Search results for: sensor fusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1842

Search results for: sensor fusion

72 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria

Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan

Abstract:

Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.

Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM

Procedia PDF Downloads 138
71 Transducers for Measuring Displacements of Rotating Blades in Turbomachines

Authors: Pavel Prochazka

Abstract:

The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.

Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors

Procedia PDF Downloads 129
70 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures

Authors: Haytam Kasem

Abstract:

The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.

Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model

Procedia PDF Downloads 239
69 Machine Learning and Internet of Thing for Smart-Hydrology of the Mantaro River Basin

Authors: Julio Jesus Salazar, Julio Jesus De Lama

Abstract:

the fundamental objective of hydrological studies applied to the engineering field is to determine the statistically consistent volumes or water flows that, in each case, allow us to size or design a series of elements or structures to effectively manage and develop a river basin. To determine these values, there are several ways of working within the framework of traditional hydrology: (1) Study each of the factors that influence the hydrological cycle, (2) Study the historical behavior of the hydrology of the area, (3) Study the historical behavior of hydrologically similar zones, and (4) Other studies (rain simulators or experimental basins). Of course, this range of studies in a certain basin is very varied and complex and presents the difficulty of collecting the data in real time. In this complex space, the study of variables can only be overcome by collecting and transmitting data to decision centers through the Internet of things and artificial intelligence. Thus, this research work implemented the learning project of the sub-basin of the Shullcas river in the Andean basin of the Mantaro river in Peru. The sensor firmware to collect and communicate hydrological parameter data was programmed and tested in similar basins of the European Union. The Machine Learning applications was programmed to choose the algorithms that direct the best solution to the determination of the rainfall-runoff relationship captured in the different polygons of the sub-basin. Tests were carried out in the mountains of Europe, and in the sub-basins of the Shullcas river (Huancayo) and the Yauli river (Jauja) with heights close to 5000 m.a.s.l., giving the following conclusions: to guarantee a correct communication, the distance between devices should not pass the 15 km. It is advisable to minimize the energy consumption of the devices and avoid collisions between packages, the distances oscillate between 5 and 10 km, in this way the transmission power can be reduced and a higher bitrate can be used. In case the communication elements of the devices of the network (internet of things) installed in the basin do not have good visibility between them, the distance should be reduced to the range of 1-3 km. The energy efficiency of the Atmel microcontrollers present in Arduino is not adequate to meet the requirements of system autonomy. To increase the autonomy of the system, it is recommended to use low consumption systems, such as the Ashton Raggatt McDougall or ARM Cortex L (Ultra Low Power) microcontrollers or even the Cortex M; and high-performance direct current (DC) to direct current (DC) converters. The Machine Learning System has initiated the learning of the Shullcas system to generate the best hydrology of the sub-basin. This will improve as machine learning and the data entered in the big data coincide every second. This will provide services to each of the applications of the complex system to return the best data of determined flows.

Keywords: hydrology, internet of things, machine learning, river basin

Procedia PDF Downloads 160
68 The Impact of Reducing Road Traffic Speed in London on Noise Levels: A Comparative Study of Field Measurement and Theoretical Calculation

Authors: Jessica Cecchinelli, Amer Ali

Abstract:

The continuing growth in road traffic and the resultant impact on the level of pollution and safety especially in urban areas have led local and national authorities to reduce traffic speed and flow in major towns and cities. Various boroughs of London have recently reduced the in-city speed limit from 30mph to 20mph mainly to calm traffic, improve safety and reduce noise and vibration. This paper reports the detailed field measurements using noise sensor and analyser and the corresponding theoretical calculations and analysis of the noise levels on a number of roads in the central London Borough of Camden where speed limit was reduced from 30mph to 20mph in all roads except the major routes of the ‘Transport for London (TfL)’. The measurements, which included the key noise levels and scales at residential streets and main roads, were conducted during weekdays and weekends normal and rush hours. The theoretical calculations were done according to the UK procedure ‘Calculation of Road Traffic Noise 1988’ and with conversion to the European L-day, L-evening, L-night, and L-den and other important levels. The current study also includes comparable data and analysis from previously measured noise in the Borough of Camden and other boroughs of central London. Classified traffic flow and speed on the roads concerned were observed and used in the calculation part of the study. Relevant data and description of the weather condition are reported. The paper also reports a field survey in the form of face-to-face interview questionnaires, which was carried out in parallel with the field measurement of noise, in order to ascertain the opinions and views of local residents and workers in the reduced speed zones of 20mph. The main findings are that the reduction in speed had reduced the noise pollution on the studied zones and that the measured and calculated noise levels for each speed zone are closely matched. Among the other findings was that of the field survey of the opinions and views of the local residents and workers in the reduced speed 20mph zones who supported the scheme and felt that it had improved the quality of life in their areas giving a sense of calmness and safety particularly for families with children, the elderly, and encouraged pedestrians and cyclists. The key conclusions are that lowering the speed limit in built-up areas would not just reduce the number of serious accidents but it would also reduce the noise pollution and promote clean modes of transport particularly walking and cycling. The details of the site observations and the corresponding calculations together with critical comparative analysis and relevant conclusions will be reported in the full version of the paper.

Keywords: noise calculation, noise field measurement, road traffic noise, speed limit in london, survey of people satisfaction

Procedia PDF Downloads 424
67 Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories

Authors: Erika T. Fajardo-Ariza, Luis A. Castillo-Sanabria, Andrea Nieto-Veloza, Carlos M. Zuluaga-Domínguez

Abstract:

The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts.

Keywords: drying technology, postharvest loss reduction, solar dryers, sustainable agriculture

Procedia PDF Downloads 29
66 Improved Signal-To-Noise Ratio by the 3D-Functionalization of Fully Zwitterionic Surface Coatings

Authors: Esther Van Andel, Stefanie C. Lange, Maarten M. J. Smulders, Han Zuilhof

Abstract:

False outcomes of diagnostic tests are a major concern in medical health care. To improve the reliability of surface-based diagnostic tests, it is of crucial importance to diminish background signals that arise from the non-specific binding of biomolecules, a process called fouling. The aim is to create surfaces that repel all biomolecules except the molecule of interest. This can be achieved by incorporating antifouling protein repellent coatings in between the sensor surface and it’s recognition elements (e.g. antibodies, sugars, aptamers). Zwitterionic polymer brushes are considered excellent antifouling materials, however, to be able to bind the molecule of interest, the polymer brushes have to be functionalized and so far this was only achieved at the expense of either antifouling or binding capacity. To overcome this limitation, we combined both features into one single monomer: a zwitterionic sulfobetaine, ensuring antifouling capabilities, equipped with a clickable azide moiety which allows for further functionalization. By copolymerizing this monomer together with a standard sulfobetaine, the number of azides (and with that the number of recognition elements) can be tuned depending on the application. First, the clickable azido-monomer was synthesized and characterized, followed by copolymerizing this monomer to yield functionalizable antifouling brushes. The brushes were fully characterized using surface characterization techniques like XPS, contact angle measurements, G-ATR-FTIR and XRR. As a proof of principle, the brushes were subsequently functionalized with biotin via strain-promoted alkyne azide click reactions, which yielded a fully zwitterionic biotin-containing 3D-functionalized coating. The sensing capacity was evaluated by reflectometry using avidin and fibrinogen containing protein solutions. The surfaces showed excellent antifouling properties as illustrated by the complete absence of non-specific fibrinogen binding, while at the same time clear responses were seen for the specific binding of avidin. A great increase in signal-to-noise ratio was observed, even when the amount of functional groups was lowered to 1%, compared to traditional modification of sulfobetaine brushes that rely on a 2D-approach in which only the top-layer can be functionalized. This study was performed on stoichiometric silicon nitride surfaces for future microring resonator based assays, however, this methodology can be transferred to other biosensor platforms which are currently being investigated. The approach presented herein enables a highly efficient strategy for selective binding with retained antifouling properties for improved signal-to-noise ratios in binding assays. The number of recognition units can be adjusted to a specific need, e.g. depending on the size of the analyte to be bound, widening the scope of these functionalizable surface coatings.

Keywords: antifouling, signal-to-noise ratio, surface functionalization, zwitterionic polymer brushes

Procedia PDF Downloads 306
65 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters

Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng

Abstract:

Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.

Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum

Procedia PDF Downloads 162
64 Establishment of Precision System for Underground Facilities Based on 3D Absolute Positioning Technology

Authors: Yonggu Jang, Jisong Ryu, Woosik Lee

Abstract:

The study aims to address the limitations of existing underground facility exploration equipment in terms of exploration depth range, relative depth measurement, data processing time, and human-centered ground penetrating radar image interpretation. The study proposed the use of 3D absolute positioning technology to develop a precision underground facility exploration system. The aim of this study is to establish a precise exploration system for underground facilities based on 3D absolute positioning technology, which can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The study developed software and hardware technologies to build the precision exploration system. The software technologies developed include absolute positioning technology, ground surface location synchronization technology of GPR exploration equipment, GPR exploration image AI interpretation technology, and integrated underground space map-based composite data processing technology. The hardware systems developed include a vehicle-type exploration system and a cart-type exploration system. The data was collected using the developed exploration system, which employs 3D absolute positioning technology. The GPR exploration images were analyzed using AI technology, and the three-dimensional location information of the explored precise underground facilities was compared to the integrated underground space map. The study successfully developed a precision underground facility exploration system based on 3D absolute positioning technology. The developed exploration system can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The system comprises software technologies that build a 3D precise DEM, synchronize the GPR sensor's ground surface 3D location coordinates, automatically analyze and detect underground facility information in GPR exploration images and improve accuracy through comparative analysis of the three-dimensional location information, and hardware systems, including a vehicle-type exploration system and a cart-type exploration system. The study's findings and technological advancements are essential for underground safety management in Korea. The proposed precision exploration system significantly contributes to establishing precise location information of underground facility information, which is crucial for underground safety management and improves the accuracy and efficiency of exploration. The study addressed the limitations of existing equipment in exploring underground facilities, proposed 3D absolute positioning technology-based precision exploration system, developed software and hardware systems for the exploration system, and contributed to underground safety management by providing precise location information. The developed precision underground facility exploration system based on 3D absolute positioning technology has the potential to provide accurate and efficient exploration of underground facilities up to a depth of 5m. The system's technological advancements contribute to the establishment of precise location information of underground facility information, which is essential for underground safety management in Korea.

Keywords: 3D absolute positioning, AI interpretation of GPR exploration images, complex data processing, integrated underground space maps, precision exploration system for underground facilities

Procedia PDF Downloads 62
63 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 137
62 Risks beyond Cyber in IoT Infrastructure and Services

Authors: Mattias Bergstrom

Abstract:

Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.

Keywords: IoT, security, infrastructure, SCADA, blockchain, AI

Procedia PDF Downloads 107
61 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 66
60 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor

Authors: Mitali Saha, Soma Das

Abstract:

The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.

Keywords: coconut oil, CCNT, cholesterol, biosensor

Procedia PDF Downloads 282
59 Data Calibration of the Actual versus the Theoretical Micro Electro Mechanical Systems (MEMS) Based Accelerometer Reading through Remote Monitoring of Padre Jacinto Zamora Flyover

Authors: John Mark Payawal, Francis Aldrine Uy, John Paul Carreon

Abstract:

This paper shows the application of Structural Health Monitoring, SHM into bridges. Bridges are structures built to provide passage over a physical obstruction such as rivers, chasms or roads. The Philippines has a total of 8,166 national bridges as published on the 2015 atlas of the Department of Public Works and Highways (DPWH) and only 2,924 or 35.81% of these bridges are in good condition. As a result, PHP 30.464 billion of the 2016 budget of DPWH is allocated on roads and/or bridges maintenance alone. Intensive spending is owed to the present practice of outdated manual inspection and assessment, and poor structural health monitoring of Philippine infrastructures. As the School of Civil, Environmental, & Geological Engineering of Mapua Institute of Technology (MIT) continuous its well driven passion in research based projects, a partnership with the Department of Science and Technology (DOST) and the DPWH launched the application of Structural Health Monitoring, (SHM) in Padre Jacinto Zamora Flyover. The flyover is located along Nagtahan Boulevard in Sta. Mesa, Manila that connects Brgy. 411 and Brgy. 635. It gives service to vehicles going from Lacson Avenue to Mabini Bridge passing over Legarda Flyover. The flyover is chosen among the many located bridges in Metro Manila as the focus of the pilot testing due to its site accessibility, and complete structural built plans and specifications necessary for SHM as provided by the Bureau of Design, BOD department of DPWH. This paper focuses on providing a method to calibrate theoretical readings from STAAD Vi8 Pro and sync the data to actual MEMS accelerometer readings. It is observed that while the design standards used in constructing the flyover was reflected on the model, actual readings of MEMS accelerometer display a large difference compared to the theoretical data ran and taken from STAAD Vi8 Pro. In achieving a true seismic response of the modeled bridge or hence syncing the theoretical data to the actual sensor reading also called as the independent variable of this paper, analysis using single degree of freedom (SDOF) of the flyover under free vibration without damping using STAAD Vi8 Pro is done. The earthquake excitation and bridge responses are subjected to earthquake ground motion in the form of ground acceleration or Peak Ground Acceleration, PGA. Translational acceleration load is used to simulate the ground motion of the time history analysis acceleration record in STAAD Vi8 Pro.

Keywords: accelerometer, analysis using single degree of freedom, micro electro mechanical system, peak ground acceleration, structural health monitoring

Procedia PDF Downloads 319
58 Auto Surgical-Emissive Hand

Authors: Abhit Kumar

Abstract:

The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.

Keywords: active robots, algorithm, emission, icy steam, TIC, laser

Procedia PDF Downloads 356
57 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
56 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 259
55 Application of IoTs Based Multi-Level Air Quality Sensing for Advancing Environmental Monitoring in Pingtung County

Authors: Men An Pan, Hong Ren Chen, Chih Heng Shih, Hsing Yuan Yen

Abstract:

Pingtung County is located in the southernmost region of Taiwan. During the winter season, pollutants due to insufficient dispersion caused by the downwash of the northeast monsoon lead to the poor air quality of the County. Through the implementation of various control methods, including the application of permits of air pollution, fee collection of air pollution, control oil fume of catering sectors, smoke detection of diesel vehicles, regular inspection of locomotives, and subsidies for low-polluting vehicles. Moreover, to further mitigate the air pollution, additional alternative controlling strategies are also carried out, such as construction site control, prohibition of open-air agricultural waste burning, improvement of river dust, and strengthening of road cleaning operations. The combined efforts have significantly reduced air pollutants in the County. However, in order to effectively and promptly monitor the ambient air quality, the County has subsequently deployed micro-sensors, with a total of 400 IoTs (Internet of Things) micro-sensors for PM2.5 and VOC detection and 3 air quality monitoring stations of the Environmental Protection Agency (EPA), covering 33 townships of the County. The covered area has more than 1,300 listed factories and 5 major industrial parks; thus forming an Internet of Things (IoTs) based multi-level air quality monitoring system. The results demonstrate that the IoTs multi-level air quality sensors combined with other strategies such as “sand and gravel dredging area technology monitoring”, “banning open burning”, “intelligent management of construction sites”, “real-time notification of activation response”, “nighthawk early bird plan with micro-sensors”, “unmanned aircraft (UAV) combined with land and air to monitor abnormal emissions”, and “animal husbandry odour detection service” etc. The satisfaction improvement rate of air control, through a 2021 public survey, reached a high percentage of 81%, an increase of 46% as compared to 2018. For the air pollution complaints for the whole year of 2021, the total number was 4213 in contrast to 7088 in 2020, a reduction rate reached almost 41%. Because of the spatial-temporal features of the air quality monitoring IoTs system by the application of microsensors, the system does assist and strengthen the effectiveness of the existing air quality monitoring network of the EPA and can provide real-time control of the air quality. Therefore, the hot spots and potential pollution locations can be timely determined for law enforcement. Hence, remarkable results were obtained for the two years. That is, both reduction of public complaints and better air quality are successfully achieved through the implementation of the present IoTs system for real-time air quality monitoring throughout Pingtung County.

Keywords: IoT, PM, air quality sensor, air pollution, environmental monitoring

Procedia PDF Downloads 73
54 Employing Remotely Sensed Soil and Vegetation Indices and Predicting ‎by Long ‎Short-Term Memory to Irrigation Scheduling Analysis

Authors: Elham Koohikerade, Silvio Jose Gumiere

Abstract:

In this research, irrigation is highlighted as crucial for improving both the yield and quality of ‎potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long ‎Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in ‎Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate ‎soil moisture content, addressing the limitations of field data. Developed under the guidance of the ‎Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct ‎soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices ‎like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced ‎Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast ‎soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing ‎drought conditions and determining irrigation needs. This study validated the spectral characteristics ‎of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging ‎Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and ‎Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and ‎NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture ‎was developed using a machine learning approach combining model-based and satellite-based ‎datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and ‎times, with its accuracy verified through cross-validation and comparison with existing soil moisture ‎datasets. The model effectively captures temporal dynamics, making it valuable for applications ‎requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By ‎identifying typical peak soil moisture values and observing distribution shapes, irrigation can be ‎scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 ‎m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a ‎uniform irrigation strategy might be effective across multiple parcels, with adjustments based on ‎specific parcel characteristics and historical data trends. The application of the LSTM model to ‎predict soil moisture and vegetation indices yielded mixed results. While the model effectively ‎captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately ‎predicting EVI, NDVI, and NMDI.‎

Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation ‎monitoring

Procedia PDF Downloads 41
53 The Study of Mirror Self-Recognition in Wildlife

Authors: Azwan Hamdan, Mohd Qayyum Ab Latip, Hasliza Abu Hassim, Tengku Rinalfi Putra Tengku Azizan, Hafandi Ahmad

Abstract:

Animal cognition provides some evidence for self-recognition, which is described as the ability to recognize oneself as an individual separate from the environment and other individuals. The mirror self-recognition (MSR) or mark test is a behavioral technique to determine whether an animal have the ability of self-recognition or self-awareness in front of the mirror. It also describes the capability for an animal to be aware of and make judgments about its new environment. Thus, the objectives of this study are to measure and to compare the ability of wild and captive wildlife in mirror self-recognition. Wild animals from the Royal Belum Rainforest Malaysia were identified based on the animal trails and salt lick grounds. Acrylic mirrors with wood frame (200 x 250cm) were located near to animal trails. Camera traps (Bushnell, UK) with motion-detection infrared sensor are placed near the animal trails or hiding spot. For captive wildlife, animals such as Malayan sun bear (Helarctos malayanus) and chimpanzee (Pan troglodytes) were selected from Zoo Negara Malaysia. The captive animals were also marked using odorless and non-toxic white paint on its forehead. An acrylic mirror with wood frame (200 x 250cm) and a video camera were placed near the cage. The behavioral data were analyzed using ethogram and classified through four stages of MSR; social responses, physical inspection, repetitive mirror-testing behavior and realization of seeing themselves. Results showed that wild animals such as barking deer (Muntiacus muntjak) and long-tailed macaque (Macaca fascicularis) increased their physical inspection (e.g inspecting the reflected image) and repetitive mirror-testing behavior (e.g rhythmic head and leg movement). This would suggest that the ability to use a mirror is most likely related to learning process and cognitive evolution in wild animals. However, the sun bear’s behaviors were inconsistent and did not clearly undergo four stages of MSR. This result suggests that when keeping Malayan sun bear in captivity, it may promote communication and familiarity between conspecific. Interestingly, chimp has positive social response (e.g manipulating lips) and physical inspection (e.g using hand to inspect part of the face) when they facing a mirror. However, both animals did not show any sign towards the mark due to lost of interest in the mark and realization that the mark is inconsequential. Overall, the results suggest that the capacity for MSR is the beginning of a developmental process of self-awareness and mental state attribution. In addition, our findings show that self-recognition may be based on different complex neurological and level of encephalization in animals. Thus, research on self-recognition in animals will have profound implications in understanding the cognitive ability of an animal as an effort to help animals, such as enhanced management, design of captive individuals’ enclosures and exhibits, and in programs to re-establish populations of endangered or threatened species.

Keywords: mirror self-recognition (MSR), self-recognition, self-awareness, wildlife

Procedia PDF Downloads 272
52 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topological order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment 'interactional cycle' for exchange photon energy with molecules without changes in topology. The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies: which are; automated, real-time, reliable, reproducible, and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody-antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due to the pathogenic archival architecture of cell clusters.

Keywords: autopoiesis, photonics systems, quantum topology, molecular structure, biosensing

Procedia PDF Downloads 93
51 Correlation between Defect Suppression and Biosensing Capability of Hydrothermally Grown ZnO Nanorods

Authors: Mayoorika Shukla, Pramila Jakhar, Tejendra Dixit, I. A. Palani, Vipul Singh

Abstract:

Biosensors are analytical devices with wide range of applications in biological, chemical, environmental and clinical analysis. It comprises of bio-recognition layer which has biomolecules (enzymes, antibodies, DNA, etc.) immobilized over it for detection of analyte and transducer which converts the biological signal into the electrical signal. The performance of biosensor primarily the depends on the bio-recognition layer and therefore it has to be chosen wisely. In this regard, nanostructures of metal oxides such as ZnO, SnO2, V2O5, and TiO2, etc. have been explored extensively as bio-recognition layer. Recently, ZnO has the attracted attention of researchers due to its unique properties like high iso-electric point, biocompatibility, stability, high electron mobility and high electron binding energy, etc. Although there have been many reports on usage of ZnO as bio-recognition layer but to the authors’ knowledge, none has ever observed correlation between optical properties like defect suppression and biosensing capability of the sensor. Here, ZnO nanorods (ZNR) have been synthesized by a low cost, simple and low-temperature hydrothermal growth process, over Platinum (Pt) coated glass substrate. The ZNR have been synthesized in two steps viz. initially a seed layer was coated over substrate (Pt coated glass) followed by immersion of it into nutrient solution of Zinc nitrate and Hexamethylenetetramine (HMTA) with in situ addition of KMnO4. The addition of KMnO4 was observed to have a profound effect over the growth rate anisotropy of ZnO nanostructures. Clustered and powdery growth of ZnO was observed without addition of KMnO4, although by addition of it during the growth, uniform and crystalline ZNR were found to be grown over the substrate. Moreover, the same has resulted in suppression of defects as observed by Normalized Photoluminescence (PL) spectra since KMnO4 is a strong oxidizing agent which provides an oxygen rich growth environment. Further, to explore the correlation between defect suppression and biosensing capability of the ZNR Glucose oxidase (Gox) was immobilized over it, using physical adsorption technique followed by drop casting of nafion. Here the main objective of the work was to analyze effect of defect suppression over biosensing capability, and therefore Gox has been chosen as model enzyme, and electrochemical amperometric glucose detection was performed. The incorporation of KMnO4 during growth has resulted in variation of optical and charge transfer properties of ZNR which in turn were observed to have deep impact on biosensor figure of merits. The sensitivity of biosensor was found to increase by 12-18 times, due to variations introduced by addition of KMnO4 during growth. The amperometric detection of glucose in continuously stirred buffer solution was performed. Interestingly, defect suppression has been observed to contribute towards the improvement of biosensor performance. The detailed mechanism of growth of ZNR along with the overall influence of defect suppression on the sensing capabilities of the resulting enzymatic electrochemical biosensor and different figure of merits of the biosensor (Glass/Pt/ZNR/Gox/Nafion) will be discussed during the conference.

Keywords: biosensors, defects, KMnO4, ZnO nanorods

Procedia PDF Downloads 282
50 Sensitivity Improvement of Optical Ring Resonator for Strain Analysis with the Direction of Strain Recognition Possibility

Authors: Tayebeh Sahraeibelverdi, Ahmad Shirazi Hadi Veladi, Mazdak Radmalekshah

Abstract:

Optical sensors became attractive due to preciseness, low power consumption, and intrinsic electromagnetic interference-free characteristic. Among the waveguide optical sensors, cavity-based ones attended for the high Q-factor. Micro ring resonators as a potential platform have been investigated for various applications as biosensors to pressure sensors thanks to their sensitive ring structure responding to any small change in the refractive index. Furthermore, these small micron size structures can come in an array, bringing the opportunity to have any of the resonance in a specific wavelength and be addressed in this way. Another exciting application is applying a strain to the ring and making them an optical strain gauge where the traditional ones are based on the piezoelectric material. Making them in arrays needs electrical wiring and about fifty times bigger in size. Any physical element that impacts the waveguide cross-section, Waveguide elastic-optic property change, or ring circumference can play a role. In comparison, ring size change has a larger effect than others. Here an engineered ring structure is investigated to study the strain effect on the ring resonance wavelength shift and its potential for more sensitive strain devices. At the same time, these devices can measure any strain by mounting on the surface of interest. The idea is to change the" O" shape ring to a "C" shape ring with a small opening starting from 2π/360 or one degree. We used the Mode solution of Lumbrical software to investigate the effect of changing the ring's opening and the shift induced by applied strain. The designed ring radius is a three Micron silicon on isolator ring which can be fabricated by standard complementary metal-oxide-semiconductor (CMOS) micromachining. The measured wavelength shifts from1-degree opening of the ring to a 6-degree opening have been investigated. Opening the ring for 1-degree affects the ring's quality factor from 3000 to 300, showing an order of magnitude Q-factor reduction. Assuming a strain making the ring-opening from 1 degree to 6 degrees, our simulation results showing negligible Q-factor reduction from 300 to 280. A ring resonator quality factor can reach up to 108 where an order of magnitude reduction is negligible. The resonance wavelength shift showed a blue shift and was obtained to be 1581, 1579,1578,1575nm for 1-, 2-, 4- and 6-degree ring-opening, respectively. This design can find the direction of the strain-induced by applying the opening on different parts of the ring. Moreover, by addressing the specified wavelength, we can precisely find the direction. We can open a significant opportunity to find cracks and any surface mechanical property very specifically and precisely. This idea can be implemented on polymer ring resonators while they can come with a flexible substrate and can be very sensitive to any strain making the two ends of the ring in the slit part come closer or further.

Keywords: optical ring resonator, strain gauge, strain sensor, surface mechanical property analysis

Procedia PDF Downloads 126
49 Spectral Responses of the Laser Generated Coal Aerosol

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki

Abstract:

Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.

Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation

Procedia PDF Downloads 361
48 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 188
47 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents

Authors: Rajesh Kumar Gautam, Debabrata Seth

Abstract:

Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.

Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant

Procedia PDF Downloads 162
46 Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms

Authors: Pola Goldberg Oppenheimer, Stephan Hofmann, Sumeet Mahajan

Abstract:

Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms.

Keywords: carbon nanotubes (CNTs), EHD patterning, SERS, vertically aligned carbon nanotube forests (VACNTF)

Procedia PDF Downloads 331
45 Physical Activity Based on Daily Step-Count in Inpatient Setting in Stroke and Traumatic Brain Injury Patients in Subacute Stage Follow Up: A Cross-Sectional Observational Study

Authors: Brigitte Mischler, Marget Hund, Hilfiker Roger, Clare Maguire

Abstract:

Background: Brain injury is one of the main causes of permanent physical disability, and improving walking ability is one of the most important goals for patients. After inpatient rehabilitation, most do not receive long-term rehabilitation services. Physical activity is important for the health prevention of the musculoskeletal system, circulatory system and the psyche. Objective: This follow-up study measured physical activity in subacute patients after traumatic brain injury and stroke. The difference in the number of steps in the inpatient setting was compared to the number of steps 1 year after the event in the outpatient setting. Methods: This follow-up study is a cross-sectional observational study with 29 participants. The measurement of daily step count over a seven-day period one year after the event was evaluated with the StepWatch™ ankle sensor. The number of steps taken one year after the event in the outpatient setting was compared with the number of steps taken during the inpatient stay and evaluated if they reached the recommended target value. Correlations between steps-count and exit domain, FAC level, walking speed, light touch, joint position sense, cognition, and fear of falling were calculated. Results: The median (IQR) daily step count of all patients was 2512 (568.5, 4070.5). During follow-up, the number of steps improved to 3656(1710,5900). The average difference was 1159(-2825, 6840) steps per day. Participants who were unable to walk independently (FAC 1) improved from 336(5-705) to 1808(92, 5354) steps per day. Participants able to walk with assistance (FAC 2-3) walked 700(31-3080) and at follow-up 3528(243,6871). Independent walkers (FAC 4-5) walked 4093(2327-5868) and achieved 3878(777,7418) daily steps at follow-up. This value is significantly below the recommended guideline. Step-count at follow-up showed moderate to high and statistically significant correlations: positive for FAC score, positive for FIM total score, positive for walking speed, and negative for fear of falling. Conclusions: Only 17% of all participants achieved the recommended daily step count one year after the event. We need better inpatient and outpatient strategies to improve physical activity. In everyday clinical practice, pedometers and diaries with objectives should be used. A concrete weekly schedule should be drawn up together with the patient, relatives, or nursing staff after discharge. This should include daily self-training, which was instructed during the inpatient stay. A good connection to social life (professional connection or a daily task/activity) can be an important part of improving daily activity. Further research should evaluate strategies to increase daily step counts in inpatient settings as well as in outpatient settings.

Keywords: neurorehabilitation, stroke, traumatic brain injury, steps, stepcount

Procedia PDF Downloads 15
44 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings

Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun

Abstract:

Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.

Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building

Procedia PDF Downloads 172
43 Exploring the Application of IoT Technology in Lower Limb Assistive Devices for Rehabilitation during the Golden Period of Stroke Patients with Hemiplegia

Authors: Ching-Yu Liao, Ju-Joan Wong

Abstract:

Recent years have shown a trend of younger stroke patients and an increase in ischemic strokes with the rise in stroke incidence. This has led to a growing demand for telemedicine, particularly during the COVID-19 pandemic, which has made the need for telemedicine even more urgent. This shift in healthcare is also closely related to advancements in Internet of Things (IoT) technology. Stroke-induced hemiparesis is a significant issue for patients. The medical community believes that if intervention occurs within three to six months of stroke onset, 80% of the residual effects can be restored to normal, a period known as the stroke golden period. During this time, patients undergo treatment and rehabilitation, and neural plasticity is at its best. Lower limb rehabilitation for stroke generally includes exercises such as support standing and walking posture, typically involving the healthy limb to guide the affected limb to achieve rehabilitation goals. Existing gait training aids in hospitals usually involve balance gait, sitting posture training, and precise muscle control, effectively addressing issues of poor gait, insufficient muscle activity, and inability to train independently during recovery. However, home training aids, such as braced and wheeled devices, often rely on the healthy limb to pull the affected limb, leading to lower usage of the affected limb, worsening circular walking, and compensatory movement issues. IoT technology connects devices via the internet to record, receive data, provide feedback, and adjust equipment for intelligent effects. Therefore, this study aims to explore how IoT can be integrated into existing gait training aids to monitor and sensor home rehabilitation movements, improve gait training compensatory issues through real-time feedback, and enable healthcare professionals to quickly understand patient conditions and enhance medical communication. To understand the needs of hemiparetic patients, a review of relevant literature from the past decade will be conducted. From the perspective of user experience, participant observation will be used to explore the use of home training aids by stroke patients and therapists, and interviews with physical therapists will be conducted to obtain professional opinions and practical experiences. Design specifications for home training aids for hemiparetic patients will be summarized. Applying IoT technology to lower limb training aids for stroke hemiparesis can help promote walking function recovery in hemiparetic patients, reduce muscle atrophy, and allow healthcare professionals to immediately grasp patient conditions and adjust gait training plans based on collected and analyzed information. Exploring these potential development directions provides a valuable reference for the further application of IoT technology in the field of medical rehabilitation.

Keywords: stroke, hemiplegia, rehabilitation, gait training, internet of things technology

Procedia PDF Downloads 29