Search results for: measurement accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6127

Search results for: measurement accuracy

4327 Dietary Anion-Cation Balance of Grass and Net Acid-Base Excretion in Urine of Suckler Cows

Authors: H. Scholz, P. Kuehne, G. Heckenberger

Abstract:

Dietary Anion-Cation Balance (DCAB) in grazing systems under German conditions has a tendency to decrease from May until September and often are measured DCAB lower than 100 meq per kg dry matter. Lower DCAB in grass feeding system can change the metabolic status of suckler cows and often are results in acidotic metabolism. Measurement of acid-base excretion in dairy cows has been proved to a method to evaluate the acid-base status. The hypothesis was that metabolic imbalances could be identified by urine measurement in suckler cows. The farm study was conducted during the grazing seasons 2017 and 2018 and involved 7 suckler cow farms in Germany. Suckler cows were grazing during the whole time of the investigation and had no access to other feeding components. Cows had free access to water and salt block and free access to minerals (loose). The dry matter of the grass was determined at 60 °C and were then analysed for energy and nutrient content and for the Dietary Cation-Anion Balance (DCAB). Urine was collected in 50 ml-glasses and analysed for net acid-base excretion (NSBA) and the concentration of creatinine and urea in the laboratory. Statistical analysis took place with ANOVA with fixed effects of farms (1-7), month (May until September), and number of lactations (1, 2, and ≥ 3 lactations) using SPSS Version 25.0 for windows. An alpha of 0.05 was used for all statistical tests. During the grazing periods of years 2017 and 2018, an average DCAB was observed in the grass of 167 meq per kg DM. A very high mean variation could be determined from -42 meq/kg to +439 meq/kg. Reference values in relation to DCAB were described between 150 meq and 400 meq per kg DM. It was found the high chlorine content with reduced potassium level led to this reduction in DCAB at the end of the grazing period. Between the DCAB of the grass and the NSBA in urine of suckler cows was a correlation according to PEARSON of r = 0.478 (p ≤ 0.001) or after SPEARMAN of r = 0.601 (p ≤ 0.001) observed. For the control of urine values of grazing suckler cows, the wide spread of the values poses a challenge of the interpretation, especially since the DCAB is unknown. The influence of several feeding components such as chlorine, sulfur, potassium, and sodium (ions for the DCAB) and dry matter feed intake during the grazing period of suckler cows should be taken into account in further research. The results obtained show that up a decrease in the DCAB is related to a decrease in NSBA in urine of suckler cows. Monitoring of metabolic disturbances should include analysis of urine, blood, milk, and ruminal fluid.

Keywords: dietary anion-cation balance, DCAB, net acid-base excretion, NSBA, suckler cow, grazing period

Procedia PDF Downloads 151
4326 Study on Accurate Calculation Method of Model Attidude on Wind Tunnel Test

Authors: Jinjun Jiang, Lianzhong Chen, Rui Xu

Abstract:

The accurate of model attitude angel plays an important role on the aerodynamic test results in the wind tunnel test. The original method applies the spherical coordinate system transformation to obtain attitude angel calculation.The model attitude angel is obtained by coordinate transformation and spherical surface mapping applying the nominal attitude angel (the balance attitude angel in the wind tunnel coordinate system) indicated by the mechanism. First, the coordinate transformation of this method is not only complex but also difficult to establish the transformed relationship between the space coordinate systems especially after many steps of coordinate transformation, moreover it cannot realize the iterative calculation of the interference relationship between attitude angels; Second, during the calculate process to solve the problem the arc is approximately used to replace the straight line, the angel for the tangent value, and the inverse trigonometric function is applied. Therefore, in the calculation of attitude angel, the process is complex and inaccurate, which can be solved approximately when calculating small attack angel. However, with the advancing development of modern aerodynamic unsteady research, the aircraft tends to develop high or super large attack angel and unsteadyresearch field.According to engineering practice and vector theory, the concept of vector angel coordinate systemis proposed for the first time, and the vector angel coordinate system of attitude angel is established.With the iterative correction calculation and avoiding the problem of approximate and inverse trigonometric function solution, the model attitude calculation process is carried out in detail, which validates that the calculation accuracy and accuracy of model attitude angels are improved.Based on engineering and theoretical methods, a vector angel coordinate systemis established for the first time, which gives the transformation and angel definition relations between different flight attitude coordinate systems, that can accurately calculate the attitude angel of the corresponding coordinate systemand determine its direction, especially in the channel coupling calculation, the calculation of the attitude angel between the coordinate systems is only related to the angel, and has nothing to do with the change order s of the coordinate system, whichsimplifies the calculation process.

Keywords: attitude angel, angel vector coordinate system, iterative calculation, spherical coordinate system, wind tunnel test

Procedia PDF Downloads 150
4325 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body

Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker

Abstract:

This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel

Procedia PDF Downloads 396
4324 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 297
4323 Experimental Study of Different Types of Concrete in Uniaxial Compression Test

Authors: Khashayar Jafari, Mostafa Jafarian Abyaneh, Vahab Toufigh

Abstract:

Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.

Keywords: polymer concrete, ordinary cement concrete, lightweight concrete, uniaxial compression test, volumetric strain

Procedia PDF Downloads 395
4322 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis

Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier

Abstract:

Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.

Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis

Procedia PDF Downloads 207
4321 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 138
4320 Proposed Pattern for Fitted Men's Suit Jacket Using the Method of Draping on the Mannequin

Authors: Hazem A. Abdelfattah, Salia H. Khafaji

Abstract:

Apparel industry needs to direct scientific researches to develop it , and because of the importance of a men’s suit jacket industry, the study of the basics of men’s jacket pattern making requires a high degree of accuracy and efficiency which contain a lot of technical and skill aspects to give the jacket a drape, comfort and good fitting , prompting researchers to think about the use of men’s mannequin with sizes (M-L-XL) to devise a method to draft a paper pattern for the men's suit jacket to use it in the industry easily and quickly and achieve the required good fitting.

Keywords: draping, pattern, men, jacket

Procedia PDF Downloads 349
4319 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach

Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes

Abstract:

Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.

Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux

Procedia PDF Downloads 167
4318 Training as a Service for Electronic Warfare

Authors: Toan Vo

Abstract:

Electronic attacks, illegal drones, interference, and jamming are no longer capabilities reserved for a state-sponsored, near-peer adversary. The proliferation of jammers on auction websites has lowered the price of entry for electronics hobbyists and nefarious actors. To enable local authorities and enforcement bodies to keep up with these challenges, this paper proposes a training as a service model to quickly and economically train and equip police departments and local law enforcement agencies. Using the U.S Department of Defense’s investment in Electronic Warfare as a guideline, a large number of personnel can be trained on effective spectrum monitoring techniques using commercial equipment readily available on the market. Finally, this paper will examine the economic benefits to the test and measurement industry if the TaaS model is applied.

Keywords: training, electronic warfare, economics, law enforcement

Procedia PDF Downloads 103
4317 Video Stabilization Using Feature Point Matching

Authors: Shamsundar Kulkarni

Abstract:

Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.

Keywords: video stabilization, point feature matching, salient points, image quality measurement

Procedia PDF Downloads 314
4316 Evaluation of SDS (Software Defined Storage) Controller (CorpHD) for Various Storage Demands

Authors: Shreya Bokare, Sanjay Pawar, Shika Nema

Abstract:

Growth in cloud applications is generating the tremendous amount of data, building load on traditional storage management systems. Software Defined Storage (SDS) is a new storage management concept becoming popular to handle this large amount of data. CoprHD is one of the open source SDS controller, available for experimentation and development in the storage industry. In this paper, the storage management techniques provided by CoprHD to manage heterogeneous storage platforms are experimented and analyzed. Various storage management parameters such as time to provision, storage capacity measurement, and heterogeneity are experimentally evaluated along with the theoretical expression to prove the completeness of CoprHD controller for storage management.

Keywords: software defined storage, SDS, CoprHD, open source, SMI-S simulator, clarion, Symmetrix

Procedia PDF Downloads 313
4315 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India

Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma

Abstract:

Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.

Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation

Procedia PDF Downloads 144
4314 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions

Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias

Abstract:

This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented.

Keywords: teledosimetric data, efficiency, reliability, safety, cluster solution

Procedia PDF Downloads 516
4313 Effect of Swelling Pressure on Drug Release from Polyelectrolyte Micro-Hydrogel Particles

Authors: Mina Boroujerdi, Javad Tavakoli

Abstract:

Hydrogels are extensively studied as matrices for the controlled release of drugs. To evaluate the mobility of embedded molecules, these drug delivery systems are usually characterized by release studies. In this contribution, an electronic device for swelling pressure measurement during drug release from hydrogel network was developed. Also, poly acrylic acid micro particles were prepared for prolonged and sustained controlled acetaminophen release. Effect of swelling pressure on drug release from micro particles studied under different environment pH in order to predict release profile in gastro-intestine medium. Swelling ratio and swelling pressure were measured in different pH.

Keywords: swelling pressure, drug delivery, hydrogel, polyelectrolyte

Procedia PDF Downloads 301
4312 Artificial Intelligance Features in Canva

Authors: Amira Masood, Zainah Alshouri, Noor Bantan, Samira Kutbi

Abstract:

Artificial intelligence is continuously becoming more advanced and more widespread and is present in many of our day-to-day lives as a means of assistance in numerous different fields. A growing number of people, companies, and corporations are utilizing Canva and its AI tools as a method of quick and easy media production. Hence, in order to test the integrity of the rapid growth of AI, this paper will explore the usefulness of Canva's advanced design features as well as their accuracy by determining user satisfaction through a survey-based research approach and by investigating whether or not AI is successful enough that it eliminates the need for human alterations.

Keywords: artificial intelligence, canva, features, users, satisfaction

Procedia PDF Downloads 107
4311 Antimicrobial Resistance: Knowledge towards Antibiotics in a Mexican Population

Authors: L. D. Upegui, Isabel Alvarez-Solorza, Karina Garduno-Ulloa, Maren Boecker

Abstract:

Introduction: The increasing prevalence rate of resistant and multiresistant bacterial strains to antibiotics is a threat to public health and requires a rapid multifunctional answer. Individuals that are affected by resistant strains present a higher morbidity and mortality than individuals that are infected with the same species of bacteria but with sensitive strains. There have been identified risk factors that are related to the misuse and overuse of antibiotics, like socio-demographic characteristics and psychological aspects of the individuals that have not been explored objectively due to a lack of valid and reliable instruments for their measurement. Objective: To validate a questionnaire for the evaluation of the levels of knowledge related to the use of antibiotics in a Mexican population. Materials and Methods: Analytical cross-sectional observational study. The questionnaire consists of 12 items to evaluated knowledge (1=no, 2=not sure, 3=yes) regarding the use of antibiotics, with higher scores corresponding to a higher level of knowledge. Data are collected in a sample of students. Data collection is still ongoing. In this abstract preliminary results of 30 respondents are reported which were collected during pilot-testing. The validation of the instrument was done using the Rasch model. Fit to the Rasch model was tested checking overall fit to the model, unidimensionality, local independence and evaluating the presence of Differential Item Functioning (DIF) by age and gender. The software Rumm2030 and the SPSS were used for the analyses. Results: The participants of the pilot-testing presented an average age of 32 years ± 12.6 and 53% were women. The preliminary results indicated that the items showed good fit to the Rasch model (chi-squared=12.8 p=0.3795). Unidimensionality (number of significant t-tests of 3%) could be proven, the items were locally independent, and no DIF was observed. Knowledge was the smallest regarding statements on the role of antibiotics in treating infections, e.g., most of the respondents did not know that antibiotics would not work against viral infections (70%) and that they could also cause side effects (87%). The knowledge score ranged from 0 to 100 points with a transformed measurement (mean of knowledge 27.1 ± 4.8). Conclusions: The instrument showed good psychometric proprieties. The low scores of knowledge about antibiotics suggest that misinterpretations on the use of these medicaments were prevalent, which could influence the production of antibiotic resistance. The application of this questionnaire will allow the objective identification of 'Hight risk groups', which will be the target population for future educational campaigns, to reduce the knowledge gaps on the general population as an effort against antibiotic resistance.

Keywords: antibiotics, knowledge, misuse, overuse, questionnaire, Rasch model, validation

Procedia PDF Downloads 157
4310 [Keynote Talk]: A Comparative Study on Air Permeability Properties of Multilayered Nonwoven Structures

Authors: M. Kucukali Ozturk, B. Nergis, C. Candan

Abstract:

Air permeability plays an important role for applications such as filtration, thermal and acoustic insulation. The study discussed in this paper was conducted in an attempt to investigate air permeability property of various combinations of nonwovens. The PROWHITE air permeability tester was used for the measurement of the air permeability of the samples in accordance with the relevant standards and a comparative study of the results were made. It was found that the fabric mass per unit area was closely related to the air-permeability. The air permeability decreased with the increase in mass per unit area. Additionally, the air permeability of nonwoven fabrics decreased with the increase in thickness. Moreover, air permeability of multilayered SMS nonwoven structures was lower than those of single layered ones.

Keywords: air permeability, mass per unit area, nonwoven structure, polypropylene nonwoven, thickness

Procedia PDF Downloads 346
4309 Photovoltaic Modules Fault Diagnosis Using Low-Cost Integrated Sensors

Authors: Marjila Burhanzoi, Kenta Onohara, Tomoaki Ikegami

Abstract:

Faults in photovoltaic (PV) modules should be detected to the greatest extent as early as possible. For that conventional fault detection methods such as electrical characterization, visual inspection, infrared (IR) imaging, ultraviolet fluorescence and electroluminescence (EL) imaging are used, but they either fail to detect the location or category of fault, or they require expensive equipment and are not convenient for onsite application. Hence, these methods are not convenient to use for monitoring small-scale PV systems. Therefore, low cost and efficient inspection techniques with the ability of onsite application are indispensable for PV modules. In this study in order to establish efficient inspection technique, correlation between faults and magnetic flux density on the surface is of crystalline PV modules are investigated. Magnetic flux on the surface of normal and faulted PV modules is measured under the short circuit and illuminated conditions using two different sensor devices. One device is made of small integrated sensors namely 9-axis motion tracking sensor with a 3-axis electronic compass embedded, an IR temperature sensor, an optical laser position sensor and a microcontroller. This device measures the X, Y and Z components of the magnetic flux density (Bx, By and Bz) few mm above the surface of a PV module and outputs the data as line graphs in LabVIEW program. The second device is made of a laser optical sensor and two magnetic line sensor modules consisting 16 pieces of magnetic sensors. This device scans the magnetic field on the surface of PV module and outputs the data as a 3D surface plot of the magnetic flux intensity in a LabVIEW program. A PC equipped with LabVIEW software is used for data acquisition and analysis for both devices. To show the effectiveness of this method, measured results are compared to those of a normal reference module and their EL images. Through the experiments it was confirmed that the magnetic field in the faulted areas have different profiles which can be clearly identified in the measured plots. Measurement results showed a perfect correlation with the EL images and using position sensors it identified the exact location of faults. This method was applied on different modules and various faults were detected using it. The proposed method owns the ability of on-site measurement and real-time diagnosis. Since simple sensors are used to make the device, it is low cost and convenient to be sued by small-scale or residential PV system owners.

Keywords: fault diagnosis, fault location, integrated sensors, PV modules

Procedia PDF Downloads 224
4308 Airborne Molecular Contamination in Clean Room Environment

Authors: T. Rajamäki

Abstract:

In clean room environment molecular contamination in very small concentrations can cause significant harm for the components and processes. This is commonly referred as airborne molecular contamination (AMC). There is a shortage of high sensitivity continuous measurement data for existence and behavior of several of these contaminants. Accordingly, in most cases correlation between concentration of harmful molecules and their effect on processes is not known. In addition, the formation and distribution of contaminating molecules are unclear. In this work sensitive optical techniques are applied in clean room facilities for investigation of concentrations, forming mechanisms and effects of contaminating molecules. Special emphasis is on reactive acid and base gases ammonia (NH3) and hydrogen fluoride (HF). They are the key chemicals in several operations taking place in clean room processes.

Keywords: AMC, clean room, concentration, reactive gas

Procedia PDF Downloads 283
4307 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 68
4306 The Unscented Kalman Filter Implementation for the Sensorless Speed Control of a Permanent Magnet Synchronous Motor

Authors: Justas Dilys

Abstract:

ThispaperaddressestheimplementationandoptimizationofanUnscentedKalmanFilter(UKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex- M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of UKF estimator was up to 90µs without loss of accuracy. Moreover, simulation studies on the Unscented Kalman filters are carried out using Matlab to explore the usability of the UKF in a sensorless PMSMdrive.

Keywords: unscented kalman filter, ARM, PMSM, implementation

Procedia PDF Downloads 169
4305 Groundwater Potential Delineation Using Geodetector Based Convolutional Neural Network in the Gunabay Watershed of Ethiopia

Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, Abunu Atlabachew Eshete

Abstract:

Groundwater potential delineation is essential for efficient water resource utilization and long-term development. The scarcity of potable and irrigation water has become a critical issue due to natural and anthropogenic activities in meeting the demands of human survival and productivity. With these constraints, groundwater resources are now being used extensively in Ethiopia. Therefore, an innovative convolutional neural network (CNN) is successfully applied in the Gunabay watershed to delineate groundwater potential based on the selected major influencing factors. Groundwater recharge, lithology, drainage density, lineament density, transmissivity, and geomorphology were selected as major influencing factors during the groundwater potential of the study area. For dataset training, 70% of samples were selected and 30% were used for serving out of the total 128 samples. The spatial distribution of groundwater potential has been classified into five groups: very low (10.72%), low (25.67%), moderate (31.62%), high (19.93%), and very high (12.06%). The area obtains high rainfall but has a very low amount of recharge due to a lack of proper soil and water conservation structures. The major outcome of the study showed that moderate and low potential is dominant. Geodetoctor results revealed that the magnitude influences on groundwater potential have been ranked as transmissivity (0.48), recharge (0.26), lineament density (0.26), lithology (0.13), drainage density (0.12), and geomorphology (0.06). The model results showed that using a convolutional neural network (CNN), groundwater potentiality can be delineated with higher predictive capability and accuracy. CNN-based AUC validation platform showed that 81.58% and 86.84% were accrued from the accuracy of training and testing values, respectively. Based on the findings, the local government can receive technical assistance for groundwater exploration and sustainable water resource development in the Gunabay watershed. Finally, the use of a detector-based deep learning algorithm can provide a new platform for industrial sectors, groundwater experts, scholars, and decision-makers.

Keywords: CNN, geodetector, groundwater influencing factors, Groundwater potential, Gunabay watershed

Procedia PDF Downloads 23
4304 Ultrasonic Measurement of Elastic Properties of Fiber Reinforced Composite Materials

Authors: Hatice Guzel, Imran Oral, Huseyin Isler

Abstract:

In this study, elastic constants, Young’s modulus, Poisson’s ratios, and shear moduli of orthotropic composite materials, consisting of E-glass/epoxy and carbon/epoxy, were calculated by ultrasonic velocities which were measured using ultrasonic pulse-echo method. 35 MHz computer controlled analyzer, 60 MHz digital oscilloscope, 5 MHz longitudinal probe, and 2,25 MHz transverse probe were used for the measurements of ultrasound velocities, the measurements were performed at ambient temperature. It was understood from the data obtained in this study that, measured ultrasound velocities and the calculated elasticity coefficients were depending on the fiber orientations.

Keywords: composite materials, elastic constants, orthotropic materials, ultrasound

Procedia PDF Downloads 294
4303 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 170
4302 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 160
4301 Comprehensive Analysis of Electrohysterography Signal Features in Term and Preterm Labor

Authors: Zhihui Liu, Dongmei Hao, Qian Qiu, Yang An, Lin Yang, Song Zhang, Yimin Yang, Xuwen Li, Dingchang Zheng

Abstract:

Premature birth, defined as birth before 37 completed weeks of gestation is a leading cause of neonatal morbidity and mortality and has long-term adverse consequences for health. It has recently been reported that the worldwide preterm birth rate is around 10%. The existing measurement techniques for diagnosing preterm delivery include tocodynamometer, ultrasound and fetal fibronectin. However, they are subjective, or suffer from high measurement variability and inaccurate diagnosis and prediction of preterm labor. Electrohysterography (EHG) method based on recording of uterine electrical activity by electrodes attached to maternal abdomen, is a promising method to assess uterine activity and diagnose preterm labor. The purpose of this study is to analyze the difference of EHG signal features between term labor and preterm labor. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Among them, EHG signals from 38 term labor and 38 preterm labor were preprocessed with band-pass Butterworth filters of 0.08–4Hz. Then, EHG signal features were extracted, which comprised classical time domain description including root mean square and zero-crossing number, spectral parameters including peak frequency, mean frequency and median frequency, wavelet packet coefficients, autoregression (AR) model coefficients, and nonlinear measures including maximal Lyapunov exponent, sample entropy and correlation dimension. Their statistical significance for recognition of two groups of recordings was provided. The results showed that mean frequency of preterm labor was significantly smaller than term labor (p < 0.05). 5 coefficients of AR model showed significant difference between term labor and preterm labor. The maximal Lyapunov exponent of early preterm (time of recording < the 26th week of gestation) was significantly smaller than early term. The sample entropy of late preterm (time of recording > the 26th week of gestation) was significantly smaller than late term. There was no significant difference for other features between the term labor and preterm labor groups. Any future work regarding classification should therefore focus on using multiple techniques, with the mean frequency, AR coefficients, maximal Lyapunov exponent and the sample entropy being among the prime candidates. Even if these methods are not yet useful for clinical practice, they do bring the most promising indicators for the preterm labor.

Keywords: electrohysterogram, feature, preterm labor, term labor

Procedia PDF Downloads 573
4300 Examining the Effects of Increasing Lexical Retrieval Attempts in Tablet-Based Naming Therapy for Aphasia

Authors: Jeanne Gallee, Sofia Vallila-Rohter

Abstract:

Technology-based applications are increasingly being utilized in aphasia rehabilitation as a means of increasing intensity of treatment and improving accessibility to treatment. These interactive therapies, often available on tablets, lead individuals to complete language and cognitive rehabilitation tasks that draw upon skills such as the ability to name items, recognize semantic features, count syllables, rhyme, and categorize objects. Tasks involve visual and auditory stimulus cues and provide feedback about the accuracy of a person’s response. Research has begun to examine the efficacy of tablet-based therapies for aphasia, yet much remains unknown about how individuals interact with these therapy applications. Thus, the current study aims to examine the efficacy of a tablet-based therapy program for anomia, further examining how strategy training might influence the way that individuals with aphasia engage with and benefit from therapy. Individuals with aphasia are enrolled in one of two treatment paradigms: traditional therapy or strategy therapy. For ten weeks, all participants receive 2 hours of weekly in-house therapy using Constant Therapy, a tablet-based therapy application. Participants are provided with iPads and are additionally encouraged to work on therapy tasks for one hour a day at home (home logins). For those enrolled in traditional therapy, in-house sessions involve completing therapy tasks while a clinician researcher is present. For those enrolled in the strategy training group, in-house sessions focus on limiting cue use in order to maximize lexical retrieval attempts and naming opportunities. The strategy paradigm is based on the principle that retrieval attempts may foster long-term naming gains. Data have been collected from 7 participants with aphasia (3 in the traditional therapy group, 4 in the strategy training group). We examine cue use, latency of responses and accuracy through the course of therapy, comparing results across group and setting (in-house sessions vs. home logins).

Keywords: aphasia, speech-language pathology, traumatic brain injury, language

Procedia PDF Downloads 204
4299 Topographic Characteristics Derived from UAV Images to Detect Ephemeral Gully Channels

Authors: Recep Gundogan, Turgay Dindaroglu, Hikmet Gunal, Mustafa Ulukavak, Ron Bingner

Abstract:

A majority of total soil losses in agricultural areas could be attributed to ephemeral gullies caused by heavy rains in conventionally tilled fields; however, ephemeral gully erosion is often ignored in conventional soil erosion assessments. Ephemeral gullies are often easily filled from normal soil tillage operations, which makes capturing the existing ephemeral gullies in croplands difficult. This study was carried out to determine topographic features, including slope and aspect composite topographic index (CTI) and initiation points of gully channels, using images obtained from unmanned aerial vehicle (UAV) images. The study area was located in Topcu stream watershed in the eastern Mediterranean Region, where intense rainfall events occur over very short time periods. The slope varied between 0.7 and 99.5%, and the average slope was 24.7%. The UAV (multi-propeller hexacopter) was used as the carrier platform, and images were obtained with the RGB camera mounted on the UAV. The digital terrain models (DTM) of Topçu stream micro catchment produced using UAV images and manual field Global Positioning System (GPS) measurements were compared to assess the accuracy of UAV based measurements. Eighty-one gully channels were detected in the study area. The mean slope and CTI values in the micro-catchment obtained from DTMs generated using UAV images were 19.2% and 3.64, respectively, and both slope and CTI values were lower than those obtained using GPS measurements. The total length and volume of the gully channels were 868.2 m and 5.52 m³, respectively. Topographic characteristics and information on ephemeral gully channels (location of initial point, volume, and length) were estimated with high accuracy using the UAV images. The results reveal that UAV-based measuring techniques can be used in lieu of existing GPS and total station techniques by using images obtained with high-resolution UAVs.

Keywords: aspect, compound topographic index, digital terrain model, initial gully point, slope, unmanned aerial vehicle

Procedia PDF Downloads 114
4298 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.

Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation

Procedia PDF Downloads 346