Search results for: dye absorption capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5635

Search results for: dye absorption capacity

3835 Battling against the Great Disruption to Surgical Care in a Pandemic: Experience of Eleven South and Southeast Asian Countries

Authors: Naomi Huang Wenya, Xin Xiaohui, Vijaya Rao, Wong Ting Hway, Chow Kah Hoe Pierce, Tan Hiang Khoon

Abstract:

Background: The majority of the cancelled elective surgeries caused by the COVID-19 pandemic globally were estimated to occur in low- and middle-income countries (LMICs), where surgical services had long been in short supply even before the pandemic. Therefore, minimising disruption to existing surgical care in LMICs is of crucial importance during a pandemic. This study aimed to explore contributory factors to the continuity of surgical care in LMICs, in the face of a pandemic. Methods: Semi-structured interviews were conducted over zoom, with surgical leaders of 25 tertiary hospitals from 11 LMICs in South and Southeast Asia, from September to October 2020. Key themes were subsequently identified from the interview transcripts, using Braun and Clarke's method of thematic analysis. Results: The COVID-19 pandemic affected all surgical services of participating institutions but to varying degrees. Overall, elective surgeries suffered the gravest disruption, followed by outpatient surgical care, and finally, emergency surgeries. Keeping healthcare workers safe and striving for continuity of essential surgical care emerged as notable response strategies observed across all participating institutions. Conclusion: This study suggested that four factors are important for the resilience of surgical care against COVID-19: adequate COVID-19 testing capacity and effective institutional infection control measures, designated COVID-19 treatment facilities, a whole-system approach to balancing pandemic response and meeting essential surgical needs, and active community engagement. These findings can inform healthcare institutions in other countries, especially LMICs, in their effort to tread a fine line between preserving healthcare capacity for pandemic response and protecting surgical services against pandemic disruption.

Keywords: COVID-19, pandemic, LMICs, continuity of surgical service

Procedia PDF Downloads 84
3834 Theoretical Investigation of the Structural, Electronic, Optical and Elastic Properties of the Perovskite ScRhO₃

Authors: L. Foudia, K. Haddadi, M. Reffas

Abstract:

First principles study of structural, elastic, electronic and optical properties of the monoclinic perovskite type ScRhO₃ has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated lattice parameters, including the lattice constants and angle β are in excellent agreement with the available experimental data, which proving the reliability of the chosen theoretical approach. Pressure dependence up to 20 GPa of the single crystal and polycrystalline elastic constants has been investigated in details using the strain-stress approach. The mechanical stability, ductility, average elastic wave velocity, Debye temperature and elastic anisotropy were also assessed. Electronic band structure and density of states (DOS) demonstrated its semiconducting nature showing a direct band gap of 1.38 eV. Furthermore, several optical properties, such as absorption coefficient, reflectivity, refractive index, dielectric function, optical conductivity and electron energy loss function have been calculated for radiation up to 40 eV.

Keywords: ab-initio, perovskite, DFT, band gap.

Procedia PDF Downloads 74
3833 KTiPO4F: The Negative Electrode Material for Potassium Batteries

Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov

Abstract:

Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.

Keywords: anode material, potassium battery, chemical characterization, electrochemical properties

Procedia PDF Downloads 220
3832 New Insights Into Gluten-Free Bread Staling Treatment

Authors: Sayed Mostafa, Siham Mostafa Mohamed Faheid, Ibrahim Rizk Sayed Ahmed, Yasser Fehry Mohamed Kishk, Gamal Hassan Ragab

Abstract:

Gluten-free foods are still the only treatment for gluten-allergic patients. Consequently, this study is concerned with improving the quality attributes of gluten-free bread using different concentrations (0, 20, 40, 60 and 80ppm) of all maltogenic α-amylase (MA) and xylanase (XY) compared with wheat flour Balady bread and untreated gluten-free Balady bread (GFBB). Pasting properties, falling number, water activity, alkaline water retention capacity (AWRC) and sensory properties (fresh bread, after 24h, after 48h and after 72h) of gluten-free bread were evaluated. Additionally, the effect of merging different concentrations of maltogenic α-amylase and xylanase on stalling behavior (AWRC) and sensory properties of gluten-free Balady bread was investigated. The addition of MA led to a gradually decreased peak viscosity, breakdown, setback and pasting temperature of GFBB with the increasing level of MA. Maltogenic α-amylase and xylanase addition led to a reduction in the FN values compared to the untreated gluten-free sample, noting that the MA-treated samples showed a significant decrease compared to the XY-treated and untreated samples. Wheat flour Balady bread significantly showed a higher value of AWRC compared to untreated gluten-free Balady bread at different storage periods (zero time, after 24h, after 48h and after 72h). MA-treated samples showed higher water binding capacity and water activity (aw)in comparison with XY-treated samples, with significance during all storage periods. Concerning the overall acceptability during the third day, the highest score (4.6) was observed by the GFBB sample containing 40ppm MA, followed by 4.3, which was investigated by the GFBB sample containing 80ppm XY with no significance between them and with significance compared to the other samples.

Keywords: celiac disease, gluten-free products, anti-stalling agents, maltogenic α-amylase, xylanase

Procedia PDF Downloads 84
3831 Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(vi) Ions in Industrial Effluents

Authors: Ali N. Siyal, Saima Q. Memon, Latif Elçi, Aydan Elçi

Abstract:

Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N, N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by Flame Atomic Absorption Spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300 mg; flow rates 2.0 mL min-1 of solution and 2.0 mL min-1 of eluent (2.0 mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20 μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531 mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.

Keywords: styrofoam waste, polymeric resin, preconcentration, speciation, Cr(III)/Cr(VI) ions, FAAS

Procedia PDF Downloads 294
3830 Economic Development Impacts of Connected and Automated Vehicles (CAV)

Authors: Rimon Rafiah

Abstract:

This paper will present a combination of two seemingly unrelated models, which are the one for estimating economic development impacts as a result of transportation investment and the other for increasing CAV penetration in order to reduce congestion. Measuring economic development impacts resulting from transportation investments is becoming more recognized around the world. Examples include the UK’s Wider Economic Benefits (WEB) model, Economic Impact Assessments in the USA, various input-output models, and additional models around the world. The economic impact model is based on WEB and is based on the following premise: investments in transportation will reduce the cost of personal travel, enabling firms to be more competitive, creating additional throughput (the same road allows more people to travel), and reducing the cost of travel of workers to a new workplace. This reduction in travel costs was estimated in out-of-pocket terms in a given localized area and was then translated into additional employment based on regional labor supply elasticity. This additional employment was conservatively assumed to be at minimum wage levels, translated into GDP terms, and from there into direct taxation (i.e., an increase in tax taken by the government). The CAV model is based on economic principles such as CAV usage, supply, and demand. Usage of CAVs can increase capacity using a variety of means – increased automation (known as Level I thru Level IV) and also by increased penetration and usage, which has been predicted to go up to 50% by 2030 according to several forecasts, with possible full conversion by 2045-2050. Several countries have passed policies and/or legislation on sales of gasoline-powered vehicles (none) starting in 2030 and later. Supply was measured via increased capacity on given infrastructure as a function of both CAV penetration and implemented technologies. The CAV model, as implemented in the USA, has shown significant savings in travel time and also in vehicle operating costs, which can be translated into economic development impacts in terms of job creation, GDP growth and salaries as well. The models have policy implications as well and can be adapted for use in Japan as well.

Keywords: CAV, economic development, WEB, transport economics

Procedia PDF Downloads 74
3829 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 416
3828 How Participatory Climate Information Services Assist Farmers to Uptake Rice Disease Forecasts and Manage Diseases in Advance: Evidence from Coastal Bangladesh

Authors: Moriom Akter Mousumi, Spyridon Paparrizos, Fulco Ludwig

Abstract:

Rice yield reduction due to climate change-induced disease occurrence is becoming a great concern for coastal farmers of Bangladesh. The development of participatory climate information services (CIS) based on farmers’ needs could implicitly facilitate farmers to get disease forecasts and make better decisions to manage diseases. Therefore, this study aimed to investigate how participatory climate information services assist coastal rice farmers to take up rice disease forecasts and better manage rice diseases by improving their informed decision-making. Through participatory approaches, we developed a tailor-made agrometeorological service through the DROP app to forecast rice diseases and manage them in advance. During farmers field schools (FFS) we communicated 7-day disease forecasts during face-to-face weekly meetings using printed paper and, messenger app derived from DROP app. Results show that the majority of the farmers understand disease forecasts through visualization, symbols, and text. The majority of them use disease forecast information directly from the DROP app followed by face-to-face meetings, messenger app, and printed paper. Farmers participation and engagement during capacity building training at FFS also assist them in making more informed decisions and improved management of diseases using both preventive measures and chemical measures throughout the rice cultivation period. We conclude that the development of participatory CIS and the associated capacity-building and training of farmers has increased farmers' understanding and uptake of disease forecasts to better manage of rice diseases. Participatory services such as the DROP app offer great potential as an adaptation option for climate-smart rice production under changing climatic conditions.

Keywords: participatory climate service, disease forecast, disease management, informed decision making, coastal Bangladesg

Procedia PDF Downloads 46
3827 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites

Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il

Abstract:

Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.

Keywords: composite, flexural strength, matrix, sisal fibre

Procedia PDF Downloads 395
3826 Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications

Authors: Adham M. Salah, Tariq A. Nagem, Raed A. Abd-Alhameed, James M. Noras

Abstract:

Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications.

Keywords: ECC, neutralization line, MIMO antenna, multi-band, mutual coupling, WLAN

Procedia PDF Downloads 133
3825 Organic Rankine Cycles (ORC) for Mobile Applications: Economic Feasibility in Different Transportation Sectors

Authors: Roberto Pili, Alessandro Romagnoli, Hartmut Spliethoff, Christoph Wieland

Abstract:

Internal combustion engines (ICE) are today the most common energy system to drive vehicles and transportation systems. Numerous studies state that 50-60% of the fuel energy content is lost to the ambient as sensible heat. ORC offers a valuable alternative to recover such waste heat from ICE, leading to fuel energy savings and reduced emissions. In contrast, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. Consequently, a lower income from delivered freight or passenger tickets can be achieved. The economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume have not been analyzed in open literature yet. This work intends to define such a benchmark for ORC applications in the transportation sector and investigates the current situation on the market. The applied methodology refers to the freight market, but it can be extended to passenger transportation as well. The economic parameter X is defined as the ratio between the variation of the freight revenues and the variation of fuel costs when an ORC is installed as a bottoming cycle for an ICE with respect to a reference case without ORC. A good economic situation is obtained when the reduction in fuel costs is higher than the reduction of revenues for the delivered freight, i.e. X<1. Through this constraint, a maximum allowable change of transport capacity for a given relative reduction in fuel consumption is determined. The specific fuel consumption is influenced by the ORC in two ways. Firstly because the transportable freight is reduced and secondly because the total weight of the vehicle is increased. Note, that the generated electricity of the ORC influences the size of the ICE and the fuel consumption as well. Taking the above dependencies into account, the limiting condition X = 1 results in a second order equation for the relative change in transported cargo. The described procedure is carried out for a typical city bus, a truck of 24-40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and handysize-like vessel (25000 t). The maximum allowable mass and volume of the ORC are calculated in dependence of its efficiency in order to satisfy X < 1. Subsequently, these values are compared with weight and volume of commercial ORC products. For ships of any size, the situation appears already highly favorable. A different result is obtained for road and rail vehicles. For trains, the mass and the volume of common ORC products have to be reduced at least by 50%. For trucks and buses, the situation looks even worse. The findings of the present study show a theoretical and practical approach for the economic application of ORC in the transportation sector. In future works, the potential for volume and mass reduction of the ORC will be addressed, together with the integration of an economic assessment for the ORC.

Keywords: ORC, transportation, volume, weight

Procedia PDF Downloads 227
3824 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison

Authors: B. S. Abdelwahed, B. B. Belkassem

Abstract:

Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.

Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance

Procedia PDF Downloads 463
3823 Synthesis, Characterization, and Evaluation of New Series of Oil Sorbers Based on Maleate Esters

Authors: Nora A. Hamad, Ayman M. Atta, Adel A. H. Abdel-Rahman

Abstract:

Two malice anhydride esters were prepared using long chain aliphatic alcohols (C8H17OH and C12H25OH, 1:1 mole ratio). Three series of crosslinked homo and copolymers of maleate esters with octadecyl acrylate and acrylic acid were prepared respectively through suspension copolymerization. The monomers were mixed with 0.02 Wt% of BP initiator, PVA 1% (170 ml for each 100g of monomers) and different weight ratios of DVB crosslinked (1% and 4%) in cyclohexane. The prepared crosslinked homo and copolymers were characterized by SEM, TGA and FTIR spectroscopic analyses. The prepared polymers were coated onto poly (ethylene terephethalate) nonwoven fiber (NWPET). The effect of copolymerization feed composition, crosslinker wt% and reaction media or solvent on swelling properties of crosslinked polymers were studied through the oil absorption tests in toluene and 10% of diluted crude oil with toluene.

Keywords: acrylic acid, crosslinked copolymers, maleate ester, poly(ethylene terephethalate) nonwoven fiber (NWPET), oil absorbency, octadecyl acrylat

Procedia PDF Downloads 391
3822 Microbiological Properties and Mineral Contents of Honeys from Bordj Bou Arreridj Region (Algeria)

Authors: Diafat Abdelouahab, Ekhalfi A Hammoudia, Meribai Abdelmalek A, Bahloul Ahmedb

Abstract:

The present study aimed to characterize 30 honey samples from the Bordj Bou Arreridj region (Algeria) regarding their floral origins, physicochemical parameters, mineral composition and microbial safety. Mean values obtained for physicochemical parameters were: pH 4.11, 17.17% moisture, 0.0061% ash, 370.57μS cm−1 electrical conductivity, 21.98 meq/kg free acidity, and 9.703 mg/kg HMF. The mineral content was determined by atomic absorption spectrometry. The mean values obtained were (mg/kg): Fe, 7.5714; Mg, 37.68; Na, 186,63; Zn, 3,86; Pb, 0,4869 × 10-3 ; Cd, 267 × 10-3. Aerobic mesophiles, fecal coliforms and sulphite-reducing clostridia were the microbial contaminants of interest studied. Microbiologically, the honey quality was considered good and all samples showed to be negative in respect to safety parameters. The results obtained for physicochemical characteristics of Bordj Bou Arreridj honey indicate a good quality level, adequate processing, good maturity and freshness.

Keywords: pollen analysis, physicochemical analysis, mineral content, microbial contaminants

Procedia PDF Downloads 89
3821 Right to Information in Egypt and the Prospects of Renegotiating a New Social Order

Authors: Farida Ibrahim

Abstract:

Right to information is the public's right to know through having access to public information held by state bodies. Recognized as a cornerstone in transparent, participatory and open democracies, the right to information is increasingly perceived today as an emerging human right on the international level. While this right is conceptualized in a range of different contexts, the paper focuses on its conceptualization as a force for socio-economic change for disadvantaged groups. The paper's goal is study the instrumental capacity of this right in empowering the public to access state-held information pertinent to their socio-economic rights. In this regard, the paper views the right to information as an inclusionary tool that is capable of spurring inclusion for individuals excluded from the ambits of both: public participation and social justice. For exploring this, the paper examines the advocacy role played by civil society groups in furthering this instrumental capacity. In particular, the paper presents a focused account on the Egyptian case. While Egypt has recently adopted its constitutional provision on access to information, doubts arise on Egyptian citizens' genuine ability to access information held by state bodies. The politico-economic environment, long term culture of bureaucratic secrecy, and legal framework do not provide promising outcomes on access to public information. Within the particular context of the Egyptian case, this paper questions the extent to which civil society in Egypt is capable of instrumentally employing the political opportunity offered by the constitutional entitlement to information access for pressuring public authorities to disclose information. Through four lawsuits brought by civil society groups in Egypt, the paper argues that the right to information has instrumentally provided civil society actors with new domains of mobilization for furthering the realization of social and economic rights, and ultimately, for renegotiating a new social order lining the relationship between the Egyptian state and its citizens marginalized by socio-economic imbalances.

Keywords: civil society, Egypt, right to information, socio-economic rights

Procedia PDF Downloads 281
3820 Application of Electrochromic Glazing for Reducing Peak Cooling Loads

Authors: Ranojoy Dutta

Abstract:

HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.

Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load

Procedia PDF Downloads 130
3819 Project-Based Learning in Engineering Education

Authors: M. Greeshma, V. Ashvini, P. Jayarekha

Abstract:

Project based learning (PBL) is a student-driven educational framework and offers the student an opportunity for in-depth investigations of courses. This paper presents the need of PBL in engineering education for the student to graduate with a capacity to design and implement complex problems. The implementation strategy of PBL and its related challenges are presented. The case study that energizes the engineering curriculum with a relevance to the real-world of technology along with its benefits to the students is also included.

Keywords: PBL, engineering education, curriculum, implement complex

Procedia PDF Downloads 473
3818 Water Equivalent from the Point of View of Fast Neutron Removal Cross-Section

Authors: Mohammed Alrajhi

Abstract:

Radiological properties of gel dosimeters and phantom materials are often evaluated in terms of effective atomic number, electron density, photon mass attenuation coefficient, photon mass energy absorption coefficient and total stopping power of electrons. To evaluate the water equivalence of such materials for fast neutron attenuation 19 different types of gel dosimeters and phantom materials were considered. Macroscopic removal cross-sections for fast neutrons (ΣR cm-1) have been calculated for a range of ferrous-sulphate and polymeric gel dosimeters using Nxcom Program. The study showed that the value of ΣR/ρ (cm2.g-1) for all polymer gels were in close agreement (1.5- 2.8%) with that of water. As such, the slight differences in ΣR/ρ between water and gels are small and may be considered negligible. Also, the removal cross-section of the studied phantom materials were very close (~ ±1.5%) to that of water except bone (cortical) which had about 38% variation. Finally, the variation of removal cross-section with hydrogen content was studied.

Keywords: cross-section, neutron, photon, coefficient, mathematics

Procedia PDF Downloads 371
3817 Cu3SbS3 as Anode Material for Sodium Batteries

Authors: Atef Y. Shenouda, Fei Xu

Abstract:

Cu₃SbS₃ (CAS) was synthesized by direct solid-state reaction from elementary Cu, Sb, & S and hydrothermal reaction using thioacetamide (TAM). Crystal structure and morphology for the prepared phases of Cu₃SbS₃ were studied via X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The band gap energies are 2 and 2.2 eV for the prepared samples. The two samples are as anode for Na ion storage. They show high initial capacity to 490 mAh/g. Na cell prepared from TAM sample shows 280 mAh/g after 25 cycles vs. 60 mAh/g for elemental sample.

Keywords: Cu3SbS3, sodium batteries, thioacetamide, sulphur sources

Procedia PDF Downloads 74
3816 Coordination Polymer Hydrogels Based on Coinage Metals and Nucleobase Derivatives

Authors: Lamia L. G. Al-Mahamad, Benjamin R. Horrocks, Andrew Houlton

Abstract:

Hydrogels based on metal coordination polymers of nucleosides and a range of metal ions (Au, Ag, Cu) have been prepared and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and powder X-ray diffraction. AFM images of the xerogels revealed the formation of extremely long polymer molecules (> 10 micrometers, the maximum scan range). This result is also consistent with TEM images which show a fibrous morphology. Oxidative doping of the Au-nucleoside fibres produces an electrically conductive nanowire. No sharp Bragg peaks were found at the at the X-ray diffraction pattern for metal ions hydrogels indicating that the samples were amorphous, but instead the data showed broad peaks in the range 20 < Q < 40 and correspond to distances d=2μ/Q. The data was analysed using a simplified Rietveld method by fitting a regression model to obtain the distance between atoms.

Keywords: hydrogel, metal ions, nanowire, nucleoside

Procedia PDF Downloads 263
3815 Formulation and Characterization of Antimicrobial Chewing Gum Delivery of Some Herbal Extracts for Treatment of Periodontal Diseases

Authors: Reenu Yadav, Vidhi Guha, Udit N. Soni, Jay Ram Patel

Abstract:

Chewing gums are mobile novel drug delivery systems, with a potential for administering drugs either for local action or for systemic absorption via the buccal route. An antimicrobial chewing gum delivery system of the methanolic extracts of Beatea monosperma (barks and twigs), Cordia obliqua (leaves and seeds) and Cuminun cyminum (seeds) against periodontal diseases caused by some oral pathogens, was designed and characterized on various parameters.The results of the study support the traditional application of the plants and suggest, plant extracts possess compounds with antimicrobial properties that can be used as potential antimicrobial agents and gums can be a good carrier of herbal extracts. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations chewing gums including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.

Keywords: periodontal diseases, herbal chewing gum, herbal extracts, novel drug delivery systems

Procedia PDF Downloads 394
3814 Investigation of Roll-Off Factor in Pulse Shaping Filter on Maximal Ratio Combining for CDMA 2000 System

Authors: G. S. Walia, H. P. Singh, D. Padma

Abstract:

The integration of wide variety of communication services is made possible with invention of 3G technology. Code Division Multiple Access 2000 operates on various RF channel bandwidths 1.2288 or 3.6864 Mcps (1x or 3x systems). It is a 3G system which offers high bandwidth and wireless broadband services but its efficiency is lowered due to various factors like fading, interference, scattering, absorption etc. This paper investigates the effect of diversity (MRC), roll off factor in Root Raised Cosine (RRC) filter for the BPSK and QPSK modulation schemes. It is possible to transmit data with minimum Inter symbol Interference and within limited bandwidth with proper pulse shaping technique. Bit error rate (BER) performance is analyzed by applying diversity technique by varying the roll off factor for BPSK and QPSK. Roll off factor reduces the ISI and diversity reduces the Fading.

Keywords: CDMA2000, root raised cosine, roll-off factor, ISI, diversity, interference, fading

Procedia PDF Downloads 407
3813 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes

Authors: Hacer Sule Gonul, Vedat Uyak

Abstract:

Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.

Keywords: pesticide, drinking water, carbon nanotube, adsorption

Procedia PDF Downloads 170
3812 Atomic Hydrogen Storage in Hexagonal GdNi5 and GdNi4Cu Rare Earth Compounds: A Comparative Density Functional Theory Study

Authors: A. Kellou, L. Rouaiguia, L. Rabahi

Abstract:

In the present work, the atomic hydrogen absorption trend in the GdNi5 and GdNi4Cu rare earth compounds within the hexagonal CaCu5 type of crystal structure (space group P6/mmm) is investigated. The density functional theory (DFT) combined with the generalized gradient approximation (GGA) is used to study the site preference of atomic hydrogen at 0K. The octahedral and tetrahedral interstitial sites are considered. The formation energies and structural properties are determined in order to evaluate hydrogen effects on the stability of the studied compounds. The energetic diagram of hydrogen storage is established and compared in GdNi5 and GdNi4Cu. The magnetic properties of the selected compounds are determined using spin polarized calculations. The obtained results are discussed with and without hydrogen addition taking into account available theoretical and experimental results.

Keywords: density functional theory, hydrogen storage, rare earth compounds, structural and magnetic properties

Procedia PDF Downloads 113
3811 Genetic Polymorphisms of the Human Organic Cation Transporter 2 gene, SLC22A2, in the Zulu population

Authors: N. Hoosain, S. Nene, B. Pearce, C. Jacobs, M. Du Plessis, M. Benjeddou

Abstract:

Organic Cation Transporters play a vital role in the absorption, tissue distribution and elimination of various substrates. Numerous studies have suggested that variations in non-synonymous single nucleotide polymorphisms (SNPs) of SLC22A2 could influence an individual’s response to various treatments, including clinically important drugs. This study is the first to determine the baseline frequency distribution for twenty SNPs of SLC22A2in the Zulu population. DNA was collected from 101 unrelated “healthy” Zulu participants. Genotypes of all samples were determined using a multiplex PCR and SNaPshot assay followed by the generation of the haplotype structure. This is the first time that the baseline frequency distribution of SNPs is reported for the Zulu population. Data from this study could be used in in vitro and in vivo pharmacogenetic and pharmacokinetic studies to evaluate the potential role the studied SNPs play in the therapeutic efficacy of clinically important drugs.

Keywords: SLC22A2 gene, SNaPshot assay, PCR, Zulu population

Procedia PDF Downloads 291
3810 Selective Excitation of Circular Helical Modes in Graded Index Fibers

Authors: S. Al-Sowayan

Abstract:

The impact of selective excitation of circular helical modes of graded-index fibers on its capacity is analyzed using a model for propagation delay variation with launch offset and angle that resulted from misalignment of source and fiber axis. Results show that promising technique to improve graded-index fiber capacities.

Keywords: fiber measurements, fiber optic, communications, circular helical modes

Procedia PDF Downloads 789
3809 Formulation Development and Evaluation of Floating Tablets of Venlafaxine Hydrochloride

Authors: Gajera Lalit, Shah Pranav, Shah Shailesh

Abstract:

Venlafaxine hydrochloride has a short elimination half-life of 5 ± 2 hr, and absorption window in the upper part of gastrointestinal tract. The conventional tablets need to be administered two to three times a day and possess an oral bioavailability of 45%. The purpose of this study was to formulate gastroretentive effervescent floating tablets of Venlafaxine HCl. Different grades of HPMC namely K15M, K4M, K100M and E15LV were employed as swelling polymers whereas sodium bicarbonate was employed as gas generating agent. The direct compression method was employed for the formulation of tablets. The tablets were evaluated in terms of hardness, friability, weight variation, drug content, water uptake, in-vitro floating behavior and in-vitro drug release study. All the formulations exhibited very short floating lag time of < 1 min and total floating time of 12 hr. Formulation L3 containing 25 mg and 75 mg of HPMC E15 LV and HPMC K15M respectively exhibited complete drug release within 12 hrs.

Keywords: venlafaxine HCl, hydroxyl propyl methylcellulose, floating gastro retentive tablets, in-vitro drug release, non-fickian diffusion

Procedia PDF Downloads 543
3808 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids

Authors: Alaa A. Ghanem, S. E. M. Desouky

Abstract:

Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.

Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell

Procedia PDF Downloads 175
3807 Metagovernance and Sustainable Development Goals: Importance of Sustainable Policies and Democratic Institutions

Authors: Ghulam Rasool Madni

Abstract:

Global economies are prioritizing the attainment of Sustainable Development Goals (SDGs) for well-being of their people. An emphasis lies on the concept of metagovernance when contemplating the role of government in SDGs, especially in the context of its influence and guidance. Existing literature acknowledges the pivotal role of metagovernance in achieving the SDGs, but aspects of metagovernance unclear that are important for 17 SDGs. Using data from 41 countries, a comparative analysis is conducted for the year 2022. Utilizing a multiple regression analysis, the impact of different dimensions of metagovernance to achieve SDGs is explored, with a particular focus on sustainable policies, strategic capacity, policy coherence, democratic institutions, reflexivity, and adaptation. It is found that sustainable policies have a positive and significant relationship with different SDGs, including no poverty, zero hunger, health, sanitation and clean water, affordable and clean energy, decent work and economic growth, industry, innovation and infrastructure, reduced inequalities while democratic institutions also have a positive relationship with no poverty, good health and well-being, quality education, gender equality, clean water and sanitation, clean and affordable energy, and peace, justice, and strong institutions in these countries. Policymakers are suggested to ensure that sustainable policies are backed by legislation to provide them with a strong legal foundation. It is suggested to develop a long-term vision for sustainability that goes beyond short-term political cycles. Economies are encouraged to invest in building the capacity of government agencies, civil society organizations, and other stakeholders to effectively implement sustainable policies. Moreover, democratic institutions may be established through a constitution providing a solid foundation for democratic governance, including protection of human rights, separation of powers, and mechanisms for accountability and transparency.

Keywords: metagovernance, sustainable development goals, sustainable policies, democratic institutions

Procedia PDF Downloads 19
3806 Synthesis of Silver Nanoparticle: An Analytical Method Based Approach for the Quantitative Assessment of Drug

Authors: Zeid A. Alothman

Abstract:

Silver nanoparticle (AgNP) has been synthesized using adrenaline. Adrenaline readily undergoes an autoxidation reaction in an alkaline medium with the dissolved oxygen to form adrenochrome, thus behaving as a mild reducing agent for the dissolved oxygen. This reducing behavior of adrenaline when employed to reduce Ag(+) ions yielded a large enhancement in the intensity of absorbance in the visible region. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies have been performed to confirm the surface morphology of AgNPs. Further, the metallic nanoparticles with size greater than 2 nm caused a strong and broad absorption band in the UV-visible spectrum called surface plasmon band or Mie resonance. The formation of AgNPs caused the large enhancement in the absorbance values with λmax at 436 nm through the excitation of the surface plasmon band. The formation of AgNPs was adapted to for the quantitative assessment of adrenaline using spectrophotometry with lower detection limit and higher precision values.

Keywords: silver nanoparticle, adrenaline, XRD, TEM, analysis

Procedia PDF Downloads 213