Search results for: sustainable material
9089 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling
Authors: Ahmad Odeh, Ahmad Jrade
Abstract:
Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.Keywords: building information modelling, energy, life cycle analysis, sustainablity
Procedia PDF Downloads 2699088 Investigation of Water Absorption and Compressive Strength of Resin Coated Mortar
Authors: Yasir Ali, Zain Ul Abdin, Muhammad Wisal Khattak
Abstract:
Nowadays various advanced techniques are used to enhance the performance of materials in the field of construction engineering. Structures exposed to an aggressive, humid and hostile environment are experiencing severe negative impacts which lead to premature failure. Polyester resin is one of the advanced material used for improving performance of structural materials especially for repair/ refurbish purpose of structures and protection from contaminated environmental effect/ hazards. This study investigated the aptness of the polyester resin as coating agent on the mortar and assessed its performance in an ambient environment of Pakistan. Cubical specimens of mortar were fabricated. These specimens were tested for water absorption and compressive strength after one day and sixty days. These tests were performed under different exposure conditions (ambient environment and submerged in water). The specimens were coated with one, two and three layers and results were compared to control (no/ zero resin layer) specimens. Test results indicated that there is a significant decrease in water absorption of mortar coated with resin when compared to controlled specimens. The compressive strength test results revealed that resin coated specimen had higher strength when compared to controlled specimens. The results suggested that resin is a promising material and can be used effectively in structures which are exposed to high temperatures. The study would be helpful in improving performance of the structural material in a hazardous environment.Keywords: ambient environment, coating, mortar, polyester resin
Procedia PDF Downloads 3569087 Sustainability in Retaining Wall Construction with Geosynthetics
Authors: Sateesh Kumar Pisini, Swetha Priya Darshini, Sanjay Kumar Shukla
Abstract:
This paper seeks to present a research study on sustainability in construction of retaining wall using geosynthetics. Sustainable construction is a way for the building and infrastructure industry to move towards achieving sustainable development, taking into account environmental, socioeconomic and cultural issues. Geotechnical engineering, being very resource intensive, warrants an environmental sustainability study, but a quantitative framework for assessing the sustainability of geotechnical practices, particularly at the planning and design stages, does not exist. In geotechnical projects, major economic issues to be addressed are in the design and construction of stable slopes and retaining structures within space constraints. In this paper, quantitative indicators for assessing the environmental sustainability of retaining wall with geosynthetics are compared with conventional concrete retaining wall through life cycle assessment (LCA). Geosynthetics can make a real difference in sustainable construction techniques and contribute to development in developing countries in particular. Their imaginative application can result in considerable cost savings over the use of conventional designs and materials. The acceptance of geosynthetics in reinforced retaining wall construction has been triggered by a number of factors, including aesthetics, reliability, simple construction techniques, good seismic performance, and the ability to tolerate large deformations without structural distress. Reinforced retaining wall with geosynthetics is the best cost-effective and eco-friendly solution as compared with traditional concrete retaining wall construction. This paper presents an analysis of the theme of sustainability applied to the design and construction of traditional concrete retaining wall and presenting a cost-effective and environmental solution using geosynthetics.Keywords: sustainability, retaining wall, geosynthetics, life cycle assessment
Procedia PDF Downloads 20609086 Nutritive Value of Three-Stage Olive Cake (Olea europaea L.) for Growing Rabbit
Authors: Zahia Dorbane, Si Ammar Kadi, Dalila Boudouma, Thierry Gidenne
Abstract:
In rabbits feeding, minimum fibre intake is essential to avoid digestive disorders. However, this concentration of fibre is not easy to obtain when formulating feeds, without reduction of nutritional value. Three stage olive cake, the residual material after oil extraction by centrifugation, including pulp and stones, can be used as a fibre source in rabbit diet. The incorporation of olive cake can allow a better balance between different fibre fractions and reduce health disorder. However, for practical use of any raw material, it is necessary to know its chemical and nutritive value. The aim of this study was to assess the nutritive value of three-stage olive cake (TSOC) for growing rabbits. Thus, 36 rabbits weaned at 35 days (702.8 ± 28.5) were divided into three groups of 12 receiving one of the following diets: control with 0% of TSOC, TSOC10 (10% of TSOC) and TSOC20 (20% TSOC). The rabbits were individually housed in digestibility cages and received ad libitum one of the three diets, fresh and clean water was provided ad libitum. After an adaptation period of 7d, feces were collected for 4d. Collected feces were frozen and stored for further analysis. The chemical composition of TSOC shows that it is a rich fiber raw material since it contains (%DM): 6% of CP; 7.4% of EE; 78.7% of NDF; 55.4% of ADF and 24.3% of ADL. The inclusion of TSOC at 20% of basal diet reduced the digestibility coefficient of organic matter, crude protein and NDF from 67.8 to 55.3%, 80.4 to 75.3% and from 31.5 to 18.4% (p < 0.001) respectively. The digestible energy and digestible protein content of the three-stage olive cake estimated by regression was 2.94 ± 0.52MJ DE/kg DM and 22.4 ± 6 g DP/kg DM respectively. In conclusion, based on the results of the present experiment, the three-stage olive cake can be used as a fibre source for rabbit.Keywords: digestibility, nutritive value, olive cake, rabbit
Procedia PDF Downloads 1569085 Partial Replacement of GGBS in Concrete for Prevention of Natural Resources
Authors: M. Murmu, Govardhan, J. Satya Eswari
Abstract:
Concrete is the most common and widely used building material. Concrete is basically made of aggregates, both fine and coarse, glued by a cement paste which is made of cement and water. Each one of these constituents of concrete has a negative environmental impact and gives rise to different sustainability issues. The current concrete construction practice is unsustainable because, not only it consumes enormous quantities of stones, sand, and drinking water, but also one billion tons a year of cement, which is not an environment friendly material. Preventing the reduction of natural resources and enhancing the usage of waste materials has become a challenge to the scientist and engineers. A number of studies have been conducted concerning the protection of natural resources, prevention of environmental pollution and contribution to the economy by using this waste material. This paper outlines the influence of Ground Granulated Blast furnace Slag (GGBS) as partial replacement of fine aggregate on mechanical properties of concrete. The strength of concrete is determined having OPC binder, replaced the fine aggregate with15%, 30%, 45% respectively. For this purpose, characteristics concrete mix of M25 with partial replacement of cement with GGBS is used and the strength of concrete cubes and cylinder have determined. The strength of concrete specimens has been compared with the reference specimen. Also X-ray diffraction (XRD) and scanning electron microscope (SEM) tests have been performed to examine the hydration products and the microstructure of the tested specimens. A correlation has been established between the developmental strength concrete with and without GGBS through analysis of hydration products and the microstructure.Keywords: GGBS, sand, concrete, workability
Procedia PDF Downloads 5039084 Vibration Characteristics of Functionally Graded Thick Hollow Cylinders Using Galerkin Method
Authors: Pejman Daryabor, Kamal Mohammadi
Abstract:
In the present work, the study of vibration characteristics of a functionally graded thick hollow cylinder is investigated. The cylinder natural frequencies are obtained using Galerkin finite element method. The functionally graded cylinder is assumed to be made from many subcylinders. Each subcylinder is considered as an isotropic layer. Material’s properties in each layer are constant and functionally graded properties result by exponential function of layer radius in multilayer cylinder. To validate the FE results code, plane strain model of functionally graded cylinder are also modeled in ABAQUS. Analytical results are validated for both models. Also, a good agreement is found between the present results and those reported in the literature.Keywords: natural frequency, functionally graded material, finite element method, thick cylinder
Procedia PDF Downloads 4739083 Household's Willingness to Pay for Safe Non-Timber Forest Products at Morikouali-Ye Community Forest in Cameroon
Authors: Eke Balla Sophie Michelle
Abstract:
Forest provides a wide range of environmental goods and services among which, biodiversity or consumption goods and constitute public goods. Despite the importance of non-timber forest products (NTFPs) in sustaining livelihood and poverty smoothening in rural communities, they are highly depleted and poorly conserved. Yokadouma is a town where NTFPs is a renewable resource in active exploitation. It has been found that such exploitation is done in the same conditions as other localities that have experienced a rapid depletion of their NTFPs in destination to cities across Cameroon, Central Africa, and overseas. Given these realities, it is necessary to access the consequences of this overexploitation through negative effects on both the population and the environment. Therefore, to enhance participatory conservation initiatives, this study determines the household’s willingness to pay in community forest (CF) of Morikouali-ye, eastern region of Cameroon, for sustainable exploitation of NTFPs using contingent valuation method (CVM) through two approaches, one parametric (Logit model) and the other non-parametric (estimator of the Turnbull lower bound). The results indicate that five species are the most collected in the study area: Irvingia gabonensis, the Ricinodendron heudelotii, Gnetum, the Jujube and bark, their sale contributes significantly to 41 % of total household income. The average willingness to pay through the Logit model and the Turnbull estimator is 6845.2861 FCFA and 4940 FCFA respectively per household per year with a social cost of degradation estimated at 3237820.3253 FCFA years. The probability to pay increases with income, gender, number of women in the household, age, the commercial activity of NTFPs and decreases with the concept of sustainable development.Keywords: non timber forest product, contingent valuation method, willingness to pay, sustainable development
Procedia PDF Downloads 4469082 Hydro-Mechanical Behavior of Calcareous Soils in Arid Region
Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat
Abstract:
This paper presents the study of hydro mechanical behavior of this optimal mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying- wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.Keywords: tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction
Procedia PDF Downloads 5079081 Estimation of Desktop E-Wastes in Delhi Using Multivariate Flow Analysis
Authors: Sumay Bhojwani, Ashutosh Chandra, Mamita Devaburman, Akriti Bhogal
Abstract:
This article uses the Material flow analysis for estimating e-wastes in the Delhi/NCR region. The Material flow analysis is based on sales data obtained from various sources. Much of the data available for the sales is unreliable because of the existence of a huge informal sector. The informal sector in India accounts for more than 90%. Therefore, the scope of this study is only limited to the formal one. Also, for projection of the sales data till 2030, we have used regression (linear) to avoid complexity. The actual sales in the years following 2015 may vary non-linearly but we have assumed a basic linear relation. The purpose of this study was to know an approximate quantity of desktop e-wastes that we will have by the year 2030 so that we start preparing ourselves for the ineluctable investment in the treatment of these ever-rising e-wastes. The results of this study can be used to install a treatment plant for e-wastes in Delhi.Keywords: e-wastes, Delhi, desktops, estimation
Procedia PDF Downloads 2599080 The Influence of Incorporating Coffee Grounds on Enhancing the Engineering Properties of Expansive Soils: Experimental Approach and Optimization
Authors: Bencheikh Messaouda, Aidoud Assia, Salima Boukour, Benamara Fatima Zohra, Boukhatem Ghania, Zegueur Chaouki Salah Eddine
Abstract:
The utilization of waste materials in civil engineering has gained widespread attention in recent years due to their adverse effects on the environment. One such waste material is coffee grounds, a black residue generated daily across the country after coffee brewing. Instead of disposing of it, there is a growing interest in repurposing it for various agricultural and industrial applications. Utilizing coffee grounds in geotechnical engineering, such as in road embankments, presents an opportunity for its valorization. The study aims to contribute to the valorization of coffee grounds by enhancing the physical and mechanical properties of clayey soils through their incorporation at varying weight percentages (3%, 6%, 9%, 12%) as partial replacements in these soils. This not only addresses the issue of coffee ground waste but also makes a tangible contribution to sustainable development. The findings demonstrate that incorporating coffee grounds generally has positive effects on the physical and mechanical properties of clayey soil. However, the extent of these effects depends on factors such as the quantity of coffee grounds added, the particle size of the grounds, and the characteristics of the soil. Additionally, coffee grounds can improve the compression and tensile strength of clayey soil, resulting in increased stability and reduced susceptibility to deformation under external forces.Keywords: clay soil, coffee grounds, optimizing, improvement, valorization, waste
Procedia PDF Downloads 459079 A Lightweight Interlock Block from Foamed Concrete with Construction and Agriculture Waste in Malaysia
Authors: Nor Azian Binti Aziz, Muhammad Afiq Bin Tambichik, Zamri Bin Hashim
Abstract:
The rapid development of the construction industry has contributed to increased construction waste, with concrete waste being among the most abundant. This waste is generated from ready-mix batching plants after the concrete cube testing process is completed and disposed of in landfills, leading to increased solid waste management costs. This study aims to evaluate the engineering characteristics of foamed concrete with waste mixtures construction and agricultural waste to determine the usability of recycled materials in the construction of non-load-bearing walls. This study involves the collection of construction wastes, such as recycled aggregates (RCA) obtained from the remains of finished concrete cubes, which are then tested in the laboratory. Additionally, agricultural waste, such as rice husk ash, is mixed into foamed concrete interlock blocks to enhance their strength. The optimal density of foamed concrete for this study was determined by mixing mortar and foam-backed agents to achieve the minimum targeted compressive strength required for non-load-bearing walls. The tests conducted in this study involved two phases. In Phase 1, elemental analysis using an X-ray fluorescence spectrometer (XRF) was conducted on the materials used in the production of interlock blocks such as sand, recycled aggregate/recycled concrete aggregate (RCA), and husk ash paddy/rice husk ash (RHA), Phase 2 involved physical and thermal tests, such as compressive strength test, heat conductivity test, and fire resistance test, on foamed concrete mixtures. The results showed that foamed concrete can produce lightweight interlock blocks. X-ray fluorescence spectrometry plays a crucial role in the characterization, quality control, and optimization of foamed concrete mixes containing construction and agriculture waste. The unique composition mixer of foamed concrete and the resulting chemical and physical properties, as well as the nature of replacement (either as cement or fine aggregate replacement), the waste contributes differently to the performance of foamed concrete. Interlocking blocks made from foamed concrete can be advantageous due to their reduced weight, which makes them easier to handle and transport compared to traditional concrete blocks. Additionally, foamed concrete typically offers good thermal and acoustic insulation properties, making it suitable for a variety of building projects. Using foamed concrete to produce lightweight interlock blocks could contribute to more efficient and sustainable construction practices. Additionally, RCA derived from concrete cube waste can serve as a substitute for sand in producing lightweight interlock blocks.Keywords: construction waste, recycled aggregates (RCA), sustainable concrete, structure material
Procedia PDF Downloads 549078 Hydrothermal Synthesis of Octahedral Molecular Sieve from Mn Oxide Residues
Authors: Irlana C. do Mar, Thayna A. Ferreira, Dayane S. Rezende, Bruno A. M. Figueira, José M. R. Mercury
Abstract:
This work presents a low-cost Mn starting material to synthesis manganese oxide octahedral molecular sieve with Mg²⁺ in the tunnel (Mg-OMS-1), based on the Mn residues from Carajás Mineral Province (Amazon, Brazil). After hydrothermal and cation exchange procedures, the Mn residues transformed to a single phase, Mg-OMS-1. The raw material and the synthesis processes were analyzed by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Infrared spectroscopy (FTIR). The tunnel structure was synthesized hydrothermally at 180 °C for three days without impurities. According to the XRD analysis, the formation of crystalline Mg-OMS-1 was identified through reflections at 9.8º, 12º and 18º (2θ), as well as a thermal stability around 300 ºC. The SEM analysis indicated that the final product presents good crystallinity with a homogeneous size. In addition, an intense and diagnostic FTIR band was identified at 515 cm⁻¹ related to the MnO₆ octahedral stretching vibrations.Keywords: Mn residues , Octahedral Molecular Sieve, Synthesis, Characterization
Procedia PDF Downloads 1929077 Remote Building: An Integrated Approach to Domestic Rainwater Harvesting System Implementation in a Rural Village in Himachal Pradesh, India
Authors: Medha Iyer, Anshul Paul, Aunnesha Bhowmick, Anahita Banerjee, Sana Prasad, Anoushka Singal, Lauren Sinopoli, Pooja Bapat, Shivi Jain
Abstract:
In Himachal Pradesh, India, a majority of the population lives in rural villages spread throughout its hilly regions; many of these households rely on subsistence farming as their main source of livelihood. The student-run non-profit organization affiliated with this study, Project RISHI (Rural India Social and Health Improvement), works to promote sustainable development practices in Bharog Baneri, a gram panchayat, or union, of villages in Himachal Pradesh. In 2017, an established rainwater harvesting (RWH) project group within Project RISHI had surveyed many families, finding that the most common issue regarding food and water access was a lack of accessible water sources for agricultural use in the dry season. After a prototype build in 2018, the group built 6 systems for eligible residents that demonstrated need in 2019. Subsequently, the project went through an evaluation period, including self-evaluation of project goals and post-impact surveying of system recipients. The group used the social impact assessment model to optimize the implementation of domestic RWH systems in Bharog Baneri. Assessing implementation after in-person builds produced three pillars of focus — system design, equitable recipient selection, and community involvement. After two years of remote involvement during COVID-19, the group prepared to visit Bharog Baneri to build 10 new systems in the Summer 2022. First, the group created a more durable and cost-effective design that could withstand debris and heavy rains to prevent gutter failure. The domestic system design is a rooftop RWH catchment system with two tanks attached, an overflow pipe, debris filtration, and a spigot for accessibility. The group also developed a needs-based eligibility methodology with assistance from village leaders and surveying in Bharog Baneri and set up the groundwork for a future community board. COVID-19 has strengthened remote work, telecommunications, and other organizational support systems. As sustainable development evolves to encompass these practices in a post-pandemic world, the potential for new RWH system design and implementation processes has emerged as well. This raises the question: how can a social impact assessment of rural RWH projects inform an integrated approach to post-pandemic RWH system practices? The objective of this exploratory study is to investigate and evaluate a novel remote build infrastructure that brings access to reliable and sustainable sources of water for agricultural use. To construct the remote build approach, the group identified and assigned a point of contact who was experienced with previous RWH system builds. The recipients were selected based on demonstrated need and ease of building. The contact visited each of the houses and coordinated supplier relations and transportation of the materials in accordance with the participatory approach to sustainable development. Over the course of two months, the group completed four system builds with the resulting infrastructure. The infrastructure adhered to the social impact assessment model by centering supplier relations, material transportation, and construction logistics within the community. The conclusion of this exploration is that post-pandemic rural RWH practices should be rooted in strengthening villager communication and utilizing local assets. Through this, non-profit organizations can incorporate remote build strategies into their long-term goals.Keywords: capturing run-off from rooftops, domestic rainwater harvesting, Implementation approaches and strategies, rainwater harvesting and management in rural sectors
Procedia PDF Downloads 879076 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction
Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain
Abstract:
As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development
Procedia PDF Downloads 3869075 Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution
Authors: Yasser Mahmoudi, Nader Karimi
Abstract:
The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs).Keywords: porous media, local thermal non-equilibrium, forced convection, heat transfer, exact solution, internal heat generation
Procedia PDF Downloads 4609074 A Study on Temperature and Drawing Speed for Diffusion Bonding Enhancement in Drawing of Hot Lined Pipes by FEM Analysis
Authors: M. T. Ahn, J. H. Park, S. H. Park, S. H. Ha
Abstract:
Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in hot drawing even if the reduction in the section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.Keywords: diffusion bonding, temperature, pressure, drawing speed
Procedia PDF Downloads 3739073 Analyzing the Effectiveness of Elderly Design and the Impact on Sustainable Built Environment
Authors: Tristance Kee
Abstract:
With an unprecedented increase in elderly population around the world, the severe lack of quality housing and health-and-safety provisions to serve this cohort cannot be ignored any longer. Many elderly citizens, especially singletons, live in unsafe housing conditions with poorly executed planning and design. Some suffer from deteriorating mobility, sight and general alertness and their sub-standard living conditions further hinder their daily existence. This research explains how concepts such as Universal Design and Co-Design operate in a high density city such as Hong Kong, China where innovative design can become an alternative solution where government and the private sector fail to provide quality elderly friendly facilities to promote a sustainable urban development. Unlike other elderly research which focuses more on housing policies, nursing care and theories, this research takes a more progressive approach by providing an in-depth impact assessment on how innovative design can be practical solutions for creating a more sustainable built environment. The research objectives are to: 1) explain the relationship between innovative design for elderly and a healthier and sustainable environment; 2) evaluate the impact of human ergonomics with the use of universal design; and 3) explain how innovation can enhance the sustainability of a city in improving citizen’s sight, sound, walkability and safety within the ageing population. The research adopts both qualitative and quantitative methodologies to examine ways to improve elderly population’s relationship to our built environment. In particular, the research utilizes collected data from questionnaire survey and focus group discussions to obtain inputs from various stakeholders, including designers, operators and managers related to public housing, community facilities and overall urban development. In addition to feedbacks from end-users and stakeholders, a thorough analysis on existing elderly housing facilities and Universal Design provisions are examined to evaluate their adequacy. To echo the theme of this conference on Innovation and Sustainable Development, this research examines the effectiveness of innovative design in a risk-benefit factor assessment. To test the hypothesis that innovation can cater for a sustainable development, the research evaluated the health improvement of a sample size of 150 elderly in a period of eight months. Their health performances, including mobility, speech and memory are monitored and recorded on a regular basis to assess if the use of innovation does trigger impact on improving health and home safety for an elderly cohort. This study was supported by district community centers under the auspices of Home Affairs Bureau to provide respondents for questionnaire survey, a standardized evaluation mechanism, and professional health care staff for evaluating the performance impact. The research findings will be integrated to formulate design solutions such as innovative home products to improve elderly daily experience and safety with a particular focus on the enhancement on sight, sound and mobility safety. Some policy recommendations and architectural planning recommendations related to Universal Design will also be incorporated into the research output for future planning of elderly housing and amenity provisions.Keywords: elderly population, innovative design, sustainable built environment, universal design
Procedia PDF Downloads 2289072 Advancing Urban Sustainability through Data-Driven Machine Learning Solutions
Authors: Nasim Eslamirad, Mahdi Rasoulinezhad, Francesco De Luca, Sadok Ben Yahia, Kimmo Sakari Lylykangas, Francesco Pilla
Abstract:
With the ongoing urbanization, cities face increasing environmental challenges impacting human well-being. To tackle these issues, data-driven approaches in urban analysis have gained prominence, leveraging urban data to promote sustainability. Integrating Machine Learning techniques enables researchers to analyze and predict complex environmental phenomena like Urban Heat Island occurrences in urban areas. This paper demonstrates the implementation of data-driven approach and interpretable Machine Learning algorithms with interpretability techniques to conduct comprehensive data analyses for sustainable urban design. The developed framework and algorithms are demonstrated for Tallinn, Estonia to develop sustainable urban strategies to mitigate urban heat waves. Geospatial data, preprocessed and labeled with UHI levels, are used to train various ML models, with Logistic Regression emerging as the best-performing model based on evaluation metrics to derive a mathematical equation representing the area with UHI or without UHI effects, providing insights into UHI occurrences based on buildings and urban features. The derived formula highlights the importance of building volume, height, area, and shape length to create an urban environment with UHI impact. The data-driven approach and derived equation inform mitigation strategies and sustainable urban development in Tallinn and offer valuable guidance for other locations with varying climates.Keywords: data-driven approach, machine learning transparent models, interpretable machine learning models, urban heat island effect
Procedia PDF Downloads 389071 Integrated Environmental Management System and Environmental Impact Assessment in Evaluation of Environmental Protective Action
Authors: Moustafa Osman
Abstract:
The paper describes and analyses different good practice examples of protective levels, and initiatives actions (“framework conditions”) and encourages the uptake of environmental management systems (EMSs) to small and medium-sized enterprises (SMEs). Most of industries tend to take EMS as tools leading towards sustainability planning. The application of these tools has numerous environmental obligations that neither suggests decision nor recommends what a company should achieve ultimately. These set up clearly defined criteria to evaluate environmental protective action (EEPA) into sustainability indicators. The physical integration will evaluate how to incorporate traditional knowledge into baseline information, preparing impact prediction, and planning mitigation measures in monitoring conditions. Thereby efforts between the government, industry and community led protective action to concern with present needs for future generations, meeting the goal of sustainable development. The paper discusses how to set out distinct aspects of sustainable indicators and reflects inputs, outputs, and modes of impact on the environment.Keywords: environmental management, sustainability, indicators, protective action
Procedia PDF Downloads 4439070 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members
Authors: I. Gkolfinopoulos, N. Chijiwa
Abstract:
To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon
Procedia PDF Downloads 1479069 Principles of Sustainable and Affordable Housing Policy for Afghan Refugees Returning to Afghanistan
Authors: Mohammad Saraj Sharifzai, Keisuke Kitagawa, Mohammad Kamil Halimee, Javid Habib, Daishi Sakaguchi
Abstract:
The overall goal of this paper is to examine the suitability and potential of the policies addressing the sustainability and affordability of housing for returnees, and to determine the impact of this policy on housing delivery for Afghan refugees. Housing is a central component of the settlement experience of refugees. A positive housing situation can facilitate many aspects of integration. Unaffordable, and unsafe housing, however, can cause disruptions in the entire settlement process. This paper aims to identify a suite of built forms for housing that is both affordable and environmentally sustainable for Afghan refugees. The result was the development of a framework that enables the assessment of the overall performance of various types of housing development in all zones of the country. There is very little evidence that the present approach of housing provision to the vagaries of market forces has provided affordable housing, especially for Afghan refugees. There is a need to incorporate social housing into the policy to assist people who cannot afford to have their own houses.Keywords: Afghan refugees, housing policy, affordability, social housing, housing provision, environmental sustainability principles, resettlement
Procedia PDF Downloads 5679068 Thickness Effect on Concrete Fracture Toughness K1c
Authors: Benzerara Mohammed, Redjel Bachir, Kebaili Bachir
Abstract:
The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness, is measured by a breaking value of the factor of intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatics geometries different (10*10*84) cm³ and (5*20*120) cm³ &(12*20*120) cm³ containing from the side notches various depths simulating of the cracks was set up. The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the centre of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometrie specimen (5*20*120) cm³, therefore to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete.Keywords: elementary representative volume, concrete, fissure, toughness
Procedia PDF Downloads 2239067 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: cutting condition, vibration, natural frequency, decision tree, CART algorithm
Procedia PDF Downloads 3369066 The Sustainable Governance of Aquifer Injection Using Treated Coal Seam Gas Water in Queensland, Australia: Lessons for Integrated Water Resource Management
Authors: Jacqui Robertson
Abstract:
The sustainable governance of groundwater is of the utmost importance in an arid country like Australia. Groundwater has been relied on by our agricultural and pastoral communities since the State was settled by European colonialists. Nevertheless, the rapid establishment of a coal seam gas (CSG) industry in Queensland, Australia, has had extensive impacts on the pre-existing groundwater users. Managed aquifer recharge of important aquifers in Queensland, Australia, using treated coal seam gas produced water has been used to reduce the impacts of CSG development in Queensland Australia. However, the process has not been widely adopted. Negative environmental outcomes are now acknowledged as not only engineering, scientific or technical problems to be solved but also the result of governance failures. An analysis of the regulatory context for aquifer injection using treated CSG water in Queensland, Australia, using Ostrom’s Common Pool Resource (CPR) theory and a ‘heat map’ designed by the author, highlights the importance of governance arrangements. The analysis reveals the costs and benefits for relevant stakeholders of artificial recharge of groundwater resources in this context. The research also reveals missed opportunities to further active management of the aquifer and resolve existing conflicts between users. The research illustrates the importance of strategically and holistically evaluating innovations in technology that impact water resources to reveal incentives that impact resource user behaviors. The paper presents a proactive step that can be adapted to support integrated water resource management and sustainable groundwater development.Keywords: managed aquifer recharge, groundwater regulation, common-pool resources, integrated water resource management, Australia
Procedia PDF Downloads 2379065 Environmental Limits of Using Newly Developed Progressive Polymer Protection and Repair Systems
Authors: Jana Hodna, Bozena Vacenovska, Vit Petranek
Abstract:
The paper is focused on the identification of limiting environmental factors of individual industrial floors on which newly developed polymer protection and repair systems with the use of secondary raw materials will be used. These mainly include floors with extreme stresses and special requirements for materials used. In relation to the environment of a particular industrial floor, it is necessary to ensure, for example, chemical stability, resistance to higher temperatures, resistance to higher mechanical stress, etc. for developed materials, which is reflected in the demands for the developed material systems. The paper describes individual environments and, in relation to them, also requirements for individual components of the developed materials and for the developed materials as a whole.Keywords: limits, environment, polymer, industrial floors, recycling, secondary raw material, protective system
Procedia PDF Downloads 2709064 Globalization of Pesticide Technology and Sustainable Agriculture
Authors: Gagandeep Kaur
Abstract:
The pesticide industry is a big supplier of agricultural inputs. The uses of pesticides control weeds, fungal diseases, etc., which causes of yield losses in agricultural production. In agribusiness and agrichemical industry, Globalization of markets, competition and innovation are the dominant trends. By the tradition of increasing the productivity of agro-systems through generic, universally applicable technologies, innovation in the agrichemical industry is limited. The marketing of technology of agriculture needs to deal with some various trends such as locally-organized forces that envision regionalized sustainable agriculture in the future. Agricultural production has changed dramatically over the past century. Before World War second agricultural production was featured as a low input of money, high labor, mixed farming and low yields. Although mineral fertilizers were applied already in the second half of the 19th century, most f the crops were restricted by local climatic, geological and ecological conditions. After World War second, in the period of reconstruction, political and socioeconomic pressure changed the nature of agricultural production. For a growing population, food security at low prices and securing farmer income at acceptable levels became political priorities. Current agricultural policy the new European common agricultural policy is aimed to reduce overproduction, liberalization of world trade and the protection of landscape and natural habitats. Farmers have to increase the quality of their productivity and they have to control costs because of increased competition from the world market. Pesticides should be more effective at lower application doses, less toxic and not pose a threat to groundwater. There is a big debate taking place about how and whether to mitigate the intensive use of pesticides. This debate is about the future of agriculture which is sustainable agriculture. This is possible by moving away from conventional agriculture. Conventional agriculture is featured as high inputs and high yields. The use of pesticides in conventional agriculture implies crop production in a wide range. To move away from conventional agriculture is possible through the gradual adoption of less disturbing and polluting agricultural practices at the level of the cropping system. For a healthy environment for crop production in the future there is a need for the maintenance of chemical, physical or biological properties. There is also required to minimize the emission of volatile compounds in the atmosphere. Companies are limiting themselves to a particular interpretation of sustainable development, characterized by technological optimism and production-maximizing. So the main objective of the paper will present the trends in the pesticide industry and in agricultural production in the era of Globalization. The second objective is to analyze sustainable agriculture. Companies of pesticides seem to have identified biotechnology as a promising alternative and supplement to the conventional business of selling pesticides. The agricultural sector is in the process of transforming its conventional mode of operation. Some experts give suggestions to farmers to move towards precision farming and some suggest engaging in organic farming. The methodology of the paper will be historical and analytical. Both primary and secondary sources will be used.Keywords: globalization, pesticides, sustainable development, organic farming
Procedia PDF Downloads 989063 Linking Adaptation to Climate Change and Sustainable Development: The Case of ClimAdaPT.Local in Portugal
Authors: A. F. Alves, L. Schmidt, J. Ferrao
Abstract:
Portugal is one of the more vulnerable European countries to the impacts of climate change. These include: temperature increase; coastal sea level rise; desertification and drought in the countryside; and frequent and intense extreme weather events. Hence, adaptation strategies to climate change are of great importance. This is what was addressed by ClimAdaPT.Local. This policy-oriented project had the main goal of developing 26 Municipal Adaptation Strategies for Climate Change, through the identification of local specific present and future vulnerabilities, the training of municipal officials, and the engagement of local communities. It is intended to be replicated throughout the whole territory and to stimulate the creation of a national network of local adaptation in Portugal. Supported by methodologies and tools specifically developed for this project, our paper is based on the surveys, training and stakeholder engagement workshops implemented at municipal level. In an 'adaptation-as-learning' process, these tools functioned as a social-learning platform and an exercise in knowledge and policy co-production. The results allowed us to explore the nature of local vulnerabilities and the exposure of gaps in the context of reappraisal of both future climate change adaptation opportunities and possible dysfunctionalities in the governance arrangements of municipal Portugal. Development issues are highlighted when we address the sectors and social groups that are both more sensitive and more vulnerable to the impacts of climate change. We argue that a pluralistic dialogue and a common framing can be established between them, with great potential for transformational adaptation. Observed climate change, present-day climate variability and future expectations of change are great societal challenges which should be understood in the context of the sustainable development agenda.Keywords: adaptation, ClimAdaPT.Local, climate change, Portugal, sustainable development
Procedia PDF Downloads 1969062 The Material Behavior in Curved Glulam Beam of Jabon Timber
Authors: Erma Desmaliana, Saptahari Sugiri
Abstract:
Limited availability of solid timber in large dimensions becomes a problem. The demands of timbers in Indonesia is more increasing compared to its supply from natural forest. It is associated with the issues of global warming and environmental preservation. The uses of timbers from HTI (Industrial Planting Forest) and HTR (Society Planting Forest), such as Jabon, is an alternative source that required to solve these problems. Having shorter lifespan is the benefit of HTI/HTR timbers, although they are relatively smaller in dimension and lower in strength. Engineering Wood Product (EWP) such as glulam (glue-laminated) timber, is required to overcome their losses. Glulam is fabricated by gluing the wooden planks that having a thickness of 20 to 45 mm with an adhesive material and a certain pressure. Glulam can be made a curved beam, is one of the advantages, thus making it strength is greater than a straight beam. This paper is aimed to know the material behavior of curved glue-laminated beam of Jabon timber. Preliminary methods was to gain physical and mechanical properties, and glue spread strength of Jabon timber, which following the ASTM D-143 standard test method. Dimension of beams were 50 mm wide, 760 mm span, 50 mm thick, and 50 mm rise. Each layer of Jabon has a thickness of 5 mm and is glued with polyurethane. Cold press will be applied to beam laminated specimens for more than 5 hours. The curved glue-laminated beams specimens will be tested about the bending behavior. This experiments aims to obtain the increasing of load carrying capacity and stiffness of curved glulam beam.Keywords: curved glulam beam, HTR&HTI, load carrying, strength
Procedia PDF Downloads 2999061 The Impact of Milk Transport on Its Quality
Authors: Urszula Malaga-Toboła, Marek Gugała, Rafał Kornas, Robert Rusinek, Marek Gancarz
Abstract:
The work focused on presenting the elements that determine the quality of fresh milk in the context of the quality of its transport. The quality of the raw material depends on the quality of transport. Milk transport involves many activities in which, apart from the temperature and sterility of the means of transport, it is important not to expose the raw material to shocks. Recently, there have been changes in the milk supply chain, thus affecting the logistics processes between its links. Based on the conducted research and analyses, it was found that the condition of the road surface on which milk is transported affects its quality. For the T1 milk transport route- gravel roads of very poor and poor quality, the lowest number of bacteria and the highest number of somatic cells, fat content, and temperature of the transported milk were obtained. A well-organized integrated transport system is a real need for most companies today. The analysis showed significant differences in the quality of milk delivered to the dairy.Keywords: fresh milk, transport, milk quality, dairy
Procedia PDF Downloads 819060 The Interrelationship of Social Sustainability and Urban Form; the Case of Modern and Traditional Iranian Cities
Authors: Ahmadreza Hakiminejad, Changfeng Fu, Hamideh Mohammadzadeh Titkanlou
Abstract:
For decades, sustainable development has been an imperative concern in the process of urban development of the world’s developed countries. Despite the fact that the concept of sustainability, primarily, emerged by virtue of warning over global environmental catastrophes, it subsequently led to the ongoing debates not only over environmental, but also economic and sociocultural issues involved. This study, particularly, discusses the constituents of social sustainability– as one of the three pillars of sustainable development– and its situation within an urban context. It tries to investigate the interrelationships between the elements of social sustainability and the quality of physical environment. The paper, firstly, depicts a theoretical overview of the notions of social sustainability and urban form. Secondly, it will discuss the interrelationship between the two. And lastly, it will investigate and analyse this interrelationship through the historical transformation of Iranian cities. The research aims to answer this very question that how the urban form within the context of the built environment can influence the social behaviors so as to achieve a more sustainable society. It is to examine how and why compact, high-density and mixed-use urban patterns are environmentally sound, efficient for transport, socially beneficial and economically viable. The methodology used in this paper is desk research. Thus, the documents from different urban related disciplines including urban planning, urban design, urban sociology and urban policy have been reviewed. The research has also applied a comparative approach to discuss and analyse the impacts of different urban forms on the elements of social sustainability within the context of modern and traditional Iranian cities. The paper concludes with an examination of possible future directions of Iranian cities with consideration to socio-cultural concepts and the challenges that will have to be overcome to make progress towards social sustainability.Keywords: social sustainability, urban form, compact city, Iranian cities
Procedia PDF Downloads 411