Search results for: sound propagation models
6307 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch
Authors: M. Kozłowski, M. Kadela
Abstract:
Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.Keywords: foamed concrete, fracture energy, three-point bending, XFEM
Procedia PDF Downloads 3006306 Passive Attenuation with Multiple Resonator Rings for Musical Instruments Equalization
Authors: Lorenzo Bonoldi, Gianluca Memoli, Abdelhalim Azbaid El Ouahabi
Abstract:
In this paper, a series of ring-shaped attenuators utilizing Helmholtz and quarter wavelength resonators in variable, fixed, and combined configurations have been manufactured using a 3D printer. We illustrate possible uses by incorporating such devices into musical instruments (e.g. in acoustic guitar sound holes) and audio speakers with a view to controlling such devices tonal emissions without electronic equalization systems. Numerical investigations into the transmission loss values of these ring-shaped attenuators using finite element method simulations (COMSOL Multiphysics) have been presented in the frequency range of 100– 1000 Hz. We compare such results for each attenuator model with experimental measurements using different driving sources such as white noise, a maximum-length sequence (MLS), square and sine sweep pulses, and point scans in the frequency domain. Finally, we present a preliminary discussion on the comparison of numerical and experimental results.Keywords: equaliser, metamaterials, musical, instruments
Procedia PDF Downloads 1746305 Health of Riveted Joints with Active and Passive Structural Health Monitoring Techniques
Authors: Javad Yarmahmoudi, Alireza Mirzaee
Abstract:
Many active and passive structural health monitoring (SHM) techniques have been developed for detection of the defects of plates. Generally, riveted joints hold the plates together and their failure may create accidents. In this study, well known active and passive methods were modified for the evaluation of the health of the riveted joints between the plates. The active method generated Lamb waves and monitored their propagation by using lead zirconate titanate (PZT) disks. The signal was analyzed by using the wavelet transformations. The passive method used the Fiber Bragg Grating (FBG) sensors and evaluated the spectral characteristics of the signals by using Fast Fourier Transformation (FFT). The results indicated that the existing methods designed for the evaluation of the health of individual plates may be used for inspection of riveted joints with software modifications.Keywords: structural health monitoring, SHM, active SHM, passive SHM, fiber bragg grating sensor, lead zirconate titanate, PZT
Procedia PDF Downloads 3276304 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 2556303 An Overview of the Advice Process and the Scientific Production of the Adviser-Advised Relationship in the Areas of Engineering
Authors: Tales H. J. Moreira, Thiago M. R. Dias, Gray F. Moita
Abstract:
The adviser-advised relationship, in addition to the evident propagation of knowledge, can provide an increase in the scientific production of the advisors. Specifically, in post-graduate programs, in which the advised submit diverse papers in different means of publication, these end up boosting the production of their advisor, since in general the advisors appear as co-authors, responsible for instructing and assisting in the development of the work. Therefore, to visualize the orientation process and the scientific production resulting from this relation is another important way of analyzing the scientific collaboration in the different areas of knowledge. In this work, are used the data of orientations and postgraduate supervisions from the Lattes curricula, from the main advisors who work in the Engineering area, to obtain an overview of the process of orientation of this group, and even, to produce Academic genealogical trees, where it is possible to verify how knowledge has spread in the diverse areas of engineering.Keywords: academic genealogy, advice, engineering, lattes platform
Procedia PDF Downloads 3246302 Variability Management of Contextual Feature Model in Multi-Software Product Line
Authors: Muhammad Fezan Afzal, Asad Abbas, Imran Khan, Salma Imtiaz
Abstract:
Software Product Line (SPL) paradigm is used for the development of the family of software products that share common and variable features. Feature model is a domain of SPL that consists of common and variable features with predefined relationships and constraints. Multiple SPLs consist of a number of similar common and variable features, such as mobile phones and Tabs. Reusability of common and variable features from the different domains of SPL is a complex task due to the external relationships and constraints of features in the feature model. To increase the reusability of feature model resources from domain engineering, it is required to manage the commonality of features at the level of SPL application development. In this research, we have proposed an approach that combines multiple SPLs into a single domain and converts them to a common feature model. Extracting the common features from different feature models is more effective, less cost and time to market for the application development. For extracting features from multiple SPLs, the proposed framework consists of three steps: 1) find the variation points, 2) find the constraints, and 3) combine the feature models into a single feature model on the basis of variation points and constraints. By using this approach, reusability can increase features from the multiple feature models. The impact of this research is to reduce the development of cost, time to market and increase products of SPL.Keywords: software product line, feature model, variability management, multi-SPLs
Procedia PDF Downloads 696301 Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence
Authors: Pablo Enrique Sartor Del Giudice
Abstract:
Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.Keywords: football, penalty shootouts, Montecarlo simulation, ABBA
Procedia PDF Downloads 1626300 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions
Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic
Abstract:
Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.Keywords: absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation
Procedia PDF Downloads 3966299 Hydrodynamics of Wound Ballistics
Authors: Harpreet Kaur, Er. Arjun, Kirandeep Kaur, P. K. Mittal
Abstract:
Simulation of a human body from 20% gelatin & 80% water mixture is examined from wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to permanent cavity. This occurs for a 10mm size bullets & settle down to permanent cavity in case of 4 different bullets i.e. 5.45, 5.56, 7.62,10 mm sizes The obtained results are in excellent agreement with the body as right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer. Keywords. Gelatin, gunshot, hydrodynamic model, oscillation time, temporary cavity and permanent cavity, Wound Ballistic.Keywords: gelatin, gunshot, wound, cavity
Procedia PDF Downloads 1056298 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk
Authors: Paras Ram, Vikas Kumar
Abstract:
The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling.Keywords: ferrofluid, magnetic field, porous medium, rotating disk, Neuringer-Rosensweig Model
Procedia PDF Downloads 4216297 Contextual Toxicity Detection with Data Augmentation
Authors: Julia Ive, Lucia Specia
Abstract:
Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing
Procedia PDF Downloads 1706296 Emancipation through the Inclusion of Civil Society in Contemporary Peacebuilding: A Case Study of Peacebuilding Efforts in Colombia
Authors: D. Romero Espitia
Abstract:
Research on peacebuilding has taken a critical turn into examining the neoliberal and hegemonic conception of peace operations. Alternative peacebuilding models have been analyzed, but the scholarly discussion fails to bring them together or form connections between them. The objective of this paper is to rethink peacebuilding by extracting the positive aspects of the various peacebuilding models, connecting them with the local context, and therefore promote emancipation in contemporary peacebuilding efforts. Moreover, local ownership has been widely labelled as one, if not the core principle necessary for a successful peacebuilding project. Yet, definitions of what constitutes the 'local' remain debated. Through a qualitative review of literature, this paper unpacks the contemporary conception of peacebuilding in nexus with 'local ownership' as manifested through civil society. Using Colombia as a case study, this paper argues that a new peacebuilding framework, one that reconsiders the terms of engagement between international and national actors, is needed in order to foster effective peacebuilding efforts in contested transitional states.Keywords: civil society, Colombia, emancipation, peacebuilding
Procedia PDF Downloads 1346295 A Survey on Countermeasures of Cache-Timing Attack on AES Systems
Authors: Settana M. Abdulh, Naila A. Sadalla, Yaseen H. Taha, Howaida Elshoush
Abstract:
Side channel attacks are based on side channel information, which is information that is leaked from encryption systems. This includes timing information, power consumption as well as electromagnetic or even sound leaking which can exploited by an attacker. Implementing side channel attacks are possible if and only if an attacker has access to a cryptosystem. In this case, the attacker can exploit bad implementation in software or hardware which is not controlled by encryption implementer. Thus, he/she will represent a real threat to the security system. Several countermeasures have been proposed to eliminate side channel information vulnerability.Cache timing attack is a special type of side channel attack. Here, timing information is collected and analyzed by an attacker to guess sensitive information such as encryption key or plaintext. This paper reviews the technique applied in this attack and surveys the countermeasures against it, evaluating the feasibility and usability of each. Based on this evaluation, finally we pose several recommendations about using these countermeasures.Keywords: AES algorithm, side channel attack, cache timing attack, cache timing countermeasure
Procedia PDF Downloads 2996294 Modeling Waiting and Service Time for Patients: A Case Study of Matawale Health Centre, Zomba, Malawi
Authors: Moses Aron, Elias Mwakilama, Jimmy Namangale
Abstract:
Spending more time on long queues for a basic service remains a common challenge to most developing countries, including Malawi. For health sector in particular, Out-Patient Department (OPD) experiences long queues. This puts the lives of patients at risk. However, using queuing analysis to under the nature of the problems and efficiency of service systems, such problems can be abated. Based on a kind of service, literature proposes different possible queuing models. However, unlike using generalized assumed models proposed by literature, use of real time case study data can help in deeper understanding the particular problem model and how such a model can vary from one day to the other and also from each case to another. As such, this study uses data obtained from one urban HC for BP, Pediatric and General OPD cases to investigate an average queuing time for patients within the system. It seeks to highlight the proper queuing model by investigating the kind of distributions functions over patient’s arrival time, inter-arrival time, waiting time and service time. Comparable with the standard set values by WHO, the study found that patients at this HC spend more waiting times than service times. On model investigation, different days presented different models ranging from an assumed M/M/1, M/M/2 to M/Er/2. As such, through sensitivity analysis, in general, a commonly assumed M/M/1 model failed to fit the data but rather an M/Er/2 demonstrated to fit well. An M/Er/3 model seemed to be good in terms of measuring resource utilization, proposing a need to increase medical personnel at this HC. However, an M/Er/4 showed to cause more idleness of human resources.Keywords: health care, out-patient department, queuing model, sensitivity analysis
Procedia PDF Downloads 4356293 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms
Authors: Saurav S. Rath, Birendra K. David
Abstract:
Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.Keywords: computational fluid dynamics, morphology, quality-by-design, rheology
Procedia PDF Downloads 2696292 A Boundary Fitted Nested Grid Model for Tsunami Computation along Penang Island in Peninsular Malaysia
Authors: Md. Fazlul Karim, Ahmad Izani Md. Ismail, Mohammed Ashaque Meah
Abstract:
This paper focuses on the development of a 2-D Boundary Fitted and Nested Grid (BFNG) model to compute the tsunami propagation of Indonesian tsunami 2004 along the coastal region of Penang in Peninsular Malaysia. In the presence of a curvilinear coastline, boundary fitted grids are suitable to represent the model boundaries accurately. On the other hand, when large gradient of velocity within a confined area is expected, the use of a nested grid system is appropriate to improve the numerical accuracy with the least grid numbers. This paper constructs a shallow water nested and orthogonal boundary fitted grid model and presents computational results of the tsunami impact on the Penang coast due to the Indonesian tsunami of 2004. The results of the numerical simulations are compared with available data.Keywords: boundary fitted nested model, tsunami, Penang Island, 2004 Indonesian Tsunami
Procedia PDF Downloads 3236291 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 1306290 Effect of Realistic Lubricant Properties on Thermal Electrohydrodynamic Lubrication Behavior in Circular Contacts
Authors: Puneet Katyal, Punit Kumar
Abstract:
A great deal of efforts has been done in the field of thermal effects in electrohydrodynamic lubrication (TEHL) during the last five decades. The focus was primarily on the development of an efficient numerical scheme to deal with the computational challenges involved in the solution of TEHL model; however, some important aspects related to the accurate description of lubricant properties such as viscosity, rheology and thermal conductivity in EHL point contact analysis remain largely neglected. A few studies available in this regard are based upon highly complex mathematical models difficult to formulate and execute. Using a simplified thermal EHL model for point contacts, this work sheds some light on the importance of accurate characterization of the lubricant properties and demonstrates that the computed TEHL characteristics are highly sensitive to lubricant properties. It also emphasizes the use of appropriate mathematical models with experimentally determined parameters to account for correct lubricant behaviour.Keywords: TEHL, shear thinning, rheology, conductivity
Procedia PDF Downloads 2006289 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method
Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga
Abstract:
Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses
Procedia PDF Downloads 2616288 Short Life Cycle Time Series Forecasting
Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar
Abstract:
The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.Keywords: forecast, short life cycle product, structured judgement, time series
Procedia PDF Downloads 3586287 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 1266286 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 4616285 A Study on the New Weapon Requirements Analytics Using Simulations and Big Data
Authors: Won Il Jung, Gene Lee, Luis Rabelo
Abstract:
Since many weapon systems are getting more complex and diverse, various problems occur in terms of the acquisition cost, time, and performance limitation. As a matter of fact, the experiment execution in real world is costly, dangerous, and time-consuming to obtain Required Operational Characteristics (ROC) for a new weapon acquisition although enhancing the fidelity of experiment results. Also, until presently most of the research contained a large amount of assumptions so therefore a bias is present in the experiment results. At this moment, the new methodology is proposed to solve these problems without a variety of assumptions. ROC of the new weapon system is developed through the new methodology, which is a way to analyze big data generated by simulating various scenarios based on virtual and constructive models which are involving 6 Degrees of Freedom (6DoF). The new methodology enables us to identify unbiased ROC on new weapons by reducing assumptions and provide support in terms of the optimal weapon systems acquisition.Keywords: big data, required operational characteristics (ROC), virtual and constructive models, weapon acquisition
Procedia PDF Downloads 2896284 Rayleigh Wave Propagation in an Orthotropic Medium under the Influence of Exponentially Varying Inhomogeneities
Authors: Sumit Kumar Vishwakarma
Abstract:
The aim of the paper is to investigate the influence of inhomogeneity associated with the elastic constants and density of the orthotropic medium. The inhomogeneity is considered as exponential function of depth. The impact of gravity had been discussed. Using the concept of separation of variables, the system of a partial differential equation (equation of motion) has been converted into ordinary differential equation, which is coupled in nature. It further reduces to a biquadratic equation whose roots were found by using MATLAB. A suitable boundary condition is employed to derive the dispersion equation in a closed-form. Numerical simulations had been performed to show the influence of the inhomogeneity parameter. It was observed that as the numerical values of increases, the phase velocity of Rayleigh waves decreases at a particular wavenumber. Graphical illustrations were drawn to visualize the effect of the increasing and decreasing values of the inhomogeneity parameter. It can be concluded that it has a remarkable bearing on the phase velocity as well as damping velocity.Keywords: Rayleigh waves, orthotropic medium, gravity field, inhomogeneity
Procedia PDF Downloads 1276283 Governance Structure of Islamic Philanthropic Institution: Analysis of Corporate WAQF in Malaysia
Authors: Nathasa Mazna Ramli, Nurul Husna Mohd Salleh, Nurul Aini Muhamed
Abstract:
This study focuses on the governance of an Islamic philanthropic institution in Malaysia. Specifically, the internal governance structure of corporate Islamic endowment, or waqf, is being analysed. The purposes of waqf are to provide continuous charity that could generate perpetual income flow for the needy. This study is based on the principle of MCCG 2012, Shariah Governance Framework and charity governance. This study utilises publicly available data to examine the internal governance structure of a corporate waqf. This study finds that the Islamic philanthropic Institution practices, to some extent, have a sound governance structure to discharge their transparency and accountability. Furthermore, findings also showed that though governance structure is in place, most of the structures are not disclosed in the annual reports of the company. Findings from the study could extend the knowledge in these areas and stimulate further research on the governance of Islamic philanthropic institutions, particularly for corporate waqf.Keywords: accountability, governance, Islamic philanthropic, corporate waqf
Procedia PDF Downloads 5666282 Effect of the Mould Rotational Speed on the Quality of Centrifugal Castings
Authors: M. A. El-Sayed, S. A. Aziz
Abstract:
Centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. The rotational speed of the die was suggested to greatly affect the manner in which the molten metal flows within the mould and consequently the probability of the formation of a uniform cylinder. In this work the flow of the liquid metal at various speeds and its effect during casting were studied. The results suggested that there was a critical range for the speed, within which the produced castings exhibited best uniformity and maximum mechanical properties. When a mould was rotated at speeds below or beyond the critical range defects were found in the final castings, which affected the uniformity and significantly lowered the mechanical properties.Keywords: centrifugal casting, rotational speed, critical speed range, mechanical properties
Procedia PDF Downloads 4456281 Gravitational Frequency Shifts for Photons and Particles
Authors: Jing-Gang Xie
Abstract:
The research, in this case, considers the integration of the Quantum Field Theory and the General Relativity Theory. As two successful models in explaining behaviors of particles, they are incompatible since they work at different masses and scales of energy, with the evidence that regards the description of black holes and universe formation. It is so considering previous efforts in merging the two theories, including the likes of the String Theory, Quantum Gravity models, and others. In a bid to prove an actionable experiment, the paper’s approach starts with the derivations of the existing theories at present. It goes on to test the derivations by applying the same initial assumptions, coupled with several deviations. The resulting equations get similar results to those of classical Newton model, quantum mechanics, and general relativity as long as conditions are normal. However, outcomes are different when conditions are extreme, specifically with no breakdowns even for less than Schwarzschild radius, or at Planck length cases. Even so, it proves the possibilities of integrating the two theories.Keywords: general relativity theory, particles, photons, Quantum Gravity Model, gravitational frequency shift
Procedia PDF Downloads 3596280 Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect
Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara
Abstract:
This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.Keywords: air viscosity, design parameters, loudspeaker, optimization
Procedia PDF Downloads 5136279 Promoting Biofuels in India: Assessing Land Use Shifts Using Econometric Acreage Response Models
Authors: Y. Bhatt, N. Ghosh, N. Tiwari
Abstract:
Acreage response function are modeled taking account of expected harvest prices, weather related variables and other non-price variables allowing for partial adjustment possibility. At the outset, based on the literature on price expectation formation, we explored suitable formulations for estimating the farmer’s expected prices. Assuming that farmers form expectations rationally, the prices of food and biofuel crops are modeled using time-series methods for possible ARCH/GARCH effects to account for volatility. The prices projected on the basis of the models are then inserted to proxy for the expected prices in the acreage response functions. Food crop acreages in different growing states are found sensitive to their prices relative to those of one or more of the biofuel crops considered. The required percentage improvement in food crop yields is worked to offset the acreage loss.Keywords: acreage response function, biofuel, food security, sustainable development
Procedia PDF Downloads 3016278 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets
Authors: Simone Galati, Adriano Troia
Abstract:
Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.Keywords: cavitation, drug delivery, nanodroplets, ultra-sound
Procedia PDF Downloads 110