Search results for: AI algorithm internal audit
4484 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems
Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber
Abstract:
Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement
Procedia PDF Downloads 1504483 Design and Validation of the 'Teachers' Resilience Scale' for Assessing Protective Factors
Authors: Athena Daniilidou, Maria Platsidou
Abstract:
Resilience is considered to greatly affect the personal and occupational wellbeing and efficacy of individuals; therefore, it has been widely studied in the social and behavioral sciences. Given its significance, several scales have been created to assess resilience of children and adults. However, most of these scales focus on examining only the internal protective or risk factors that affect the levels of resilience. The aim of the present study is to create a reliable scale that assesses both the internal and the external protective factors that affect Greek teachers’ levels of resilience. Participants were 136 secondary school teachers (89 females, 47 males) from urban areas of Greece. Connor-Davidson Resilience Scale (CD-Risc) and Resilience Scale for Adults (RSA) were used to collect the data. First, exploratory factor analysis was employed to investigate the inner structure of each scale. For both scales, the analyses revealed a differentiated factor solution compared to the ones proposed by the creators. That prompt us to create a scale that would combine the best fitting subscales of the CD-Risc and the RSA. To this end, the items of the four factors with the best fit and highest reliability were used to create the ‘Teachers' resilience scale’. Exploratory factor analysis revealed that the scale assesses the following protective/risk factors: Personal Competence and Strength (9 items, α=.83), Family Cohesion Spiritual Influences (7 items, α=.80), Social Competence and Peers Support (7 items, α=.78) and Spiritual Influence (3 items, α=.58). This four-factor model explained 49,50% of the total variance. In the next step, a confirmatory factor analysis was performed on the 26 items of the derived scale to test the above factor solution. The fit of the model to the data was good (χ2/292 = 1.245, CFI = .921, GFI = .829, SRMR = .074, CI90% = .026-,056, RMSEA = 0.43), indicating that the proposed scale can validly measure the aforementioned four aspects of teachers' resilience and thus confirmed its factorial validity. Finally, analyses of variance were performed to check for individual differences in the levels of teachers' resilience in relation to their gender, age, marital status, level of studies, and teaching specialty. Results were consistent to previous findings, thus providing an indication of discriminant validity for the instrument. This scale has the advantage of assessing both the internal and the external protective factors of resilience in a brief yet comprehensive way, since it consists 26 items instead of the total of 58 of the CD-Risc and RSA scales. Its factorial inner structure is supported by the relevant literature on resilience, as it captures the major protective factors of resilience identified in previous studies.Keywords: protective factors, resilience, scale development, teachers
Procedia PDF Downloads 2974482 Flashover Detection Algorithm Based on Mother Function
Authors: John A. Morales, Guillermo Guidi, B. M. Keune
Abstract:
Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines.Keywords: mother function, outages, lightning, sensitivity analysis
Procedia PDF Downloads 5874481 Coaching for Lecturers at German Universities: An Inventory Based on a Qualitative Interview Study
Authors: Freya Willicks
Abstract:
The society of the 21st century is characterized by dynamic and complexity, developments that also shape universities and university life. The Bologna reform, for example, has led to restructuring at many European universities. Today's university teachers, therefore, have to meet many expectations: Their tasks include not only teaching but also the general improvement of the quality of teaching, good research, the management of various projects or the development of their own personal skills. This requires a high degree of flexibility and openness to change. The resulting pressure can often lead to exhaustion. Coaching can be a way for university teachers to cope with these pressures because it gives them the opportunity to discuss stressful situations with a coach and self-reflect on them. As a result, more and more universities in Europe offer to coach to their teachers. An analysis of the services provided at universities in Germany, however, quickly reveals an immense disagreement with regard to the understanding of ‘coaching’. A variety of terms is used, such as coaching, counselling or supervision. In addition, each university defines its offer individually, from process-oriented consulting to expert consulting, from group training to individual coaching. The biographic backgrounds of those who coach are also very divergent, both external and internal coaches can be suitable. These findings lead to the following questions: Which structural characteristics for coaching at universities have been proven successful? What competencies should a good coach for university lecturers have? In order to answer these questions, a qualitative study was carried out. In a first step, qualitative semi-structured interviews (N = 14) were conducted, on the one hand with coaches for university teachers and on the other hand with university teachers who have been coached. In a second step, the interviews were transcribed and analyzed using Mayring's qualitative content analysis. The study shows how great the potential of coaching can be for university teachers, who otherwise have little opportunity to talk about their teaching in a private setting. According to the study, the coach should neither be a colleague nor a superior of the coachee but should take an independent perspective, as this is the only way for the coachee to openly reflect on himself/herself. In addition, the coach should be familiar with the university system, i.e., be an academic himself/herself. Otherwise, he/she cannot fully understand the complexity of the teaching situation and the role expectations. However, internal coaches do not necessarily have much coaching experience or explicit coaching competencies. They often come from the university's own didactics department, are experts in didactics, but do not necessarily have a certified coaching education. Therefore, it is important to develop structures and guidelines for internal coaches to support their coaching. In further analysis, such guidelines will be developed on the basis of these interviews.Keywords: coaching, university coaching, university didactics, qualitative interviews
Procedia PDF Downloads 1124480 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 364479 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error
Procedia PDF Downloads 3234478 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot
Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan
Abstract:
Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.Keywords: ADAS, home zone parking pilot, object detection, visual SLAM
Procedia PDF Downloads 674477 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm
Authors: Monojit Manna, Arpan Adhikary
Abstract:
In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection
Procedia PDF Downloads 774476 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 3314475 Uniform and Controlled Cooling of a Steel Block by Multiple Jet Impingement and Airflow
Authors: E. K. K. Agyeman, P. Mousseau, A. Sarda, D. Edelin
Abstract:
During the cooling of hot metals by the circulation of water in canals formed by boring holes in the metal, the rapid phase change of the water due to the high initial temperature of the metal leads to a non homogenous distribution of the phases within the canals. The liquid phase dominates towards the entrance of the canal while the gaseous phase dominates towards the exit. As a result of the different thermal properties of both phases, the metal is not uniformly cooled. This poses a problem during the cooling of moulds, where a uniform temperature distribution is needed in order to ensure the integrity of the part being formed. In this study, the simultaneous use of multiple water jets and an airflow for the uniform and controlled cooling of a steel block is investigated. A circular hole is bored at the centre of the steel block along its length and a perforated steel pipe is inserted along the central axis of the hole. Water jets that impact the internal surface of the steel block are generated from the perforations in the steel pipe when the water within it is put under pressure. These jets are oriented in the opposite direction to that of gravity. An intermittent airflow is imposed in the annular space between the steel pipe and the surface of hole bored in the steel block. The evolution of the temperature with respect to time of the external surface of the block is measured with the help of thermocouples and an infrared camera. Due to the high initial temperature of the steel block (350 °C), the water changes phase when it impacts the internal surface of the block. This leads to high heat fluxes. The strategy used to control the cooling speed of the block is the intermittent impingement of its internal surface by the jets. The intervals of impingement and of non impingement are varied in order to achieve the desired result. An airflow is used during the non impingement periods as an additional regulator of the cooling speed and to improve the temperature homogeneity of the impinged surface. After testing different jet positions, jet speeds and impingement intervals, it’s observed that the external surface of the steel block has a uniform temperature distribution along its length. However, the temperature distribution along its width isn’t uniform with the maximum temperature difference being between the centre of the block and its edge. Changing the positions of the jets has no significant effect on the temperature distribution on the external surface of the steel block. It’s also observed that reducing the jet impingement interval and increasing the non impingement interval slows down the cooling of the block and improves upon the temperature homogeneity of its external surface while increasing the duration of jet impingement speeds up the cooling process.Keywords: cooling speed, homogenous cooling, jet impingement, phase change
Procedia PDF Downloads 1254474 Location Management in Wireless Sensor Networks with Mobility
Authors: Amrita Anil Agashe, Sumant Tapas, Ajay Verma Yogesh Sonavane, Sourabh Yeravar
Abstract:
Due to advancement in MEMS technology today wireless sensors network has gained a lot of importance. The wide range of its applications includes environmental and habitat monitoring, object localization, target tracking, security surveillance etc. Wireless sensor networks consist of tiny sensor devices called as motes. The constrained computation power, battery power, storage capacity and communication bandwidth of the tiny motes pose challenging problems in the design and deployment of such systems. In this paper, we propose a ubiquitous framework for Real-Time Tracking, Sensing and Management System using IITH motes. Also, we explain the algorithm that we have developed for location management in wireless sensor networks with the aspect of mobility. Our developed framework and algorithm can be used to detect emergency events and safety threats and provides warning signals to handle the emergency.Keywords: mobility management, motes, multihop, wireless sensor networks
Procedia PDF Downloads 4184473 Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element
Authors: Xiaofei Hu, Zhiyu Cai, Weian Yao
Abstract:
V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient.Keywords: V-notch, dynamic stress intensity factor, finite element method, precise time domain expanding algorithm
Procedia PDF Downloads 1724472 Landslide Hazard Assessment Using Physically Based Mathematical Models in Agricultural Terraces at Douro Valley in North of Portugal
Authors: C. Bateira, J. Fernandes, A. Costa
Abstract:
The Douro Demarked Region (DDR) is a production Porto wine region. On the NE of Portugal, the strong incision of the Douro valley developed very steep slopes, organized with agriculture terraces, have experienced an intense and deep transformation in order to implement the mechanization of the work. The old terrace system, based on stone vertical wall support structure, replaced by terraces with earth embankments experienced a huge terrace instability. This terrace instability has important economic and financial consequences on the agriculture enterprises. This paper presents and develops cartographic tools to access the embankment instability and identify the area prone to instability. The priority on this evaluation is related to the use of physically based mathematical models and develop a validation process based on an inventory of the past embankment instability. We used the shallow landslide stability model (SHALSTAB) based on physical parameters such us cohesion (c’), friction angle(ф), hydraulic conductivity, soil depth, soil specific weight (ϱ), slope angle (α) and contributing areas by Multiple Flow Direction Method (MFD). A terraced area can be analysed by this models unless we have very detailed information representative of the terrain morphology. The slope angle and the contributing areas depend on that. We can achieve that propose using digital elevation models (DEM) with great resolution (pixel with 40cm side), resulting from a set of photographs taken by a flight at 100m high with pixel resolution of 12cm. The slope angle results from this DEM. In the other hand, the MFD contributing area models the internal flow and is an important element to define the spatial variation of the soil saturation. That internal flow is based on the DEM. That is supported by the statement that the interflow, although not coincident with the superficial flow, have important similitude with it. Electrical resistivity monitoring values which related with the MFD contributing areas build from a DEM of 1m resolution and revealed a consistent correlation. That analysis, performed on the area, showed a good correlation with R2 of 0,72 and 0,76 at 1,5m and 2m depth, respectively. Considering that, a DEM with 1m resolution was the base to model the real internal flow. Thus, we assumed that the contributing area of 1m resolution modelled by MFD is representative of the internal flow of the area. In order to solve this problem we used a set of generalized DEMs to build the contributing areas used in the SHALSTAB. Those DEMs, with several resolutions (1m and 5m), were built from a set of photographs with 50cm resolution taken by a flight with 5km high. Using this maps combination, we modelled several final maps of terrace instability and performed a validation process with the contingency matrix. The best final instability map resembles the slope map from a DEM of 40cm resolution and a MFD map from a DEM of 1m resolution with a True Positive Rate (TPR) of 0,97, a False Positive Rate of 0,47, Accuracy (ACC) of 0,53, Precision (PVC) of 0,0004 and a TPR/FPR ratio of 2,06.Keywords: agricultural terraces, cartography, landslides, SHALSTAB, vineyards
Procedia PDF Downloads 1774471 Kou Jump Diffusion Model: An Application to the SP 500; Nasdaq 100 and Russell 2000 Index Options
Authors: Wajih Abbassi, Zouhaier Ben Khelifa
Abstract:
The present research points towards the empirical validation of three options valuation models, the ad-hoc Black-Scholes model as proposed by Berkowitz (2001), the constant elasticity of variance model of Cox and Ross (1976) and the Kou jump-diffusion model (2002). Our empirical analysis has been conducted on a sample of 26,974 options written on three indexes, the S&P 500, Nasdaq 100 and the Russell 2000 that were negotiated during the year 2007 just before the sub-prime crisis. We start by presenting the theoretical foundations of the models of interest. Then we use the technique of trust-region-reflective algorithm to estimate the structural parameters of these models from cross-section of option prices. The empirical analysis shows the superiority of the Kou jump-diffusion model. This superiority arises from the ability of this model to portray the behavior of market participants and to be closest to the true distribution that characterizes the evolution of these indices. Indeed the double-exponential distribution covers three interesting properties that are: the leptokurtic feature, the memory less property and the psychological aspect of market participants. Numerous empirical studies have shown that markets tend to have both overreaction and under reaction over good and bad news respectively. Despite of these advantages there are not many empirical studies based on this model partly because probability distribution and option valuation formula are rather complicated. This paper is the first to have used the technique of nonlinear curve-fitting through the trust-region-reflective algorithm and cross-section options to estimate the structural parameters of the Kou jump-diffusion model.Keywords: jump-diffusion process, Kou model, Leptokurtic feature, trust-region-reflective algorithm, US index options
Procedia PDF Downloads 4294470 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment
Authors: Maedeh Pourmajidian, Joseph R. McDermid
Abstract:
Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation
Procedia PDF Downloads 3984469 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing
Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano
Abstract:
Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning
Procedia PDF Downloads 4434468 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV
Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol
Abstract:
In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing
Procedia PDF Downloads 4404467 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion
Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam
Abstract:
Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites
Procedia PDF Downloads 3214466 Hardware Implementation and Real-time Experimental Validation of a Direction of Arrival Estimation Algorithm
Authors: Nizar Tayem, AbuMuhammad Moinuddeen, Ahmed A. Hussain, Redha M. Radaydeh
Abstract:
This research paper introduces an approach for estimating the direction of arrival (DOA) of multiple RF noncoherent sources in a uniform linear array (ULA). The proposed method utilizes a Capon-like estimation algorithm and incorporates LU decomposition to enhance the accuracy of DOA estimation while significantly reducing computational complexity compared to existing methods like the Capon method. Notably, the proposed method does not require prior knowledge of the number of sources. To validate its effectiveness, the proposed method undergoes validation through both software simulations and practical experimentation on a prototype testbed constructed using a software-defined radio (SDR) platform and GNU Radio software. The results obtained from MATLAB simulations and real-time experiments provide compelling evidence of the proposed method's efficacy.Keywords: DOA estimation, real-time validation, software defined radio, computational complexity, Capon's method, GNU radio
Procedia PDF Downloads 754465 Energy Audit and Renovation Scenarios for a Historical Building in Rome: A Pilot Case Towards the Zero Emission Building Goal
Authors: Domenico Palladino, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Silvia Di Turi
Abstract:
The aim to achieve a fully decarbonized building stock by 2050 stands as one of the most challenging issues within the spectrum of energy and climate objectives. Numerous strategies are imperative, particularly emphasizing the reduction and optimization of energy demand. Ensuring the high energy performance of buildings emerges as a top priority, with measures aimed at cutting energy consumptions. Concurrently, it is imperative to decrease greenhouse gas emissions by using renewable energy sources for the on-site energy production, thereby striving for an energy balance leading towards zero-emission buildings. Italy's predominant building stock comprises ancient buildings, many of which hold historical significance and are subject to stringent preservation and conservation regulations. Attaining high levels of energy efficiency and reducing CO2 emissions in such buildings poses a considerable challenge, given their unique characteristics and the imperative to adhere to principles of conservation and restoration. Additionally, conducting a meticulous analysis of these buildings' current state is crucial for accurately quantifying their energy performance and predicting the potential impacts of proposed renovation strategies on energy consumption reduction. Within this framework, the paper presents a pilot case in Rome, outlining a methodological approach for the renovation of historic buildings towards achieving Zero Emission Building (ZEB) objective. The building has a mixed function with offices, a conference hall, and an exposition area. The building envelope is made of historical and precious materials used as cladding which must be preserved. A thorough understanding of the building's current condition serves as a prerequisite for analyzing its energy performance. This involves conducting comprehensive archival research, undertaking on-site diagnostic examinations to characterize the building envelope and its systems, and evaluating actual energy usage data derived from energy bills. Energy simulations and audit are the first step in the analysis with the assessment of the energy performance of the actual current state. Subsequently, different renovation scenarios are proposed, encompassing advanced building techniques, to pinpoint the key actions necessary for improving mechanical systems, automation and control systems, and the integration of renewable energy production. These scenarios entail different levels of renovation, ranging from meeting minimum energy performance goals to achieving the highest possible energy efficiency level. The proposed interventions are meticulously analyzed and compared to ascertain the feasibility of attaining the Zero Emission Building objective. In conclusion, the paper provides valuable insights that can be extrapolated to inform a broader approach towards energy-efficient refurbishment of historical buildings that may have limited potential for renovation in their building envelopes. By adopting a methodical and nuanced approach, it is possible to reconcile the imperative of preserving cultural heritage with the pressing need to transition towards a sustainable, low-carbon future.Keywords: energy conservation and transition, energy efficiency in historical buildings, buildings energy performance, energy retrofitting, zero emission buildings, energy simulation
Procedia PDF Downloads 684464 Expert Supporting System for Diagnosing Lymphoid Neoplasms Using Probabilistic Decision Tree Algorithm and Immunohistochemistry Profile Database
Authors: Yosep Chong, Yejin Kim, Jingyun Choi, Hwanjo Yu, Eun Jung Lee, Chang Suk Kang
Abstract:
For the past decades, immunohistochemistry (IHC) has been playing an important role in the diagnosis of human neoplasms, by helping pathologists to make a clearer decision on differential diagnosis, subtyping, personalized treatment plan, and finally prognosis prediction. However, the IHC performed in various tumors of daily practice often shows conflicting and very challenging results to interpret. Even comprehensive diagnosis synthesizing clinical, histologic and immunohistochemical findings can be helpless in some twisted cases. Another important issue is that the IHC data is increasing exponentially and more and more information have to be taken into account. For this reason, we reached an idea to develop an expert supporting system to help pathologists to make a better decision in diagnosing human neoplasms with IHC results. We gave probabilistic decision tree algorithm and tested the algorithm with real case data of lymphoid neoplasms, in which the IHC profile is more important to make a proper diagnosis than other human neoplasms. We designed probabilistic decision tree based on Bayesian theorem, program computational process using MATLAB (The MathWorks, Inc., USA) and prepared IHC profile database (about 104 disease category and 88 IHC antibodies) based on WHO classification by reviewing the literature. The initial probability of each neoplasm was set with the epidemiologic data of lymphoid neoplasm in Korea. With the IHC results of 131 patients sequentially selected, top three presumptive diagnoses for each case were made and compared with the original diagnoses. After the review of the data, 124 out of 131 were used for final analysis. As a result, the presumptive diagnoses were concordant with the original diagnoses in 118 cases (93.7%). The major reason of discordant cases was that the similarity of the IHC profile between two or three different neoplasms. The expert supporting system algorithm presented in this study is in its elementary stage and need more optimization using more advanced technology such as deep-learning with data of real cases, especially in differentiating T-cell lymphomas. Although it needs more refinement, it may be used to aid pathological decision making in future. A further application to determine IHC antibodies for a certain subset of differential diagnoses might be possible in near future.Keywords: database, expert supporting system, immunohistochemistry, probabilistic decision tree
Procedia PDF Downloads 2244463 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: dynamic algorithm, load imbalance, mapping, task scheduling
Procedia PDF Downloads 4504462 Research on Spatial Distribution of Service Facilities Based on Innovation Function: A Case Study of Zhejiang University Zijin Co-Maker Town
Authors: Zhang Yuqi
Abstract:
Service facilities are the boosters for the cultivation and development of innovative functions in innovative cluster areas. At the same time, reasonable service facilities planning can better link the internal functional blocks. This paper takes Zhejiang University Zijin Co-Maker Town as the research object, based on the combination of network data mining and field research and verification, combined with the needs of its internal innovative groups. It studies the distribution characteristics and existing problems of service facilities and then proposes a targeted planning suggestion. The main conclusions are as follows: (1) From the perspective of view, the town is rich in general life-supporting services, but lacking of provision targeted and distinctive service facilities for innovative groups; (2) From the perspective of scale structure, small-scale street shops are the main business form, lack of large-scale service center; (3) From the perspective of spatial structure, service facilities layout of each functional block is too fragile to fit the characteristics of 2aggregation- distribution' of innovation and entrepreneurial activities; (4) The goal of optimizing service facilities planning should be guided for fostering function of innovation and entrepreneurship and meet the actual needs of the innovation and entrepreneurial groups.Keywords: the cultivation of innovative function, Zhejiang University Zijin Co-Maker Town, service facilities, network data mining, space optimization advice
Procedia PDF Downloads 1164461 The Correlation between Emotional Intelligence and Locus of Control: Empirical Study on Lithuanian Youth
Authors: Dalia Antiniene, Rosita Lekaviciene
Abstract:
The qualitative methodology based study is designed to reveal a connection between emotional intelligence (EI) and locus of control (LC) within the population of Lithuanian youth. In the context of emotional problems, the locus of control reflects how one estimates the causes of his/her emotions: internals (internal locus of control) associate their emotions with their manner of thinking, whereas externals (external locus of control) consider emotions to be evoked by external circumstances. On the other hand, there is little empirical data about this connection, and the results in disposition are often contradictory. In the conducted study 1430 young people, aged 17 to 27, from various regions of Lithuania were surveyed. The subjects were selected by quota sampling, maintaining natural proportions of the general Lithuanian youth population. To assess emotional intelligence the EI-DARL test (i.e. self-report questionnaire consisting of 75 items) was implemented. The emotional intelligence test, created applying exploratory factor analysis, reveals four main dimensions of EI: understanding of one’s own emotions, regulation of one’s own emotions, understanding other’s emotions, and regulation of other’s emotions (subscale reliability coefficients fluctuate between 0,84 and 0,91). An original 16-item internality/externality scale was used to examine the locus of control (internal consistency of the Externality subscale - 0,75; Internality subscale - 0,65). The study has determined that the youth understands and regulates other people’s emotions better than their own. Using the K-mean cluster analysis method, it was established that there are three groups of subjects according to their EI level – people with low, medium and high EI. After comparing means of subjects’ favorability of statements on the Internality/Externality scale, a predominance of internal locus of control in the young population was established. The multiple regression models has shown that a rather strong statistically significant correlation exists between total EI, EI subscales and LC. People who tend to attribute responsibility for the outcome of their actions to their own abilities and efforts have higher EI and, conversely, the tendency to attribute responsibility to external forces is related more with lower EI. While pursuing their goals, young people with high internality have a predisposition to analyze perceived emotions and, therefore, gain emotional experience: they learn to control their natural reactions and to act adequately in a situation at hand. Thus the study unfolds, that a person’s locus of control and emotional intelligence are related phenomena and allows us to draw a conclusion, that a person’s internality/externality is a reliable predictor of total EI and its components.Keywords: emotional intelligence, externality, internality, locus of control
Procedia PDF Downloads 2224460 A Hybrid Derivative-Free Optimization Method for Pass Schedule Calculation in Cold Rolling Mill
Authors: Mohammadhadi Mirmohammadi, Reza Safian, Hossein Haddad
Abstract:
This paper presents an innovative solution for complex multi-objective optimization problem which is a part of efforts toward maximizing rolling mill throughput and minimizing processing costs in tandem cold rolling. This computational intelligence based optimization has been applied to the rolling schedules of tandem cold rolling mill. This method involves the combination of two derivative-free optimization procedures in the form of nested loops. The first optimization loop is based on Improving Hit and Run method which focus on balance of power, force and reduction distribution in rolling schedules. The second loop is a real-coded genetic algorithm based optimization procedure which optimizes energy consumption and productivity. An experimental result of application to five stand tandem cold rolling mill is presented.Keywords: derivative-free optimization, Improving Hit and Run method, real-coded genetic algorithm, rolling schedules of tandem cold rolling mill
Procedia PDF Downloads 6964459 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 1594458 Preparation and Removal Properties of Hollow Fiber Membranes for Drinking Water
Authors: Seung Moon Woo, Youn Suk Chung, Sang Yong Nam
Abstract:
In the present time, we need advanced water treatment technology for separation of virus and bacteria in effluent which occur epidemic and waterborne diseases. Water purification system is mainly divided into two categorizations like reverse osmosis (RO) and ultrafiltration (UF). Membrane used in these systems requires higher durability because of operating in harsh condition. Of these, the membrane using in UF system has many advantages like higher efficiency and lower energy consume for water treatment compared with RO system. In many kinds of membrane, hollow fiber type membrane is possible to make easily and to get optimized property by control of various spinning conditions such as temperature of coagulation bath, concentration of polymer, addition of additive, air gap and internal coagulation. In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 1.5 LPM, 0.03 μm at 1.0 kgf/cm2. The bacteria and virus removal performance of prepared UF membranes were over 6 logs.Keywords: hollow fiber membrane, drinking water, ultrafiltration, bacteria
Procedia PDF Downloads 2484457 Structure of Consciousness According to Deep Systemic Constellations
Authors: Dmitry Ustinov, Olga Lobareva
Abstract:
The method of Deep Systemic Constellations is based on a phenomenological approach. Using the phenomenon of substitutive perception it was established that the human consciousness has a hierarchical structure, where deeper levels govern more superficial ones (reactive level, energy or ancestral level, spiritual level, magical level, and deeper levels of consciousness). Every human possesses a depth of consciousness to the spiritual level, however deeper levels of consciousness are not found for every person. It was found that the spiritual level of consciousness is not homogeneous and has its own internal hierarchy of sublevels (the level of formation of spiritual values, the level of the 'inner observer', the level of the 'path', the level of 'God', etc.). The depth of the spiritual level of a person defines the paradigm of all his internal processes and the main motives of the movement through life. At any level of consciousness disturbances can occur. Disturbances at a deeper level cause disturbances at more superficial levels and are manifested in the daily life of a person in feelings, behavioral patterns, psychosomatics, etc. Without removing the deepest source of a disturbance it is impossible to completely correct its manifestation in the actual moment. Thus a destructive pattern of feeling and behavior in the actual moment can exist because of a disturbance, for example, at the spiritual level of a person (although in most cases the source is at the energy level). Psychological work with superficial levels without removing a source of disturbance cannot fully solve the problem. The method of Deep Systemic Constellations allows one to work effectively with the source of the problem located at any depth. The methodology has confirmed its effectiveness in working with more than a thousand people.Keywords: constellations, spiritual psychology, structure of consciousness, transpersonal psychology
Procedia PDF Downloads 2494456 A Discrete Logit Survival Model with a Smooth Baseline Hazard for Age at First Alcohol Intake among Students at Tertiary Institutions in Thohoyandou, South Africa
Authors: A. Bere, H. G. Sithuba, K. Kyei, C. Sigauke
Abstract:
We employ a discrete logit survival model to investigate the risk factors for early alcohol intake among students at two tertiary institutions in Thohoyandou, South Africa. Data were collected from a sample of 744 students using a self-administered questionnaire. Significant covariates were arrived at through a regularization algorithm implemented using the glmmLasso package. The tuning parameter was determined using a five-fold cross-validation algorithm. The baseline hazard was modelled as a smooth function of time through the use of spline functions. The results show that the hazard of initial alcohol intake peaks at the age of about 16 years and that at any given time, being of a male gender, prior use of other drugs, having drinking peers, having experienced negative life events and physical abuse are associated with a higher risk of alcohol intake debut.Keywords: cross-validation, discrete hazard model, LASSO, smooth baseline hazard
Procedia PDF Downloads 1924455 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets
Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi
Abstract:
Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.Keywords: data sets, recommendation system, utility item sets, frequent item sets mining
Procedia PDF Downloads 293