Downloads 172
5481 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach

Authors: Hassan M. H. Mustafa

Abstract:

This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.

Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology

Procedia PDF Downloads 455
5480 Optimization of Headspace Solid Phase Microextraction (SPME) Technique Coupled with GC MS for Identification of Volatile Organic Compounds Released by Trogoderma Variabile

Authors: Thamer Alshuwaili, Yonglin Ren, Bob Du, Manjree Agarwal

Abstract:

The warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a major pest of packaged and processed stored products. Warehouse beetle is the common name which was given by Okumura (1972). This pest has been reported to infest 119 different commodities, and it is distributed throughout the tropical and subtropical parts of the world. Also, it is difficult to control because of the insect's ability to stay without food for long times, and it can survive for years under dry conditions and low-moisture food, and it has also developed resistance to many insecticides. The young larvae of these insects can cause damage to seeds, but older larvae prefer to feed on whole grains. The percentage of damage caused by these insects range between 30-70% in the storage. T. variabile is the species most responsible for causing significant damage in grain stores worldwide. Trogoderma spp. is a huge problem for cereal grains, and there are many countries, such as the USA, Australia, China, Kenya, Uganda and Tanzania who have specific quarantine regulations against possible importation. Also, grain stocks can be almost completely destroyed because of the massive populations the insect may develop. However, the purpose of the current research was to optimize conditions to collect volatile organic compound from Trogoderma variabile at different life stages by using headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and flame ionization detection (FID). Using SPME technique to extract volatile from insects is an efficient, straightforward and nondestructive method. Result of the study shows that 15 insects were optimal number for larvae and adults. Selection of the number of insects depend on the height of the peak area and the number of peaks. Sixteen hours were optimized as the best extraction time for larvae and 8 hours was the optimal number of adults.

Keywords: Trogoderma variabile, warehouse beetle , GC-MS, Solid phase microextraction

Procedia PDF Downloads 110
5479 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite

Authors: Muhammad Shahid, Muhammad Mansoor

Abstract:

Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.

Keywords: carbon nanotubes, induction melting, strengthening mechanism, nanocomposite

Procedia PDF Downloads 350
5478 Effect of Temperature and Deformation Mode on Texture Evolution of AA6061

Authors: M. Ghosh, A. Miroux, L. A. I. Kestens

Abstract:

At molecular or micrometre scale, practically all materials are neither homogeneous nor isotropic. The concept of texture is used to identify the structural features that cause the properties of a material to be anisotropic. For metallic materials, the anisotropy of the mechanical behaviour originates from the crystallographic nature of plastic deformation, and is therefore controlled by the crystallographic texture. Anisotropy in mechanical properties often constitutes a disadvantage in the application of materials, as it is often illustrated by the earing phenomena during drawing. However, advantages may also be attained when considering other properties (e.g. optimization of magnetic behaviour to a specific direction) by controlling texture through thermo-mechanical processing). Nevertheless, in order to have better control over the final properties it is essential to relate texture with materials processing route and subsequently optimise their performance. However, up to date, few studies have been reported about the evolution of texture in 6061 aluminium alloy during warm processing (from room temperature to 250ºC). In present investigation, recrystallized 6061 aluminium alloy samples were subjected to tensile and plane strain compression (PSC) at room and warm temperatures. The gradual change of texture following both deformation modes were measured and discussed. Tensile tests demonstrate the mechanism at low strain while PSC does the same at high strain and eventually simulate the condition of rolling. Cube dominated texture of the initial rolled and recrystallized AA6061 sheets were replaced by domination of S and R components after PSC at room temperature, warm temperature (250ºC) though did not reflect any noticeable deviation from room temperature observation. It was also noticed that temperature has no significant effect on the evolution of grain morphology during PSC. The band contrast map revealed that after 30% deformation the substructure inside the grain is mainly made of series of parallel bands. A tendency for decrease of Cube and increase of Goss was noticed after tensile deformation compared to as-received material. Like PSC, texture does not change after deformation at warm temperature though. n-fibre was noticed for all the three textures from Goss to Cube.

Keywords: AA 6061, deformation, temperature, tensile, PSC, texture

Procedia PDF Downloads 473
5477 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing

Authors: S. Bouhouche, R. Drai, J. Bast

Abstract:

This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.

Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement

Procedia PDF Downloads 267