Search results for: drone images
690 Challenges and Insights by Electrical Characterization of Large Area Graphene Layers
Authors: Marcus Klein, Martina GrießBach, Richard Kupke
Abstract:
The current advances in the research and manufacturing of large area graphene layers are promising towards the introduction of this exciting material in the display industry and other applications that benefit from excellent electrical and optical characteristics. New production technologies in the fabrication of flexible displays, touch screens or printed electronics apply graphene layers on non-metal substrates and bring new challenges to the required metrology. Traditional measurement concepts of layer thickness, sheet resistance, and layer uniformity, are difficult to apply to graphene production processes and are often harmful to the product layer. New non-contact sensor concepts are required to adapt to the challenges and even the foreseeable inline production of large area graphene. Dedicated non-contact measurement sensors are a pioneering method to leverage these issues in a large variety of applications, while significantly lowering the costs of development and process setup. Transferred and printed graphene layers can be characterized with high accuracy in a huge measurement range using a very high resolution. Large area graphene mappings are applied for process optimization and for efficient quality control for transfer, doping, annealing and stacking processes. Examples of doped, defected and excellent Graphene are presented as quality images and implications for manufacturers are explained.Keywords: graphene, doping and defect testing, non-contact sheet resistance measurement, inline metrology
Procedia PDF Downloads 307689 The Urban Expansion Characterization of the Bir El Djir Municipality using Remote Sensing and GIS
Authors: Fatima Achouri, Zakaria Smahi
Abstract:
Bir El Djir is an important coastal township in Oran department, located at 450 Km far away from Algiers on northwest of Algeria. In this coastal area, the urban sprawl is one of the main problems that reduce the limited highly fertile land. So, using the remote sensing and GIS technologies have shown their great capabilities to solve many earth resources issues. The aim of this study is to produce land use and cover map for the studied area at varied periods to monitor possible changes that may occurred, particularly in the urban areas and subsequently predict likely changes. For this, two spatial images SPOT and Landsat satellites from 1987 and 2014 respectively were used to assess the changes of urban expansion and encroachment during this period with photo-interpretation and GIS approach. The results revealed that the town of Bir El Djir has shown a highest growth rate in the period 1987-2014 which is 521.1 hectares in terms of area. These expansions largely concern the new real estate constructions falling within the social and promotional housing programs launched by the government. Indeed, during the last census period (1998 -2008), the population of this town has almost doubled from 73 029 to 152 151 inhabitants with an average annual growth of 5.2%. This also significant population growth is causing an accelerated urban expansion of the periphery which causing its conurbation with the towns of Oran in the West side. The most urban expansion is characterized by the new construction in the form of spontaneous or peripheral precarious habitat, but also unstructured slums settled especially in the southeastern part of town.Keywords: urban expansion, remote sensing, photo-interpretation, spatial dynamics
Procedia PDF Downloads 269688 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution
Authors: Pitigalage Chamath Chandira Peiris
Abstract:
A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.Keywords: single image super resolution, computer vision, vision transformers, image restoration
Procedia PDF Downloads 105687 Neural Graph Matching for Modification Similarity Applied to Electronic Document Comparison
Authors: Po-Fang Hsu, Chiching Wei
Abstract:
In this paper, we present a novel neural graph matching approach applied to document comparison. Document comparison is a common task in the legal and financial industries. In some cases, the most important differences may be the addition or omission of words, sentences, clauses, or paragraphs. However, it is a challenging task without recording or tracing the whole edited process. Under many temporal uncertainties, we explore the potentiality of our approach to proximate the accurate comparison to make sure which element blocks have a relation of edition with others. In the beginning, we apply a document layout analysis that combines traditional and modern technics to segment layouts in blocks of various types appropriately. Then we transform this issue into a problem of layout graph matching with textual awareness. Regarding graph matching, it is a long-studied problem with a broad range of applications. However, different from previous works focusing on visual images or structural layout, we also bring textual features into our model for adapting this domain. Specifically, based on the electronic document, we introduce an encoder to deal with the visual presentation decoding from PDF. Additionally, because the modifications can cause the inconsistency of document layout analysis between modified documents and the blocks can be merged and split, Sinkhorn divergence is adopted in our neural graph approach, which tries to overcome both these issues with many-to-many block matching. We demonstrate this on two categories of layouts, as follows., legal agreement and scientific articles, collected from our real-case datasets.Keywords: document comparison, graph matching, graph neural network, modification similarity, multi-modal
Procedia PDF Downloads 179686 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner
Authors: Beier Zhu, Rui Zhang, Qi Song
Abstract:
Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization
Procedia PDF Downloads 194685 Electrical Properties of Nanocomposite Fibres Based On Cellulose and Graphene Nanoplatelets Prepared Using Ionic Liquids
Authors: Shaya Mahmoudian, Mohammad Reza Sazegar, Nazanin Afshari
Abstract:
Graphene, a single layer of carbon atoms in a hexagonal lattice, has recently attracted great attention due to its unique mechanical, thermal and electrical properties. The high aspect ratio and unique surface features of graphene resulted in significant improvements of the nano composites properties. In this study, nano composite fibres made of cellulose and graphene nano platelets were wet spun from solution by using ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) as solvent. The effect of graphene loading on the thermal and electrical properties of the nanocomposite fibres was investigated. The nano composite fibres characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. XRD analysis revealed a cellulose II crystalline structure for regenerated cellulose and the nano composite fibres. SEM images showed a homogenous morphology and round cross section for the nano composite fibres along with well dispersion of graphene nano platelets in regenerated cellulose matrix. The incorporation of graphene into cellulose matrix generated electrical conductivity. At 6 wt. % of graphene, the electrical conductivity was 4.7 × 10-4 S/cm. The nano composite fibres also showed considerable improvements in thermal stability and char yield compared to pure regenerated cellulose fibres. This work provides a facile and environmentally friendly method of preparing nano composite fibres based on cellulose and graphene nano platelets that can find several applications in cellulose-based carbon fibres, conductive fibres, apparel, etc.Keywords: nanocomposite, graphene nanoplatelets, regenerated cellulose, electrical properties
Procedia PDF Downloads 350684 Laparoscopic Proximal Gastrectomy in Gastroesophageal Junction Tumours
Authors: Ihab Saad Ahmed
Abstract:
Background For Siewert type I and II gastroesophageal junction tumor (GEJ) laparoscopic proximal gastrectomy can be performed. It is associated with several perioperative benefits compared with open proximal gastrectomy. The use of laparoscopic proximal gastrectomy (LPG) has become an increasingly popular approach for select tumors Methods We describe our technique for LPG, including the preoperative work-up, illustrated images of the main principle steps of the surgery, and our postoperative course. Results Thirteen pts (nine males, four female) with type I, II (GEJ) adenocarcinoma had laparoscopic radical proximal gastrectomy and D2 lymphadenectomy. All of our patient received neoadjuvant chemotherapy, eleven patients had intrathoracic anastomosis through mini thoracotomy (two hand sewn end to end anastomoses and the other 9 patient end to side using circular stapler), two patients with intrathoracic anastomosis had flap and wrap technique, two patients had thoracoscopic esophageal and mediastinal lymph node dissection with cervical anastomosis The mean blood loss 80ml, no cases were converted to open. The mean operative time 250 minute Average LN retrieved 19-25, No sever complication such as leakage, stenosis, pancreatic fistula ,or intra-abdominal abscess were reported. Only One patient presented with empyema 1.5 month after discharge that was managed conservatively. Conclusion For carefully selected patients, LPG in GEJ tumour type I and II is a safe and reasonable alternative for open technique , which is associated with similar oncologic outcomes and low morbidity. It showed less blood loss, respiratory infections, with similar 1- and 3-year survival rates.Keywords: LPG(laparoscopic proximal gastrectomy, GEJ( gastroesophageal junction tumour), d2 lymphadenectomy, neoadjuvant cth
Procedia PDF Downloads 125683 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis
Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal
Abstract:
Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix
Procedia PDF Downloads 96682 On the Development of Medical Additive Manufacturing in Egypt
Authors: Khalid Abdelghany
Abstract:
Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans.Keywords: additive manufacturing, dental and orthopeadic stents, patient specific surgical tools, titanium implants
Procedia PDF Downloads 315681 Diagnostic Efficacy and Usefulness of Digital Breast Tomosynthesis (DBT) in Evaluation of Breast Microcalcifications as a Pre-Procedural Study for Stereotactic Biopsy
Authors: Okhee Woo, Hye Seon Shin
Abstract:
Purpose: To investigate the diagnostic power of digital breast tomosynthesis (DBT) in evaluation of breast microcalcifications and usefulness as a pre-procedural study for stereotactic biopsy in comparison with full-field digital mammogram (FFDM) and FFDM plus magnification image (FFDM+MAG). Methods and Materials: An IRB approved retrospective observer performance study on DBT, FFDM, and FFDM+MAG was done. Image quality was rated in 5-point scoring system for lesion clarity (1, very indistinct; 2, indistinct; 3, fair; 4, clear; 5, very clear) and compared by Wilcoxon test. Diagnostic power was compared by diagnostic values and AUC with 95% confidence interval. Additionally, procedural report of biopsy was analysed for patient positioning and adequacy of instruments. Results: DBT showed higher lesion clarity (median 5, interquartile range 4-5) than FFDM (3, 2-4, p-value < 0.0001), and no statistically significant difference to FFDM+MAG (4, 4-5, p-value=0.3345). Diagnostic sensitivity and specificity of DBT were 86.4% and 92.5%; FFDM 70.4% and 66.7%; FFDM+MAG 93.8% and 89.6%. The AUCs of DBT (0.88) and FFDM+MAG (0.89) were larger than FFDM (0.59, p-values < 0.0001) but there was no statistically significant difference between DBT and FFDM+MAG (p-value=0.878). In 2 cases with DBT, petit needle could be appropriately prepared; and other 3 without DBT, patient repositioning was needed. Conclusion: DBT showed better image quality and diagnostic values than FFDM and equivalent to FFDM+MAG in the evaluation of breast microcalcifications. Evaluation with DBT as a pre-procedural study for breast stereotactic biopsy can lead to more accurate localization and successful biopsy and also waive the need for additional magnification images.Keywords: DBT, breast cancer, stereotactic biopsy, mammography
Procedia PDF Downloads 304680 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition
Procedia PDF Downloads 156679 Evaluation of Residual Stresses in Human Face as a Function of Growth
Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan
Abstract:
Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.Keywords: finite element method, growth, residual stress, soft tissue
Procedia PDF Downloads 270678 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing
Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger
Abstract:
This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles
Procedia PDF Downloads 40677 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI
Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De
Abstract:
Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.Keywords: aquaculture farms, LULC, Mangrove, NDVI
Procedia PDF Downloads 182676 Method for Targeting Small Volume in Rat Brainby Gamma Knife and Dosimetric Control: Towards a Standardization
Authors: J. Constanzo, B. Paquette, G. Charest, L. Masson-Côté, M. Guillot
Abstract:
Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The first step is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Eleven euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomographic (CT), to estimate positioning variations regarding to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates assessed from CT images, various regions of the brain were delimited and a treatment plan was generated. A dose of 37 Gy at 30% isodose which corresponds to 100 Gy in 100% of the target volume (X = 98.1; Y = 109.1; Z = 100.0) was set by Leksell Gamma Plan using sectors number 4, 5, 7, and 8 of the Gamma Knife unit with the 4-mm diameter collimators. Effects of positioning accuracy of the rat brain on the dose deposition were simulated by Gamma Plan and validated with dosimetric measurements. Our results showed that 90% of the target volume received 110 ± 4.7 Gy and the maximum of deposited dose was 124 ± 0.6 Gy, which corresponds to an excellent relative standard deviation of 0.5%. This dose deposition calculated with the Gamma Plan was validated with the dosimetric films resulting in a dose-profile agreement within 2%, both in X- and Z-axis,. Our results demonstrate the feasibility to standardize the irradiation procedure of a small volume in the rat brain using a Gamma Knife.Keywords: brain irradiation, dosimetry, gamma knife, small-animal irradiation, stereotactic radiosurgery (SRS)
Procedia PDF Downloads 407675 Identification of Membrane Foulants in Direct Contact Membrane Distillation for the Treatment of Reject Brine
Authors: Shefaa Mansour, Hassan Arafat, Shadi Hasan
Abstract:
Management of reverse osmosis (RO) brine has become a major area of research due to the environmental concerns associated with it. This study worked on studying the feasibility of the direct contact membrane distillation (DCMD) system in the treatment of this RO brine. The system displayed great potential in terms of its flux and salt rejection, where different operating conditions such as the feed temperature, feed salinity, feed and permeate flow rates were varied. The highest flux of 16.7 LMH was reported with a salt rejection of 99.5%. Although the DCMD has displayed potential of enhanced water recovery from highly saline solutions, one of the major drawbacks associated with the operation is the fouling of the membranes which impairs the system performance. An operational run of 77 hours for the treatment of RO brine of 56,500 ppm salinity was performed in order to investigate the impact of fouling of the membrane on the overall operation of the system over long time operations. Over this time period, the flux was observed to have reduced by four times its initial flux. The fouled membrane was characterized through different techniques for the identification of the organic and inorganic foulants that have deposited on the membrane surface. The Infrared Spectroscopy method (IR) was used to identify the organic foulants where SEM images displayed the surface characteristics of the membrane. As for the inorganic foulants, they were identified using X-ray Diffraction (XRD), Ion Chromatography (IC) and Energy Dispersive Spectroscopy (EDS). The major foulants found on the surface of the membrane were inorganic salts such as sodium chloride and calcium sulfate.Keywords: brine treatment, membrane distillation, fouling, characterization
Procedia PDF Downloads 436674 Satellite Derived Snow Cover Status and Trends in the Indus Basin Reservoir
Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar
Abstract:
Snow constitutes an important component of the cryosphere, characterized by high temporal and spatial variability. Because of the contribution of snow melt to water availability, snow is an important focus for research on climate change and adaptation. MODIS satellite data have been used to identify spatial-temporal trends in snow cover in the upper Indus basin. For this research MODIS satellite 8 day composite data of medium resolution (250m) have been analysed from 2001-2005.Pixel based supervised classification have been performed and extent of snow have been calculated of all the images. Results show large variation in snow cover between years while an increasing trend from west to east is observed. Temperature data for the Upper Indus Basin (UIB) have been analysed for seasonal and annual trends over the period 2001-2005 and calibrated with the results acquired by the research. From the analysis it is concluded that there are indications that regional warming is one of the factor that is affecting the hydrology of the upper Indus basin due to accelerated glacial melting during the simulation period, stream flow in the upper Indus basin can be predicted with a high degree of accuracy. This conclusion is also supported by the research of ICIMOD in which there is an observation that the average annual precipitation over a five year period is less than the observed stream flow and supported by positive temperature trends in all seasons.Keywords: indus basin, MODIS, remote sensing, snow cover
Procedia PDF Downloads 387673 Urbanization and Water Supply in Lagos State, Nigeria: The Challenges in a Climate Change Scenario
Authors: Amidu Owolabi Ayeni
Abstract:
Studies have shown that spatio-temporal distribution and variability of climatic variables, urban land use, and population have had substantial impact on water supply. It is based on these facts that the impacts of climate, urbanization, and population on water supply in Lagos State Nigeria remain the focus of this study. Population and water production data on Lagos State between 1963 and 2006 were collected, and used for time series and projection analyses. Multi-temporal land-sat images of 1975, 1995 and NigeriaSat-1 imagery of 2007 were used for land use change analysis. The population of Lagos State increased by about 557.1% between 1963 and 2006, correspondingly, safe water supply increased by 554%. Currently, 60% of domestic water use in urban areas of Lagos State is from groundwater while 75% of rural water is from unsafe surface water. Between 1975 and 2007, urban land use increased by about 235.9%. The 46years climatic records revealed that temperature and evaporation decreased slightly while rainfall and Relatively Humidity (RH) decreased consistently. Based on these trends, the Lagos State population and required water are expected to increase to about 19.8millions and 2418.9ML/D respectively by the year 2026. Rainfall is likely to decrease by -6.68mm while temperature will increase by 0.950C by 2026. Urban land use is expected to increase by 20% with expectation of serious congestion in the suburb areas. With these results, over 50% of the urban inhabitants will be highly water poor in future if the trends continue unabated.Keywords: challenges, climate change, urbanization, water supply
Procedia PDF Downloads 429672 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 155671 Iterative Method for Lung Tumor Localization in 4D CT
Authors: Sarah K. Hagi, Majdi Alnowaimi
Abstract:
In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.Keywords: automated algorithm , computed tomography, lung tumor, tumor localization
Procedia PDF Downloads 602670 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination
Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini
Abstract:
This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.Keywords: impersonation, image registration, incrimination, object detection, threshold evaluation
Procedia PDF Downloads 230669 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 348668 Spatio-Temporal Variation of Suspended Sediment Concentration in the near Shore Waters, Southern Karnataka, India
Authors: Ateeth Shetty, K. S. Jayappa, Ratheesh Ramakrishnan, A. S. Rajawat
Abstract:
Suspended Sediment Concentration (SSC) was estimated for the period of four months (November, 2013 to February 2014) using Oceansat-2 (Ocean Colour Monitor) satellite images to understand the coastal dynamics and regional sediment transport, especially distribution and budgeting in coastal waters. The coastal zone undergoes continuous changes due to natural processes and anthropogenic activities. The importance of the coastal zone, with respect to safety, ecology, economy and recreation, demands a management strategy in which each of these aspects is taken into account. Monitoring and understanding the sediment dynamics and suspended sediment transport is an important issue for coastal engineering related activities. A study of the transport mechanism of suspended sediments in the near shore environment is essential not only to safeguard marine installations or navigational channels, but also for the coastal structure design, environmental protection and disaster reduction. Such studies also help in assessment of pollutants and other biological activities in the region. An accurate description of the sediment transport, caused by waves and tidal or wave-induced currents, is of great importance in predicting coastal morphological changes. Satellite-derived SSC data have been found to be useful for Indian coasts because of their high spatial (360 m), spectral and temporal resolutions. The present paper outlines the applications of state‐of‐the‐art operational Indian Remote Sensing satellite, Oceansat-2 to study the dynamics of sediment transport.Keywords: suspended sediment concentration, ocean colour monitor, sediment transport, case – II waters
Procedia PDF Downloads 253667 Carotid Intima-Media Thickness and Ankle-Brachial Index as Predictors of the Severity of Coronary Artery Disease
Authors: Ali Kassem, Yaser Kamal, Mohamed Abdel Wahab, Mohamed Hussen
Abstract:
Introduction: Atherosclerosis is one of the leading causes of death all over the world. Recently, there is an increasing interest in Carotid Intima-Medial Thickness (CIMT) and Ankle Brachial Index (ABI) as non-invasive tools for identifying subclinical atherosclerosis. We aim to examine the role of CIMT and ABI as predictors of the severity of angiographically documented coronary artery disease (CAD). Methods: A cross-sectional study conducted on 60 patients who were investigated by coronary angiography at Sohag University Hospital, Egypt. CIMT: After the carotid arteries were located by transverse scans, the probe was rotated 90 ° to obtain and record longitudinal images of bilateral carotid arteries ABI: Each patient was evaluated in the supine position after resting for 5 min. ABI was measured in each leg using a Doppler Ultrasound while the patient remained in the same position. The lowest ABI obtained for either leg was taken as the ABI measurement for the patient. Results: Patients with carotid mean IMT ≥ 0.9 mm had significantly more severe coronary artery disease than patients without thickening (mean IMT > 0.9 mm). Similarly, patients with low ABI (< 0.9) had significantly more severe coronary artery disease than patients with ABI ≥ 0.9. When the patients were divided into 4 groups (group A, n = 15, mean IMT < 0.9 mm, ABI ≥ 0.9; group B, n = 25, mean IMT < 0.9 mm, low ABI; group C, n = 5, mean IMT ≥ 0.9 mm, ABI ≥ 0.9; group D, n = 19, mean IMT ≤ 0.9 mm, low ABI), the presence of significant coronary stenosis (> 50%) of the groups were significantly different (group A, n = 5: (33.3%); group B, n = 11: (52.4%); group C, n = 4: (60%); group D, n=15, (78.9%), P = 0.001). Conclusion: CIMT and ABI provide useful information on the severity of CAD. Early and aggressive intervention should be considered in patients with CAD and abnormalities in one or both of these non-invasive modalities.Keywords: ankle brachial index, carotid intima media thickness, coronary artery disease, predictors of severity
Procedia PDF Downloads 232666 Introducing New and Less Known Sources of Geomorphosites for Geotourism Development, with Examples from Misho-dagh Mountain in Northwestern Iran
Authors: Davoud Mokhtari
Abstract:
One of the factors behind the increasing development of geotourism is the identification and introduction of new facets of amazing geosphere phenomena. The Misho-Dagh Mountains in northwestern Iran are one of the rich geodiversity areas. The presence of some rare and interesting phenomena in this mountain has increased the potential of this region for geotourism development. Active pressure ridges, arcuate valleys, sag Ponds, granite complexes, glacial rock springs, and displaced habitats due to tectonic activity are among the most significant phenomena in the study area. The research is based on the literature review of geotourism and personal research experiences on geomorphosites of the northwest of Iran. Monitoring the changes of geomorphosites and evaluation of corresponding changes in the geomorphosite̕s location and their capabilities using satellite images and fieldwork is done. In this study, six geomorphosite were introduced, each with special characteristics and with one of the geotourism topics. Selection of this location of northwestern Iran is due to the focus of author of this paper is on this part of the country, and there is no doubt that such places, even with higher values of geotourism, there are in various parts of Iran and the world that could be interested in this field of emerging science. From in situ observations taken in the field and estimating a level of impact, employing assessment techniques, and then finally extrapolating the resultant factors across all case studies, we have been able to generate a geotourism map for future planning purposes. Accordingly, it should be noted that we are not just part of the landscape of the geomorphosites. The geomorphosites are also part of our landscape. It is hoped that the findings of this paper can open a new world of geotourism that, if is not associated with geomorphological processes, will be very short.Keywords: geotourism, sources of geotourism, geotouristic areas, mishow_dagh, northwest of Iran
Procedia PDF Downloads 93665 Monitorization of Junction Temperature Using a Thermal-Test-Device
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Due to the higher power loss levels in electronic components, the thermal design of PCBs (Printed Circuit Boards) of an assembled device becomes one of the most important quality factors in electronics. Nonetheless, some of leading causes of the microelectronic component failures are due to higher temperatures, the leakages or thermal-mechanical stress, which is a concern, is the reliability of microelectronic packages. This article presents an experimental approach to measure the junction temperature of exposed pad packages. The implemented solution is in a prototype phase, using a temperature-sensitive parameter (TSP) to measure temperature directly on the die, validating the numeric results provided by the Mechanical APDL (Ansys Parametric Design Language) under same conditions. The physical device-under-test is composed by a Thermal Test Chip (TTC-1002) and assembly in a QFN cavity, soldered to a test-board according to JEDEC Standards. Monitoring the voltage drop across a forward-biased diode, is an indirectly method but accurate to obtain the junction temperature of QFN component with an applied power range between 0,3W to 1.5W. The temperature distributions on the PCB test-board and QFN cavity surface were monitored by an infra-red thermal camera (Goby-384) controlled and images processed by the Xeneth software. The article provides a set-up to monitorize in real-time the junction temperature of ICs, namely devices with the exposed pad package (i.e. QFN). Presenting the PCB layout parameters that the designer should use to improve thermal performance, and evaluate the impact of voids in solder interface in the device junction temperature.Keywords: quad flat no-Lead packages, exposed pads, junction temperature, thermal management and measurements
Procedia PDF Downloads 286664 Development of Star Image Simulator for Star Tracker Algorithm Validation
Authors: Zoubida Mahi
Abstract:
A successful satellite mission in space requires a reliable attitude and orbit control system to command, control and position the satellite in appropriate orbits. Several sensors are used for attitude control, such as magnetic sensors, earth sensors, horizon sensors, gyroscopes, and solar sensors. The star tracker is the most accurate sensor compared to other sensors, and it is able to offer high-accuracy attitude control without the need for prior attitude information. There are mainly three approaches in star sensor research: digital simulation, hardware in the loop simulation, and field test of star observation. In the digital simulation approach, all of the processes are done in software, including star image simulation. Hence, it is necessary to develop star image simulation software that could simulate real space environments and various star sensor configurations. In this paper, we present a new stellar image simulation tool that is used to test and validate the stellar sensor algorithms; the developed tool allows to simulate of stellar images with several types of noise, such as background noise, gaussian noise, Poisson noise, multiplicative noise, and several scenarios that exist in space such as the presence of the moon, the presence of optical system problem, illumination and false objects. On the other hand, we present in this paper a new star extraction algorithm based on a new centroid calculation method. We compared our algorithm with other star extraction algorithms from the literature, and the results obtained show the star extraction capability of the proposed algorithm.Keywords: star tracker, star simulation, star detection, centroid, noise, scenario
Procedia PDF Downloads 96663 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 104662 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 410661 Hidrothermal Alteration Study of Tangkuban Perahu Craters, and Its Implication to Geothermal Conceptual Model
Authors: Afy Syahidan Achmad
Abstract:
Tangkuban Perahu is located in West Java, Indonesia. It is active stratovolcano type and still showing hidrothermal activity. The main purpose of this study is to find correlation between subsurface structure and hidrothermal activity on the surface. Using topographic map, SRTM images, and field observation, geological condition and alteration area was mapped. Alteration sample analyzed trough petrographic analysis and X-Ray Diffraction (XRD) analysis. Altered rock in study area showing white-yellowish white colour, and texture changing variation from softening to hardening because of alteration by sillica and sulphur. Alteration mineral which can be observed in petrographic analysis and XRD analysis consist of crystobalite, anatase, alunite, and pyrite. This mineral assemblage showing advanced argillic alteration type with West-East alteration area orientation. Alteration area have correlation with manifestation occurance such as steam vents, solfatara, and warm to hot pools. Most of manifestation occured in main crater like Ratu Crater and Upas crater, and parasitic crater like Domas Crater and Jarian Crater. This manifestation indicates permeability in subsurface which can be created trough structural process with same orientation. For further study geophysics method such as Magneto Telluric (MT) and resistivity can be required to find permeability zone pattern in Tangkuban Perahu subsurface.Keywords: alteration, advanced argillic, Tangkuban Perahu, XRD, crystobalite, anatase, alunite, pyrite
Procedia PDF Downloads 419