Search results for: non-crimp structure
5938 The Future of the Architect's Profession in France with the Emergence of Building Information Modelling
Authors: L. Mercier, D. Beladjine, K. Beddiar
Abstract:
The digital transition of building in France brings many changes which some have been able to face very quickly, while others are struggling to find their place and the interest that BIM can bring in their profession. BIM today is already adopted or initiated by construction professionals. However, this change, which can be drastic for some, prevents them from integrating it definitively. This is the case with architects. The profession is shared on the practice of BIM in its exercise. The risk of not adopting this new working method now and of not wanting to switch to its new digital tools leads us to question the future of the profession in view of the gap that is likely to be created within project management. In order to deal with the subject efficiently, our work was based on a documentary watch on BIM and then on the profession of architect, which allowed us to establish links on these two subjects. The observation of the economic model towards which the agencies tend and the trend of the sought after profiles made it possible to develop the opportunities and the brakes likely to impact the future of the profession of architect. The centralization of research directs work towards the conclusion that the model implemented by companies does not allow to integrate BIM within their structure. A solution hypothesis was then issued, focusing on the development of agencies through the diversity of profiles, skills to be integrated internally with the aim of diversifying their skills, and their business practices. In order to address this hypothesis of a multidisciplinary agency model, we conducted a survey of architectural firms. It is built on the model of Anglo-Saxon countries, which do not have the same functioning in comparison to the French model. The results obtained showed a risk of gradual disappearance on the market from small agencies in favor of those who will have and could take this BIM working method. This is why the architectural profession must, first of all, look at what is happening within its training before absolutely wanting to diversify the profiles to integrate into its structure. This directs the study on the training of architects. The schools of French architects are generally behind schedule if we allow the comparison to the schools of engineers. The latter is currently experiencing a slight improvement with the emergence of masters and BIM options during the university course. If the training of architects develops towards learning BIM and the agencies have the desire to integrate different but complementary profiles, then they will develop their skills internally and therefore open their profession to new functions. The place of BIM Management on projects will allow the architect to remain in control of the project because of their overall vision of the project. In addition, the integration of BIM and more generally of the life cycle analysis of the structure will make it possible to guarantee eco-design or eco-construction by approaching the constraints of sustainable development omnipresent on the planet.Keywords: building information modelling, BIM, BIM management, BIM manager, BIM architect
Procedia PDF Downloads 1135937 A Two-Week and Six-Month Stability of Cancer Health Literacy Classification Using the CHLT-6
Authors: Levent Dumenci, Laura A. Siminoff
Abstract:
Health literacy has been shown to predict a variety of health outcomes. Reliable identification of persons with limited cancer health literacy (LCHL) has been proved questionable with existing instruments using an arbitrary cut point along a continuum. The CHLT-6, however, uses a latent mixture modeling approach to identify persons with LCHL. The purpose of this study was to estimate two-week and six-month stability of identifying persons with LCHL using the CHLT-6 with a discrete latent variable approach as the underlying measurement structure. Using a test-retest design, the CHLT-6 was administered to cancer patients with two-week (N=98) and six-month (N=51) intervals. The two-week and six-month latent test-retest agreements were 89% and 88%, respectively. The chance-corrected latent agreements estimated from Dumenci’s latent kappa were 0.62 (95% CI: 0.41 – 0.82) and .47 (95% CI: 0.14 – 0.80) for the two-week and six-month intervals, respectively. High levels of latent test-retest agreement between limited and adequate categories of cancer health literacy construct, coupled with moderate to good levels of change-corrected latent agreements indicated that the CHLT-6 classification of limited versus adequate cancer health literacy is relatively stable over time. In conclusion, the measurement structure underlying the instrument allows for estimating classification errors circumventing limitations due to arbitrary approaches adopted by all other instruments. The CHLT-6 can be used to identify persons with LCHL in oncology clinics and intervention studies to accurately estimate treatment effectiveness.Keywords: limited cancer health literacy, the CHLT-6, discrete latent variable modeling, latent agreement
Procedia PDF Downloads 1785936 Scientific Development as Diffusion on a Social Network: An Empirical Case Study
Authors: Anna Keuchenius
Abstract:
Broadly speaking, scientific development is studied in either a qualitative manner with a focus on the behavior and interpretations of academics, such as the sociology of science and science studies or in a quantitative manner with a focus on the analysis of publications, such as scientometrics and bibliometrics. Both come with a different set of methodologies and few cross-references. This paper contributes to the bridging of this divide, by on the on hand approaching the process of scientific progress from a qualitative sociological angle and using on the other hand quantitative and computational techniques. As a case study, we analyze the diffusion of Granovetter's hypothesis from his 1973 paper 'On The Strength of Weak Ties.' A network is constructed of all scientists that have referenced this particular paper, with directed edges to all other researchers that are concurrently referenced with Granovetter's 1973 paper. Studying the structure and growth of this network over time, it is found that Granovetter's hypothesis is used by distinct communities of scientists, each with their own key-narrative into which the hypothesis is fit. The diffusion within the communities shares similarities with the diffusion of an innovation in which innovators, early adopters, and an early-late majority can clearly be distinguished. Furthermore, the network structure shows that each community is clustered around one or few hub scientists that are disproportionately often referenced and seem largely responsible for carrying the hypothesis into their scientific subfield. The larger implication of this case study is that the diffusion of scientific hypotheses and ideas are not the spreading of well-defined objects over a network. Rather, the diffusion is a process in which the object itself dynamically changes in concurrence with its spread. Therefore it is argued that the methodology presented in this paper has potential beyond the scientific domain, in the study of diffusion of other not well-defined objects, such as opinions, behavior, and ideas.Keywords: diffusion of innovations, network analysis, scientific development, sociology of science
Procedia PDF Downloads 3065935 Concrete Compressive Strengths of Major Existing Buildings in Kuwait
Authors: Zafer Sakka, Husain Al-Khaiat
Abstract:
Due to social and economic considerations, owners all over the world desire to keep and use existing structures, including aging ones. However, these structures, especially those that are dear, need accurate condition assessment, and proper safety evaluation. More than half of the budget spent on construction activities in developed countries is related to the repair and maintenance of these reinforced concrete (R/C) structures. Also, periodical evaluation and assessment of relatively old concrete structures are vital and imperative. If the evaluation and assessment of structural components of a particular aging R/C structure reveal that repairs are essential for these components, these repairs should not be delayed. Delaying the repairs has the potential of losing serviceability of the whole structure and/or causing total failure and collapse of the structure. In addition, if repairs are delayed, the cost of maintenance will skyrocket as well. It can also be concluded from the above that the assessment of existing needs to receive more consideration and thought from the structural engineering societies and professionals. Ten major existing structures in Kuwait city that were constructed in the 1970s were assessed for structural reliability and integrity. Numerous concrete samples were extracted from the structural systems of the investigated buildings. This paper presents the results of the compressive strength tests that were conducted on the extracted cores. The results are compared for the buildings’ columns and beams elements and compared with the design strengths. The collected data were statistically analyzed. The average compressive strengths of the concrete cores that were extracted from the ten buildings had a large variation. The lowest average compressive strength for one of the buildings was 158 kg/cm². This building was deemed unsafe and economically unfeasible to be repaired; accordingly, it was demolished. The other buildings had an average compressive strengths fall in the range 215-317 kg/cm². Poor construction practices were the main cause for the strengths. Although most of the drawings and information for these buildings were lost during the invasion of Kuwait in 1990, however, information gathered indicated that the design strengths of the beams and columns for most of these buildings were in the range of 280-400 kg/cm². Following the study, measures were taken to rehabilitate the buildings for safety. The mean compressive strength for all cores taken from beams and columns of the ten buildings was 256.7 kg/cm². The values range was 139 to 394 kg/cm². For columns, the mean was 250.4 kg/cm², and the values ranged from 137 to 394 kg/cm². However, the mean compressive strength for the beams was higher than that of columns. It was 285.9 kg/cm², and the range was 181 to 383 kg/cm². In addition to the concrete cores that were extracted from the ten buildings, the 28-day compressive strengths of more than 24,660 concrete cubes were collected from a major ready-mixed concrete supplier in Kuwait. The data represented four different grades of ready-mix concrete (250, 300, 350, and 400 kg/cm²) manufactured between the year 2003 and 2018. The average concrete compressive strength for the different concrete grades (250, 300, 350 and 400 kg/cm²) was found to be 318, 382, 453 and 504 kg/cm², respectively, and the coefficients of variations were found to be 0.138, 0.140, 0.157 and 0.131, respectively.Keywords: concrete compressive strength, concrete structures, existing building, statistical analysis.
Procedia PDF Downloads 1165934 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications
Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita
Abstract:
Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution
Procedia PDF Downloads 3845933 Analysis of Exploitation Damages of the Frame Scaffolding
Authors: A. Robak, M. Pieńko, E. Błazik-Borowa, J. Bęc, I. Szer
Abstract:
The analyzes and classifications presented in the article were based on the research carried out in year 2016 and 2017 on a group of nearly one hundred scaffoldings assembled and used on construction sites in different parts of Poland. During scaffolding selection process efforts were made to maintain diversification in terms of parameters such as scaffolding size, investment size, type of investment, location and nature of conducted works. This resulted in the research being carried out on scaffoldings used for church renovation in a small town or attached to the facades of classic apartment blocks, as well as on scaffoldings used during construction of skyscrapers or facilities of the largest power plants. This variety allows to formulate general conclusions about the technical condition of used frame scaffoldings. Exploitation damages of the frame scaffolding elements were divided into three groups. The first group includes damages to the main structural components, which reduce the strength of the scaffolding elements and hence the whole structure. The qualitative analysis of these damages was made on the basis of numerical models that take into account the geometry of the damage and on the basis of computational nonlinear static analyzes. The second group focuses on exploitation damages such as the lack of a pin on the guardrail bolt which may cause an imminent threat to people using scaffolding. These are local damages that do not affect the bearing capacity and stability of the whole structure but are very important for safe use. The last group consider damages that reduce only aesthetic values and do not have direct impact on bearing capacity and safety of use. Apart from qualitative analyzes the article will present quantitative analyzes showing how frequently given type of damage occurs.Keywords: scaffolding, damage, safety, numerical analysis
Procedia PDF Downloads 2595932 Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis
Authors: Masoud Mahdavi, Mojtaba Farzaneh Moghadam
Abstract:
The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate. Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the RCS index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between RCS index and total acceleration in steel shear wall and RCS index is separate from the peak ground acceleration value of earthquake.Keywords: hollow steel plate shear wall, time history analysis, finite element method, abaqus software
Procedia PDF Downloads 1035931 Parametric Study for Optimal Design of Hybrid Bridge Joint
Authors: Bongsik Park, Jae Hyun Park, Jae-Yeol Cho
Abstract:
Mixed structure, which is a kind of hybrid system, is incorporating steel beam and prestressed concrete beam. Hybrid bridge adopting mixed structure have some merits. Main span length can be made longer by using steel as main span material. In case of cable-stayed bridge having asymmetric span length, negative reaction at side span can be restrained without extra restraining devices by using weight difference between main span material and side span material. However angle of refraction might happen because of rigidity difference between materials and stress concentration also might happen because of abnormal loading transmission at joint in the hybrid bridge. Therefore the joint might be a weak point of the structural system and it needs to pay attention to design of the joint. However, design codes and standards about the joint in the hybrid-bridge have not been established so the joint designs in most of construction cases have been very conservative or followed previous design without extra verification. In this study parametric study using finite element analysis for optimal design of hybrid bridge joint is conducted. Before parametric study, finite element analysis was conducted based on previous experimental data and it is verified that analysis result approximated experimental data. Based on the finite element analysis results, parametric study was conducted. The parameters were selected as those have influences on joint behavior. Based on the parametric study results, optimal design of hybrid bridge joint has been determined.Keywords: parametric study, optimal design, hybrid bridge, finite element analysis
Procedia PDF Downloads 4255930 Effect of Iron Oxide Addition on the Solid-State Synthesis of Ye’Elimite
Authors: F. Z. Abir, M. Mesnaoui, Y. Abouliatim, L. Nibou, Y. El Hafiane, A. Smith
Abstract:
The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for an eco-friendly alternative such as Calcium Sulfoaluminate Cements (CSA). These binders, compared to Ordinary Portland Cements (OPC), have two advantages: reduction of the CO2 emissions and energy-saving because the sintering temperature of CSA cements is between 1250 and 1350 °C, which means 100 to 200 °C less than OPC. The aim of this work is to study the impurities effect, such as iron oxide, on the formation of the ye'elimite phase, which represents the main phase of Calcium Sulfoaluminate Cements and the consequence on its hydration. Several elaborations and characterization techniques were used to study the structure and microstructure of ye'elimite, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), thermal analysis, specific surface area measurement, and electrical conductivity of diluted solutions. This study details the protocol for the solid-state synthesis of ye'elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). Ye'elimite is formed by solid-state reactions between Al2O3, CaO and CaSO4 and the maximum ye'elimite content is reached at a sintering temperature of 1300 °C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye'elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and develops two different morphologies during cooling: dendritic crystals and melt morphology. The formation of the ferrous liquid phase affects the evolution of grain size of the ye’elimite and calcium aluminates.Keywords: calcium sulfoaluminate cement, ferritic phase, sintering, solid-state synthesis, ye’elimite
Procedia PDF Downloads 1895929 Mechanical and Material Characterization on the High Nitrogen Supersaturated Tool Steels for Die-Technology
Authors: Tatsuhiko Aizawa, Hiroshi Morita
Abstract:
The tool steels such as SKD11 and SKH51 have been utilized as punch and die substrates for cold stamping, forging, and fine blanking processes. The heat-treated SKD11 punches with the hardness of 700 HV wrought well in the stamping of SPCC, normal steel plates, and non-ferrous alloy such as a brass sheet. However, they suffered from severe damage in the fine blanking process of smaller holes than 1.5 mm in diameter. Under the high aspect ratio of punch length to diameter, an elastoplastic bucking of slender punches occurred on the production line. The heat-treated punches had a risk of chipping at their edges. To be free from those damages, the blanking punch must have sufficient rigidity and strength at the same time. In the present paper, the small-hole blanking punch with a dual toughness structure was proposed to provide a solution to this engineering issue in production. The low-temperature plasma nitriding process was utilized to form the nitrogen supersaturated thick layer into the original SKD11 punch. Through the plasma nitriding at 673 K for 14.4 ks, the nitrogen supersaturated layer, with the thickness of 50 μm and without nitride precipitates, was formed as a high nitrogen steel (HNS) layer surrounding the original SKD11 punch. In this two-zone structured SKD11 punch, the surface hardness increased from 700 HV for the heat-treated SKD11 to 1400 HV. This outer high nitrogen SKD11 (HN-SKD11) layer had a homogeneous nitrogen solute depth profile with a nitrogen solute content plateau of 4 mass% till the border between the outer HN-SKD11 layer and the original SKD11 matrix. When stamping the brass sheet with the thickness of 1 mm by using this dually toughened SKD11 punch, the punch life was extended from 500 K shots to 10000 K shots to attain a much more stable production line to yield the brass American snaps. Furthermore, with the aid of the masking technique, the punch side surface layer with the thickness of 50 μm was modified by this high nitrogen super-saturation process to have a stripe structure where the un-nitrided SKD11 and the HN-SKD11 layers were alternatively aligned from the punch head to the punch bottom. This flexible structuring promoted the mechanical integrity of total rigidity and toughness as a punch with an extremely small diameter.Keywords: high nitrogen supersaturation, semi-dry cold stamping, solid solution hardening, tool steel dies, low temperature nitriding, dual toughness structure, extremely small diameter punch
Procedia PDF Downloads 885928 Manipulator Development for Telediagnostics
Authors: Adam Kurnicki, Bartłomiej Stanczyk, Bartosz Kania
Abstract:
This paper presents development of the light-weight manipulator with series elastic actuation for medical telediagnostics (USG examination). General structure of realized impedance control algorithm was shown. It was described how to perform force measurements based mainly on elasticity of manipulator links.Keywords: telediagnostics, elastic manipulator, impedance control, force measurement
Procedia PDF Downloads 4775927 Sustainable Wood Harvesting from Juniperus procera Trees Managed under a Participatory Forest Management Scheme in Ethiopia
Authors: Mindaye Teshome, Evaldo Muñoz Braz, Carlos M. M. Eleto Torres, Patricia Mattos
Abstract:
Sustainable forest management planning requires up-to-date information on the structure, standing volume, biomass, and growth rate of trees from a given forest. This kind of information is lacking in many forests in Ethiopia. The objective of this study was to quantify the population structure, diameter growth rate, and standing volume of wood from Juniperus procera trees in the Chilimo forest. A total of 163 sample plots were set up in the forest to collect the relevant vegetation data. Growth ring measurements were conducted on stem disc samples collected from 12 J. procera trees. Diameter and height measurements were recorded from a total of 1399 individual trees with dbh ≥ 2 cm. The growth rate, maximum current and mean annual increments, minimum logging diameter, and cutting cycle were estimated, and alternative cutting cycles were established. Using these data, the harvestable volume of wood was projected by alternating four minimum logging diameters and five cutting cycles following the stand table projection method. The results show that J. procera trees have an average density of 183 stems ha⁻¹, a total basal area of 12.1 m² ha⁻¹, and a standing volume of 98.9 m³ ha⁻¹. The mean annual diameter growth ranges between 0.50 and 0.65 cm year⁻¹ with an overall mean of 0.59 cm year⁻¹. The population of J. procera tree followed a reverse J-shape diameter distribution pattern. The maximum current annual increment in volume (CAI) occurred at around 49 years when trees reached 30 cm in diameter. Trees showed the maximum mean annual increment in volume (MAI) around 91 years, with a diameter size of 50 cm. The simulation analysis revealed that 40 cm MLD and a 15-year cutting cycle are the best minimum logging diameter and cutting cycle. This combination showed the largest harvestable volume of wood potential, volume increments, and a 35% recovery of the initially harvested volume. It is concluded that the forest is well stocked and has a large amount of harvestable volume of wood from J. procera trees. This will enable the country to partly meet the national wood demand through domestic wood production. The use of the current population structure and diameter growth data from tree ring analysis enables the exact prediction of the harvestable volume of wood. The developed model supplied an idea about the productivity of the J. procera tree population and enables policymakers to develop specific management criteria for wood harvesting.Keywords: logging, growth model, cutting cycle, minimum logging diameter
Procedia PDF Downloads 885926 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure
Authors: B. Hekner, J. Myalski, P. Wrzesniowski
Abstract:
This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application
Procedia PDF Downloads 1185925 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing
Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca de Marchi
Abstract:
This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes available a larger monitored area. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary chars the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.Keywords: data compression, ultrasonic communication, guided waves, FEM analysis
Procedia PDF Downloads 1245924 Comparing Phonological Processes in Persian-Arabic Bilingual Children and Monolingual Children
Authors: Vafa Delphi, Maryam Delphi, Talieh Zarifian, Enayatolah Bakhshi
Abstract:
Background and Aim: Bilingualism is a common phenomenon in many countries of the world and May be consistent consonant errors in the speech of bilingual children. The aim of this study was to evaluate Phonological skills include occurrence proportion, frequency and type of phonological processes in Persian-Arabic speaking children in Ahvaz city, the center of Khuzestan. Method: This study is descriptive-analytical and cross-sectional. Twenty-eight children aged 36-48 months were divided into two groups Persian monolingual and Persian-Arabic bilingual: (14 participants in each group). Sampling was recruited randomly based on inclusion criteria from kindergartens of the Ahvaz city in Iran. The tool of this study was the Persian Phonological Test (PPT), a subtest of Persian Diagnostic Evaluation Articulation and Phonological test. In this test, Phonological processes were investigated in two groups: structure and substitution processes. Data was investigated using SPSS software and the U Mann-Whitney test. Results: The results showed that the proportion occurrence of substitution process was significantly different between two groups of monolingual and bilingual (P=0/001), But the type of phonological processes didn’t show a significant difference in both monolingual and bilingual children of the Persian-Arabic.The frequency of phonological processes is greater in bilingual children than monolingual children. Conclusion: The study showed that bilingualism has no effect on type of phonological processes, but this can be effective on the frequency of processes. Since the type of phonological processes in bilingual children is similar to monolingual children So we can conclude the Persian_arabic bilingual children's phonological system is similar to monolingual children.Keywords: Persian-Arabic bilingual child, phonological processes, the proportion occurrence of syllable structure, the proportion occurrence of substitution
Procedia PDF Downloads 3165923 Potential of Polyphenols from Tamarix Gallica towards Common Pathological Features of Diabetes and Alzheimer’s Diseases
Authors: Asma Ben Hmidene, Mizuho Hanaki, Kazuma Murakami, Kazuhiro Irie, Hiroko Isoda, Hideyuki Shigemori
Abstract:
Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) are characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system, respectively. It is now widely recognized that T2DM and AD share many pathophysiological features including glucose metabolism, increased oxidative stress and amyloid aggregation. Amyloid beta (Aβ) is the components of the amyloid deposits in the AD brain and while the component of the amyloidogenic peptide deposit in the pancreatic islets of Langerhans is identified as human islet amyloid polypeptide (hIAPP). These two proteins are originated from the amyloid precursor protein and have a high sequence similarity. Although the amino acid sequences of amyloidogenic proteins are diverse, they all adopt a similar structure in aggregates called cross-beta-spine. Add at that, extensive studies in the past years have found that like Aβ1-42, IAPP forms early intermediate assemblies as spherical oligomers, implicating that these oligomers possess a common folding pattern or conformation. These similarities can be used in the search for effective pharmacotherapy for DM, since potent therapeutic agents such as antioxidants with a catechol moiety, proved to inhibit Aβ aggregation, may play a key role in the inhibit the aggregation of hIAPP treatment of patients with DM. Tamarix gallica is one of the halophyte species having a powerful antioxidant system. Although it was traditionally used for the treatment of various liver metabolic disorders, there is no report about the use of this plant for the treatment or prevention of T2DM and AD. Therefore, the aim of this work is to investigate their protective effect towards T2DM and AD by isolation and identification of α-glucosidase inhibitors, with antioxidant potential, that play an important role in the glucose metabolism in diabetic patient, as well as, the polymerization of hIAPP and Aβ aggregation inhibitors. Structure-activity relationship study was conducted for both assays. And as for α-glucosidase inhibitors, their mechanism of action and their synergistic potential when applied with a very low concentration of acarbose were also suggesting that they can be used not only as α-glucosidase inhibitors but also be combined with established α-glucosidase inhibitors to reduce their adverse effect. The antioxidant potential of the purified substances was evaluated by DPPH and SOD assays. Th-T assay using 42-mer amyloid β-protein (Aβ42) for AD and hIAPP which is a 37-residue peptide secreted by the pancreatic β –cells for T2DM and Transmission electronic microscopy (TEM) were conducted to evaluate the amyloid aggragation of the actives substances. For α-glucosidase, p-NPG and glucose oxidase assays were performed for determining the inhibition potential and structure-activity relationship study. The Enzyme kinetic protocol was used to study the mechanism of action. From this research, it was concluded that polyphenols playing a role in the glucose metabolism and oxidative stress can also inhibit the amyloid aggregation, and that substances with a catechol and glucuronide moieties inhibiting amyloid-β aggregation, might be used to inhibit the aggregation of hIAPP.Keywords: α-glucosidase inhibitors, amyloid aggregation inhibition, mechanism of action, polyphenols, structure activity relationship, synergistic potential, tamarix gallica
Procedia PDF Downloads 2795922 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping
Authors: Chao Yi, Cunyue Lu, Lingwei Quan
Abstract:
Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.Keywords: piezoelectric stack, linear motor, rigid clamping, elliptical trajectory
Procedia PDF Downloads 1535921 Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis
Authors: V. Jelev, P. Petkov, P. Shindov
Abstract:
Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching.Keywords: metal oxide film, SnO2 film, position sensitive photodetectors (PSD), lateral photovoltaic effect
Procedia PDF Downloads 3015920 A System Dynamics Model for Analyzing Customer Satisfaction in Healthcare Systems
Authors: Mahdi Bastan, Ali Mohammad Ahmadvand, Fatemeh Soltani Khamsehpour
Abstract:
Health organizations’ sustainable development has nowadays become highly affected by customers’ satisfaction due to significant changes made in the business environment of the healthcare system and emerging of Competitiveness paradigm. In case we look at the hospitals and other health organizations as service providers concerning profit issues, the satisfaction of employees as interior customers, and patients as exterior customers would be of significant importance in health business success. Furthermore, satisfaction rate could be considered in performance assessment of healthcare organizations as a perceived quality measure. Several researches have been carried out in identification of effective factors on patients’ satisfaction in health organizations. However, considering a systemic view, the complex causal relations among many components of healthcare system would be an issue that its acquisition and sustainability requires an understanding of the dynamic complexity, an appropriate cognition of different components, and effective relationships among them resulting ultimately in identifying the generative structure of patients’ satisfaction. Hence, the presenting paper applies system dynamics approaches coherently and methodologically to represent the systemic structure of customers’ satisfaction of a health system involving the constituent components and interactions among them. Then, the results of different policies taken on the system are simulated via developing mathematical models, identifying leverage points, and using scenario making technique and then, the best solutions are presented to improve customers’ satisfaction of the services. The presenting approach supports taking advantage of decision support systems. Additionally, relying on understanding of system behavior Dynamics, the effective policies for improving the health system would be recognized.Keywords: customer satisfaction, healthcare, scenario, simulation, system dynamics
Procedia PDF Downloads 4155919 Questioning the Sustainability in Development: The Resilience of Local Variety of Rice in the Changing Dayak Community of Central Kalimantan, Indonesia
Authors: Semiarto Aji Purwanto, Sutji Shinto
Abstract:
Over a quarter century, the idea of sustainable development has become a global discussion. In Indonesia, more than five decades since the development of the country took priority over any other matter, a discussion on the need of development is still an intriguing. Far from the enthusiasm of development programs run by the Indonesian government since 1967, the Dayak community in the interior of Kalimantan tropical forest was significantly abandoned from the changes. There were not many programs for the interior because the focus of development mostly was in Java island. Consequently, the Dayak live their life as shifting cultivator that has been practiced for centuries. Our ethnographic observation conducted in April-July 2016, found that today, they still maintain the knowledge and keeping the existence of local variety of rice. While in Java, these varieties have been replaced by more-productive-and-resistant-to-pest varieties, the Dayak still maintain more than 60s varieties. From the biodiversity’s perspective, it is a delightful news; while from the cultural perspective, the persistence of their custom regarding to the practice of traditional cultivation is fascinating as well. The local knowledge of agriculture is well conserved and practice daily. It is revealed that the resilience of those rice varieties is related to the local social structure since the distribution of each variety usually limited to the particular clans in the community. While experiencing the lack of programs for village development, the community has maintained the local leadership and its government structure at the village level. The paper will explore the effect of how a neglected area, which was disregarded by development program, sustains their culture and biodiversity. We would like to discuss the concept of sustainability whether it needed for the development programs, for the changes into a modern civilisation, or for the sake of the local to survive.Keywords: sustainable development, local knowledge, rice, resilience, Kalimantan, Indonesia
Procedia PDF Downloads 2835918 The Structure and Composition of Plant Communities in Ajluon Forest Reserve in Jordan
Authors: Maher J. Tadros, Yaseen Ananbeh
Abstract:
The study area is located in Ajluon Forest Reserve northern part of Jordan. It consists of Mediterranean hills dominated by open woodlands of oak and pistachio. The aims of the study were to investigate the positive and negative relationships between the locals and the protected area and how it can affect the long-term forest conservation. The main research objectives are to review the impact of establishing Ajloun Forest Reserve on nature conservation and on the livelihood level of local communities around the reserve. The Ajloun forest reserve plays a fundamental role in Ajloun area development. The existence of initiatives of nature conservation in the area supports various socio-economic activities around the reserve that contribute towards the development of local communities in Ajloun area. A part of this research was to conduct a survey to study the impact of Ajloun forest reserve on biodiversity composition. Also, studying the biodiversity content especially for vegetation to determine the economic impacts of Ajloun forest reserve on its surroundings was studied. In this study, several methods were used to fill the objectives including point-centered quarter method which involves selecting randomly 50 plots at the study site. The collected data from the field showed that the absolute density was (1031.24 plant per hectare). Density was recorded and found to be the highest for Quecus coccifera, and relative density of (73.7%), this was followed by Arbutus andrachne and relative density (7.1%), Pistacia palaestina and relative density (10.5%) and Crataegus azarulus (82.5 p/ha) and relative density (5.1%),Keywords: composition, density, frequency, importance value, point-centered quarter, structure, tree cover
Procedia PDF Downloads 2785917 Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials
Authors: Jefto Terzovic, Ana Kontic, Isidora Ilic
Abstract:
In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials.Keywords: laminated glass, laminated plexiglass, aseismic stiffening, experiment, laboratory testing, computer model, finite element method
Procedia PDF Downloads 785916 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings
Authors: Jude K. Safo
Abstract:
Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics
Procedia PDF Downloads 685915 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 1085914 Determination of Geotechnical Properties of Travertine Lithotypes in Van-Turkey
Authors: Ali Ozvan, Ismail Akkaya, Mucip Tapan
Abstract:
Travertine is generally a weak or medium strong rock, and physical, mechanical and structural properties of travertines are direct impacts on geotechnical studies. New settlement areas were determined on travertine units after two destructive earthquakes which occurred on October 23rd, 2011 (M=7.1) and November 9th, 2011 (M=5.6) in Tabanlı and Edremit districts of Van province in Turkey, respectively. In the study area, the travertines have different lithotype and engineering properties such as strong crystalline crust, medium strong shrub, and weak reed which can affect mechanical and engineering properties of travertine and each level have different handicaps. Travertine has a higher strength when compared to the soil ground; however, it can have different handicaps such as having poor rock mass, karst caves and weathering alteration. Physico-mechanical properties of travertine in the study area are determined by laboratory tests and field observations. Uniaxial compressive strength (UCS) values were detected by indirect methods, and the strength map of different lithotype of Edremit travertine was created in order to define suitable settlement areas. Also, rock mass properties and underground structure were determined by bore holes, field studies, and geophysical method. The reason of this study is to investigate the relationship between lithotype and physicomechanical properties of travertines. According to the results, lithotype has an effect on physical, mechanical and rock mass properties of travertine levels. It is detected by several research methods that various handicaps may occur on such areas when the active tectonic structure of the area is evaluated along with the karstic cavities within the travertine and different lithotype qualities.Keywords: travertine, lithotype, geotechnical parameters, Van earthquake
Procedia PDF Downloads 2315913 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS
Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong
Abstract:
With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition
Procedia PDF Downloads 3695912 Study of the Removal Efficiency of Azo-Dyes Using Xanthan as Sequestering Agent
Authors: Cedillo Ortiz Cesar Isaac, Marañón-Ruiz Virginia-Francisca, Lozano-Alvarez Juan Antonio, Jáuregui-Rincón Juan, Roger Chiu Zarate
Abstract:
Introduction: The contamination of water with the azo-dye is a problem worldwide as although wastewater contaminate is treated in a municipal sewage system, still contain a considerable amount of dyes. In the present, there are different processes denominated tertiary method in which it is possible to lower the concentration of the dye. One of these methods is by adsorption onto various materials which can be organic or inorganic materials. The xanthan is a biomaterial as removal agents to decrease the dye content in aqueous solution. The Zimm-Bragg model described the experimental isotherms obtained when this biopolymer was used in the removal of textile dyes. Nevertheless, it was not established if a possible correlation between dye structure and removal efficiency exists. In this sense, the principal objective of this report is to propose a qualitative relationship between the structure of three azo-dyes (Congo Red (CR), Methyl Red (MR) and Methyl Orange (MO)) and their removal efficiency from aqueous environment when xanthan are used as dye sequestering agents. Methods: The dyes were subjected to different pH and ionic strength values to obtain the conditions of maximum dye removal. Afterward, these conditions were used to perform the adsorption isotherm as was reported in the previous study in our group. The Zimm-Bragg model was used to describe the experimental data and the parameters of nucleation (Ku) and cooperativity (U) were obtained by optimization using the R statistical software. The spectra from UV-Visible (aqueous solution), Infrared absorption and Raman spectroscopies (dry samples) were obtained from the biopolymer-dye complex. Results: The removal percent with xanthan in each dye are as follows: with CR had 99.98 % when the pH is 12 and ionic strength is 10.12, with MR had 84.79 % when the pH is 9.5 and ionic strength is 43 and finally the MO had 30 % in pH 4 and 72. It can be seen that when xanthan is used to remove the dyes, exists a lower dependence between structure and removal efficiency. This may be due to the different tendency to form aggregates of each dye. This aggregation capacity and the charge of each dye resulting from the pH and ionic strength values of aqueous solutions are key factors in the dye removal. The experimental isotherm of MR was only that adequately described by Zimm-Bragg model. Because with the CR had the 100 % of remove thus is very difficult obtain de experimental isotherm and finally MO had results fluctuating and therefore was impossible get the accurate data. Conclusions: The study of the removal of three dyes with xanthan as dye sequestering agents suggests that aggregation capacity of dyes and the charge resulting from structural characteristics such as molecular weight and functional groups have a relationship with the removal efficiency. Acknowledgements: We are gratefully acknowledged support for this project by Consejo Nacional de Ciencia y Tecnología, México (CONACyT, Grant No. 632694.)Keywords: adsorption, azo dyes, xanthan gum, Zimm Bragg theory
Procedia PDF Downloads 2805911 Microstructure Evolution and Pre-transformation Microstructure Reconstruction in Ti-6Al-4V Alloy
Authors: Shreyash Hadke, Manendra Singh Parihar, Rajesh Khatirkar
Abstract:
In the present investigation, the variation in the microstructure with the changes in the heat treatment conditions i.e. temperature and time was observed. Ti-6Al-4V alloy was subject to solution annealing treatments in β (1066C) and α+β phase (930C and 850C) followed by quenching, air cooling and furnace cooling to room temperature respectively. The effect of solution annealing and cooling on the microstructure was studied by using optical microscopy (OM), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and x-ray diffraction (XRD). The chemical composition of the β phase for different conditions was determined with the help of energy dispersive spectrometer (EDS) attached to SEM. Furnace cooling resulted in the development of coarser structure (α+β), while air cooling resulted in much finer structure with widmanstatten morphology of α at the grain boundaries. Quenching from solution annealing temperature formed α’ martensite, their proportion being dependent on the temperature in β phase field. It is well known that the transformation of β to α follows Burger orientation relationship (OR). In order to reconstruct the microstructure of parent β phase, a MATLAB code was written using neighbor-to-neighbor, triplet method and Tari’s method. The code was tested on the annealed samples (1066C solution annealing temperature followed by furnace cooling to room temperature). The parent phase data thus generated was then plotted using the TSL-OIM software. The reconstruction results of the above methods were compared and analyzed. The Tari’s approach (clustering approach) gave better results compared to neighbor-to-neighbor and triplet method but the time taken by the triplet method was least compared to the other two methods.Keywords: Ti-6Al-4V alloy, microstructure, electron backscattered diffraction, parent phase reconstruction
Procedia PDF Downloads 4465910 Mikrophonie I (1964) by Karlheinz Stockhausen - Between Idea and Auditory Image
Authors: Justyna Humięcka-Jakubowska
Abstract:
1. Background in music analysis. Traditionally, when we think about a composer’s sketches, the chances are that we are thinking in terms of the working out of detail, rather than the evolution of an overall concept. Since music is a “time art’, it follows that questions of a form cannot be entirely detached from considerations of time. One could say that composers tend to regard time either as a place gradually and partially intuitively filled, or they can look for a specific strategy to occupy it. In my opinion, one thing that sheds light on Stockhausen's compositional thinking is his frequent use of 'form schemas', that is often a single-page representation of the entire structure of a piece. 2. Background in music technology. Sonic Visualiser is a program used to study a musical recording. It is an open source application for viewing, analysing, and annotating music audio files. It contains a number of visualisation tools, which are designed with useful default parameters for musical analysis. Additionally, the Vamp plugin format of SV supports to provide analysis such as for example structural segmentation. 3. Aims. The aim of my paper is to show how SV may be used to obtain a better understanding of the specific musical work, and how the compositional strategy does impact on musical structures and musical surfaces. I want to show that ‘traditional” music analytic methods don’t allow to indicate interrelationships between musical surface (which is perceived) and underlying musical/acoustical structure. 4. Main Contribution. Stockhausen had dealt with the most diverse musical problems by the most varied methods. A characteristic which he had never ceased to be placed at the center of his thought and works, it was the quest for a new balance founded upon an acute connection between speculation and intuition. In the case with Mikrophonie I (1964) for tam-tam and 6 players Stockhausen makes a distinction between the "connection scheme", which indicates the ground rules underlying all versions, and the form scheme, which is associated with a particular version. The preface to the published score includes both the connection scheme, and a single instance of a "form scheme", which is what one can hear on the CD recording. In the current study, the insight into the compositional strategy chosen by Stockhausen was been compared with auditory image, that is, with the perceived musical surface. Stockhausen's musical work is analyzed both in terms of melodic/voice and timbre evolution. 5. Implications The current study shows how musical structures have determined of musical surface. My general assumption is this, that while listening to music we can extract basic kinds of musical information from musical surfaces. It is shown that an interactive strategies of musical structure analysis can offer a very fruitful way of looking directly into certain structural features of music.Keywords: automated analysis, composer's strategy, mikrophonie I, musical surface, stockhausen
Procedia PDF Downloads 2975909 Intelligent Control of Bioprocesses: A Software Application
Authors: Mihai Caramihai, Dan Vasilescu
Abstract:
The main research objective of the experimental bioprocess analyzed in this paper was to obtain large biomass quantities. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The reactor was equipped with pH, temperature, dissolved oxygen, and agitation controllers. The operating parameters were 37 oC, 1.2 atm, 250 rpm and air flow rate of 15 L/min. The main objective of this paper is to present a case study to demonstrate that intelligent control, describing the complexity of the biological process in a qualitative and subjective manner as perceived by human operator, is an efficient control strategy for this kind of bioprocesses. In order to simulate the bioprocess evolution, an intelligent control structure, based on fuzzy logic has been designed. The specific objective is to present a fuzzy control approach, based on human expert’ rules vs. a modeling approach of the cells growth based on bioprocess experimental data. The kinetic modeling may represent only a small number of bioprocesses for overall biosystem behavior while fuzzy control system (FCS) can manipulate incomplete and uncertain information about the process assuring high control performance and provides an alternative solution to non-linear control as it is closer to the real world. Due to the high degree of non-linearity and time variance of bioprocesses, the need of control mechanism arises. BIOSIM, an original developed software package, implements such a control structure. The simulation study has showed that the fuzzy technique is quite appropriate for this non-linear, time-varying system vs. the classical control method based on a priori model.Keywords: intelligent, control, fuzzy model, bioprocess optimization
Procedia PDF Downloads 326